Scale Selection for Geometric Fitting in Noisy Point Clouds
|
From a 3-D point cloud (right), points are manually extracted and represented as a graph (center). Our approach estimates the tangents of the curve at each point using scale-adaptive PCA (right). |
People
Abstract
In recent years, there has been a resurgence in the use of raw point cloud data as the geometric primitive of choice for several modeling tasks such as rendering, editing and compression. Algorithms using this representation often require reliable additional information such as the curve tangent or surface normal at each point. Estimation of these quantities requires the selection of an appropriate scale of analysis to accommodate sensor noise, density variation and sparsity in the data. To this goal, we present a new class of locally semi-parametric estimators that allows analysis of accuracy with finite samples, as well as explicitly addresses the problem of selecting optimal support volume for local fitting. Experiments on synthetic and real data validate the behavior predicted by the model, and show competitive performance and improved stability over leading alternatives that require a preset scale.
IJCGA'10 Citation
3DPVT 2006
Parts of this work previously appeared in 3DPVT'06.
Conference paper
Technical report
3DIM 2005
Parts of this work previously appeared in 3DIM'05.
Conference paper
Technical report
Talk
Download the slides from the talk presented at 3DIM'05 in the following formats:
Copyright notice