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ABSTRACT

In recent years, there has been a resurgence in the use of raw point cloud data as

the geometric primitive of choice for several modeling tasks such as rendering, editing
and compression. Algorithms using this representation often require reliable additional

information such as the curve tangent or surface normal at each point. Estimation of

these quantities requires the selection of an appropriate scale of analysis to accommodate
sensor noise, density variation and sparsity in the data. To this goal, we present a new

class of locally semi-parametric estimators that allows analysis of accuracy with finite

samples, as well as explicitly addresses the problem of selecting optimal support volume
for local fitting. Experiments on synthetic and real data validate the behavior predicted

by the model, and show competitive performance and improved stability over leading
alternatives that require a preset scale.

Keywords: scale selection, point cloud processing, tangent estimation, normal estimation,

perturbation analysis, semi-parametric estimator

1. Introduction

With advances in sensor technology, it is now feasible to acquire detailed scans of
complex scenes with millions of data points at high sampling rates. This possibility
brings with it the question of how best to process such large amounts of point data
to extract meaningful information such as the underlying shape of the scene being
scanned.

In the past, approaches to process such point-sampled data consisted of using
an intermediate representation such as a 2D range-image or a triangulated mesh
constructed from the input data. Range-images allow easy, though not always ap-
propriate, substitution of operators from traditional image processing to the domain
of 3D point processing. However, because the sensor geometry of laser range scan-
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ners need not confirm with a regular lattice structure of an image, the construction
of range-images usually involves some loss of information. It is also not easy to com-
bine information from multiple range-images of the same scene without reverting to
the original 3D input space. Meshes are piece-wise approximations of the underlying
surface and mesh processing has been the subject of much study. The construction
of a mesh from noisy data, however, is not straightforward and requires denoising
and additional pre-processing that can undesirably remove geometric detail.

In contrast, working directly with point clouds in the input space offers several
advantages. Point clouds are a natural sensor output and there is no assumption of
available connectivity information. It is also better suited for dynamic applications
requiring data addition and deformation. Recent years have also seen a revival
amongst the graphics community in the use point clouds directly as a rendering
primitive, as it circumvents the need for error-prone mesh construction procedures.

Most applications of point cloud processing require some additional knowledge
of the underlying shape represented by the point samples. Rendering requires knowl-
edge of surface normals at each point for visibility and lighting computation. Some
shape-compression algorithms utilize estimates of tangents to curves as predic-
tors for shape-outline encoding and iso-contour compression schemes in triangle-
meshes [22]. For solving the path planning problem in mobile robot navigation,
there is a frequent need to evaluate the traversability of terrain by reconstructing
its shape from observed sparse laser data. Accuracy in the reconstruction is cru-
cial in order to reliably determine a priori whether the vehicle will make all-wheel
contact with the ground at each point of a candidate trajectory.

All the above applications require fitting a surface of some form to observed
data. Due to the nature of sensing modalities, some immediate concerns arise from
the above applications such as data sparseness, irregularity in sampling and range-
dependent noise. The subject of this paper is a mathematically sound approach to
geometric fitting that addresses these challenges with finite-sample guarantees of
accuracy.

In what follows, we describe an approach to local geometric fitting that enjoys
the benefits of both finite-sample error analysis as well as asymptotic efficiency.
Section 2 presents related work. Section 3 formulates the problem and makes the
case for the locally semi-parametric approach employed in the remainder of the
paper. We point out that Section 3 presents a generalization of our previous work
in [36] whose analysis was restricted to 2D and 3D curves. Section 4 and Section 5
will then detail the application of the approach to the analysis of points lying on
curves and its extension to surfaces respectively. We then present results in Section 6
to validate the behavior predicted by the model on finite real data and demonstrate
its accuracy and stability with some applications. We then conclude in Section 7
with discussion and some directions for future work.
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2. Related Work

There are several approaches to curve and surface fitting, both non-parametric
(tensor voting [32], radial basis functions, etc.) and parametric [22] (moving least-
squares approximations [19], implicit parabolic fitting, b-splines, etc.). This section
will outline some of the popular approaches in the literature.

