CVSL Logo
FrancaisHome
AboutPeopleResearchPublicationsEventsProfile
About
Publications

 

 

 

CERVIM

REPARTI

MIVIM

DEAP: Evolutionary Algorithms Made Easy


Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné


Abstract - DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its design departs from most other existing frameworks in that it seeks to make algorithms explicit and data structures transparent, as opposed to the more common black-box frameworks. Freely available with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source project under an LGPL license.

download document

Bibtex:

@article{Fortin944,
    author    = { Félix-Antoine Fortin and François-Michel De Rainville and Marc-André Gardner and Marc Parizeau and Christian Gagné },
    title     = { DEAP: Evolutionary Algorithms Made Easy },
    volume    = { 2171--2175 },
    number    = { 13 },
    year      = { 2012 },
    month     = { jul },
    journal   = { Journal of Machine Learning Research }
}

Last modification: 2012/06/19 by fmder1

     
   
   

©2002-. Computer Vision and Systems Laboratory. All rights reserved