Power Iteration Clustering for Segmenting Three-Dimensional Models (3D-PIC)

Zahra Toony, Denis Laurendeau, Philippe Giguère and Christian Gagné

Abstract - Segmenting a 3D model is an important challenge since this operation is relevant for many applications. Making the segmentation algorithm able to find relevant and meaningful geometric primitives automatically is a very important step in 3D image processing. In this paper, we adapted a 2D spectral segmentation method, Power Iteration Clustering (PIC), to the case of 3D models. This method is fast and easy to implement. A similarity matrix based on normals to vertices is defined and a modified version of PIC is implemented in order to segment a 3D model. The proposed method is validated on both free-form and CAD (Computer Aided Design) models, on real data captured by handheld 3D scanners, and in the presence of noise. Results demonstrate the efficiency and robustness of the method in all cases.

download document


    author    = { Zahra Toony and Denis Laurendeau and Philippe Giguère and Christian Gagné },
    title     = { Power Iteration Clustering for Segmenting Three-Dimensional Models (3D-PIC) },
    booktitle = { 3DTV-CON Conference (Vision Beyond Depth) 2013 },
    address   = { Aberdeen, Scotland },
    year      = { 2013 },
    month     = { Oct. 7-8 }

Last modification: 2013/10/16 by laurend


©2002-. Computer Vision and Systems Laboratory. All rights reserved