There are many approaches to surface and curve reconstruction motivated by
techniques from computational geometry. These include algorithms based on Delau-
nay triangulations [3,6], such as the crust algorithm [2], the cocone algorithm [4] and
its extension called tight cocone [9], and algorithms based on alpha shapes [11,12].
As summarized in [13], the more successful approaches are based on the construc-
tion of Delaunay triangulations. Under the somewhat restrictive assumption of a
closed bounded shape, the problem may be transformed into one of filtering the
Delaunay tetrahedra whose union approximates the shape interior. The different
approaches promise differing extents of theoretical guarantees on the reconstructed
shape varying with assumptions on sampling density and smoothness. However,
the fact that the reconstruction in these methods can only interpolate through the
observed points affects the quality of their results with noisy and sparse data.

Most practical curve and surface reconstruction algorithms are based on local
polynomial fitting and its variants. Recent work by Lewiner et al. [22] computed
the coefficients of an arc-length parameterized third-order approximation to a curve
by solving a weighted least-squares problem at each point using only the points in
its local neighborhood. The implicit parameter in the algorithm was the considered
neighborhood radius, which was preset by fixing the number of neighbors considered
at each point. A similar neighborhood selection strategy was used by Cazals et al. [7]
who fit the local representation of a manifold using coefficients of a truncated Taylor
expansion, termed a jet. Hoppe et al. [14] and others [42] compute normals to a
surface at each point by fitting a plane to its k-nearest neighbors. The success
of these algorithms depends crucially on the chosen value of k, and there is little
guidance in the literature on how to make that choice.

In the computer vision community, much work has been done on geometric re-
construction using non-parametric tensor voting [32, 33]. A key step of this is a
voting procedure used to aggregate local information at each point or voxel of in-
terest. The vote is in the form of a d× d tensor, where d is the data dimensionality,
indicating preferred direction of normal (or tangent), and the eigen decomposition
of the aggregate tensor at a point gives the desired result. Again, a crucial parame-
ter is the choice of the size of the support region for vote collection, usually chosen
heuristically. Work in [33] proposed a fine-to-coarse approach in which points likely
to form curves are linked together at fine scale to form fragments, and then linked
together incrementally as the scale is increased using a heuristic inspired by percep-
tual grouping. Work in this paper focuses on sparser point sets than used in [33] and
thus requires guarantees on the small sample behavior of the choice of estimator.

Closely related theoretical work by Mitra et al. [26] addresses the choice of opti-
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mal neighborhood size for normal estimation in surfaces using PCA. They derived
a bound on the angular error between the estimated normal and true normal, and
proposed the optimal radius as the value that minimized that bound. An iterative
procedure was suggested that first estimated the local density and curvature, then
computed the optimal radius for those values, and repeated the procedure until con-
vergence. However, the obtained closed-form expression had two parameters that
relied on knowledge of the observed data distribution and had to be fixed a pri-
ori. Furthermore, it was unclear whether the behavior predicted by the obtained
closed-form expression agreed with real data for finite samples.

In the Computer Graphics community, a large body is dedicated to geometric
fitting of noisy point cloud, especially based on Least Square techniques pioneered
by Levin [1,20,21]. The work of [40] addresses the problem of scale selection in the
context of surface reconstruction. The geometric fitting is also cast into a statistical
framework in the recent work of [16,28].

In the machine learning literature, there has been renewed interest in the use
of max-margin methods as well as Gaussian Processes (GP) for solving non-linear
non-parametric regression problems [23,29,38,39]. Recent work in [30] demonstrated
how algorithms based on these models can be implemented efficiently and scaled
to large datasets. However their application to surface reconstruction by global
fitting of an implicit function requires specifying additional constraints to avoid
a degenerate solution. Currently, these constraints have to be specified by adding
off-surface points, generated by projecting along an estimate of the surface normal,
and specifying function values at those points. More generally, it is unclear how the
specification of these locations and values at off-manifold points affects the accuracy
of the reconstruction.

3. Approach

In this section, we formulate the geometric fitting problem and develop our solution
to it in a manner that satisfies the requirements of our domain. In the process
of doing so, we will argue that traditional estimators from classical statistics are
insufficient to deal with point sample data, and that both new estimators as well
new methods for evaluating these estimators are necessary. Table 1 presents the
mathematical notations used throughout this document, grouped by the sections in
which they first appear.

3.1. Overview

Before presenting our proposed solution to the geometric fitting problem, we briefly
motivate our approach. Our goal is two-fold. First, we wish to estimate the pa-
rameters of a geometric model that best fit our observed data. Second, we wish to
simultaneously obtain some guarantee of the accuracy of our solution that is valid
for the sparse datasets we may expect to work with.
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Notation Meaning

M Unknown manifold
xoi Point lying on M (i = 1 . . . n)
xi Noisy observation of xoi with xi = (xi, yi, zi)
ηi Noise associated with observation xi with ηi = (ηx,i, ηy,iηz,i)
Λi Covariance matrix corresponding to noise ηi
θ Unknown model parameters

f(x, θ) Function of position x whose zero-level set represents a surface with
model parameters θ

γ(x) Problem-specific map from coordinates x to a higher dimensional
vector

N (xi, ri) Neighborhood around point xi defined by radius ri
si Intrinsic coordinates of point xoi on M
θ̄n Estimate of θ from n observations

κ (κ̇) Curvature (derivative) of line or normal curve (at origin of interest)
τ (τ̇) Torsion (derivative) of line (at point of interest)
r Radius of neighborhood (around point of interest) considered for

geometric fitting
σ0 Std. deviation of noise in each coordinate
X Random variable for the x-coordinate. Y and Z are defined simi-

larly.
X̄n Estimate of E(X) from n samples of X.
µX = E(X), mean of distribution of random variable X

dn(X) = E(X−µX)n, capturing centered statistical dispersion of random
variable X

cm(X,Y ) = E[(X −µX)(Y −µY )]m, capturing generalized covariance of two
random variables X and Y .

M̂n Estimate of the scatter (covariance) matrix from the n points in a
local neighborhood.

M̄ = E(M̂n), the expected value of the scatter matrix
Q Perturbation matrix that deviates estimate of tangent (normal)

away from its true value
δ Spectral gap of M̂

B(r) Error bound in estimate of tangent (normal)

Πα Normal plane at angle α to some reference vector in the tangent
plane, and containing the normal at that point.

κ1, κ2 Principal curvatures at point of interest. κ1 > κ2

Table 1. Mathematical notation used throughout this document, grouped by the sections in which

they first appear.
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To pursue the first objective, we make a design choice of modeling the scene as
a combination of local compact regions, each represented by an implicit function
having a small number of parameters. This design choice offers the flexibility of
modeling scenes that may otherwise be too complex for a function to fit globally.
However, this comes at the cost of requiring a principled method to automatically
choose the neighborhoods.

One way to go about the second objective of deriving finite-sample guarantees
is to first pursue the intermediate goal of deriving asymptotic guarantees that are
valid when the number of data samples increases to infinity. Through analyzing
this hypothetical scenario, we may hope to relate the estimation error with infinite
data to the practical case of finite data. The framework of regression from classical
statistics offers several tools for deriving these asymptotic guarantees. Hence, we
approach the geometric fitting problem by first mapping it to the regression problem
and deriving the asymptotic error for our chosen estimator.

To fold both the above objectives into one approach, we make an assumption
on how points in a small neighborhood are spatially distributed. This step intro-
duces the neighborhood size as another variable in the system along with the other
unknown variables. By then measuring the deviation of the solution obtained with
finite data from the ideal asymptotic data case, we obtain an error bound that
involves both the unknown parameters encoding the underlying geometry as well
as the neighborhood size. The best estimate of the model parameters may then be
obtained by simply minimizing this error bound for both sets of unknown variables.

3.2. Formulation

Our starting point will be the set of available point samples {xi} ∈ Rd. The points
are assumed to be noisy observations of an unknown underlying curve or surface
and follow the noise model

xi = xoi + ηi where ηi ∼ N(0,Λi), (1)

with ηi denoting heteroscedastic (or point-dependent) zero-mean Gaussian noise
with variance Λi. The points xoi represent the unknown true points lying on the
manifold. Throughout the paper, we will assume that the manifold (curve or surface)
under study is smooth, and that the noise variance Λi is available through an error
model of the sensor used to acquire the points.

One way to represent the underlying manifold mathematically is through a pa-
rameterized implicit equation

f(xoi ; θ) = 0 ∀i, (2)

where θ represent the unknown model parameters. In particular, we will be inter-
ested in the bilinear form γ(xoi )

Tθ = 0 where γ denotes a problem-specific vector
map.
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3.3. Local versus Global Fitting

At this stage, the problem specification is identical to several others in multi-
view geometry. For instance, in the problem of estimating the 3 × 3 fundamental
matrix F , the observed point pairs (x, y) and (x′, y′) are required to satisfy the
epipolar constraint

[
x y 1

]T
F
[
x′ y′ 1

]
. By expanding the constraint in terms of

the entries of F , its equivalent bilinear form may be obtained as γ(x, y, x′, y′) =[
xx′ xy′ x yx′ yy′ y x′ y′ 1

]T
, with model parameters θ representing the 9-vector

of F -matrix coefficients. Problems of this type have been studied by several re-
searchers [15,24,34], often by the name of the non-linear errors-in-variables model.

However, there is one very important difference. In problems such as fundamen-
tal matrix estimation, all the observations satisfy a single global constraint equation
as a natural consequence of epipolar geometry. However, in the domain of geometric
fitting it is unreasonable to expect that a single equation to capture the geomet-
ric complexity of an arbitrary scene. Conversely, such a model would potentially
require far too many parameters, perhaps exceeding the number of available data
points, thus making the fitting problem ill-posed.

A more tractable approach is that of local geometric fitting, in which the chosen
geometric model is assumed sufficient to explain a subset of observed points in a
small neighborhood N (xi, ri) of each point xi where the ri is the radius defining the
neighborhood. Thus the implicit equation models the surface locally at each point
xi as

f(xoj , θi) = 0 where xj ∈ N (xi, ri), (3a)

and xj = xoj + ηj where ηj ∼ N(0,Λj) (3b)

Note that j indexes points in the neighborhood N (xi, ri), and that there is now one
model equation for each point xi that is satisfied only by points in its neighborhood
N (xi, ri). The subscript i in θi emphasizes that the model parameters may be
different at each point xi.

Several useful signal processing tasks may be positioned in the above framework
of local geometric fitting. The task of denoising a point cloud may be accomplished
by simply projecting each observed point xi to the zero-level set of its locally fit
surface f(x, θi). The task of surface reconstruction can be done in a two-step
process. First, divide the input space into a regular grid and perform the geometric
fitting procedure in a neighborhood centered around each grid point. The fitted
function evaluated at the grid location gives the unsigned distance of the point
to the surface. Performing this at each grid point gives an unsigned distance map,
whose zero-level isosurface may be extracted using, say, a marching-cubes algorithm,
to give the underlying surface.

Given the functional form of f , the remaining problems to be addressed are:
(A) scale selection, or how to choose a neighborhood N (xi, ri) at each point,
and (B) parameter estimation how to compute the model parameters θi for that
neighborhood. Traditionally these two problems have been addressed separately in
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(a) r � ropt (b) r = ropt (c) r � ropt

Fig. 1. Effect of varying neighborhood radius (r) considered for computing tangent at a point on

a sampled curve with respect to the optimal radius (ropt). Estimated and true tangents are shown
by the blue and grey arrows respectively

the literature.
The first problem of scale selection is usually addressed by arbitrarily fixing

the neighborhood size or the value of k in k-nearest neighborhood at each point
[14, 22, 42], perhaps guided by some knowledge of the extent of the scene. This
however, can have undesirable consequences as illustrated in Figure 1 for the case
of tangent estimation (or equivalently, local line fitting) in a 2D curve. Using too
small a radius can compromise the quality of the estimate due to the use of smaller
number of noisy data points, while using too large a radius can permit a potentially
dissimilar points in the neighborhood to adversely influence the estimate. Thus, it
is crucial to make a choice of scale in model fitting that reflects the underlying
geometry.

We will show later how the above two problems of model parameter estimation
and scale selection may be solved jointly. For now we shall focus on getting good
answers to the parameter estimation problem.

3.4. Reduction to statistical inference

In this section, we compare and draw connections between our problem of geo-
metric fitting and the regression problem from classical statistics. This is done for
two reasons - first, by mapping our problem into another that is well-studied, we
hope to leverage solutions for the latter to be able to compute the model param-
eters θi at each point. Secondly, because our revised problem formulation involves
with local neighborhoods having potentially a small number of points, we require a
way of evaluating the accuracy of our solution within the established framework of
statistical inference.

In what follows, we will drop the subscript i on θi and ri with the understanding
that these two parameters depend on a neighborhood around xi and that this point
of interest is fixed.

A comparison of the geometric fitting equations (3) and the standard regression
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equation of the form

yi = βxi + ηi, (4)

with model parameter β reveals some crucial differences. First, the model pa-
rameters θ in the geometric fitting problem satisfy an implicit equation through
f(x, θ) = 0, whereas the relationship is explicit in the regression problem. Second,
unlike in standard regression, there is no distinction into abscissa and ordinate vari-
ables in the fitting problem. Finally, the observation errors occur in all variables
unlike in regression where the observation errors are assumed to exist only in the
ordinate.

The first step in converting the geometric fitting problem into the classical re-
gression framework is to convert the implicit equation (3a) into an explicit equation.
This can be done through the introduction of local coordinate system as

xoj = xoj(sj , θ), (5)

where sj denote unknown intrinsic coordinates on the surface M. Note that the
sj ’s have the (lower) dimensionality of the manifold while the xj ’s have the dimen-
sionality of the input space.

The effect of introducing surface coordinates sj is to convert the system of
equations (3) into the explicit system

xj = xoj(sj , θ) + ηj , (6)

The equation (6) now has the same functional form as the standard regression
problem (4) but with the addition of nuisance parameters sj . Thus, the unknowns
in the system are {θ, s1, s2, . . . , sn} which exceed the number of equations.

Does it matter that the system of equations is under-determined? After all, tech-
niques such as Expectation-Maximization (EM) are routinely used to solve systems
through the introduction of nuisance parameters. As shall be shown, the problem
arises not in solving the above equations, but instead in evaluating the accuracy of
the obtained solution.

A well-accepted paradigm to evaluate the accuracy of an estimator θ̄n of θ
from n observations is through its asymptotic efficiency. One way of evaluating this
is through the question: does θ̄n → θ as n → ∞? This paradigm of asymptotic
behavior is a concept central to classical statistical reasoning. Can this paradigm
be applied to a solution to the geometric fitting problem?

Unfortunately, classical asymptotic analysis cannot be directly applied to the
geometric fitting problem, at least in the form that we have presented so far, for
two reasons. The first reason, as also pointed out by Kanatani [15], is that classical
asymptotic analysis is applicable to systems having a fixed number of unknown
parameters, whereas the number of unknowns in the geometric fitting problem in-
creases with the number of observations. Another way to interpret this effect is
that each additional observation xn+1 is not one more observation of a system with
a fixed number of parameters, but an observation of new system with one more
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parameter sn+1. Thus the number of effective observations of the system is always
one.

The second reason is that of insufficiency. A claim of asymptotic behavior as
n→∞ does not necessarily translate to good results for finite n. In reality, we work
with finite samples and expect n to be quite small for each neighborhood. Thus, in
addition to asymptotic convergence, a guarantee of how wrong the estimate could
be for finite n would be more useful in real application.

The next section will present a technique that enjoys the benefits of both, the
ability to perform asymptotic analysis as well as to analyze finite sample behavior,
and in doing so will simultaneously address the problem of choosing the support
region size.

3.5. Locally semi-parametric analysis

From the last section, we saw that a key hindrance to performing asymptotic anal-
ysis was the introduction of nuisance parameters {si}. One way to circumvent this
obstacle is to assume a parametric form for the distribution that generates the
samples {si}. i.e. Assume that the random variable T that generates samples {si}
follows T ∼ pdf(ν) where ν denotes the unknown hyperparameters of the chosen
form of distribution. The net effect of this model is to replace the set of unknowns
{θ, s1, s2, . . . , sn} by {θ, ν}. Because this fixes the number of unknowns, the stan-
dard asymptotic analysis may be performed without difficulty.

Now in general, the imposition of a distribution on samples {si} is a bad idea
because the distribution over the unknown manifold M need not take a simple
form. Indeed, for the same reasons cited earlier for local fitting, the form of the
distribution may require too many parameters making the problem of determining
the hyperparameters difficult.

However, in a small local neighborhood, the distribution will appear nearly
uniform. Therefore one appealing form of the distribution is

T ∼ Uniform(r), (7)

where r is the radius of the neighborhood under consideration. Note that the fixed
set of parameters in the system are now θ and r, and that radius r has been
introduced as a hyperparameter.

The impact of introducing radius r is that we are now able to map the problem
into the standard statistical framework of regression while incorporating knowledge
of the locality of the fitting problem. Thus, any error bounds we may obtain for
a given estimator will involve the free variable r which may be optimized to im-
prove the accuracy of the solution. Since the salient feature of this method is the
combination of a local parametric model for the point sample distribution with a
different model at each sample point, we refer to it as a locally semi-parametric
approach.

To contrast this approach with related work by Kanatani [15], we wish to point
out that his analysis of geometric fitting demonstrated the inadequacy of classical
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statistics using arguments similair to those in the previous section. However, the
analysis in [15] deviate from ours in that its focus is on global fitting and hence the
problem of choosing an appropriate neighborhood size does not arise. Its proposed
analysis of estimator convergence rate as noise ηi → ∞ exhibits a dual nature to
classical asymptotic analysis, but by itself is also asymptotic in nature. In contrast,
the locally semi-parametric approach benefits from the simple forms of distributions
locally to allow computation of 2nd order statistics and associated finite-sample error
bounds, as well as compute asymptotic values to check for any possible bias of the
estimator.

The next two sections will demonstrate the application of the above approach
to the problems of reconstructing 2D and 3D curves, and extend the results to
reconstructing 2D surfaces.

4. Problem: Reconstruction of Curves

In this section, we illustrate the method of locally semi-parametric analysis through
the task of reconstructing curves from sample points. Evaluating the accuracy of
a reconstruction algorithm by comparing two curves is not straightforward. To
make this evaluation more easily quantifiable, we define the objective to be that of
estimating the tangent to the curve at each observed point, which is much easier to
compare and quantify with other algorithms.

We exploit the property of local linearity in the curve through local principal
component analysis (PCA) using an adaptive neighborhood size. Our estimate of
the tangent at a point is the principal eigenvector of the scatter matrix computed
in its local neighborhood. We choose this estimator as it is simple in form and has
been used by other researchers for related tasks [17,32,33].

We propose that, for spatial curves, the neighborhood size should be chosen such
that the principal eigenvalue of the scatter matrix is most closely aligned with the
true tangent to the curve. To make this choice, we derive an upper bound on the
expected angular error induced by finite sampling and sample noise as a function of
neighborhood radius. The optimal radius is then chosen as the value that minimizes
this upper bound on angular error. The ability to bound the accuracy of the estimate
for a given neighborhood radius is the contribution of the locally semi-parametric
approach, which we detail below.

4.1. Curve model

Our available data is a set of n unordered points {x1,x2, . . . ,xn}. Each such point
xi = {xi, yi, zi} may be thought of as a noisy observation of a true point lying on
a smooth curve Γ at an (unknown) distance si along the curve.

Without loss of generality, we assume a Frenet reference frame (Figure 2) with
origin located at the point of interest such that the tangent to the curve is aligned
with the x-axis, the curvature vector in the plane of the osculating circle containing
the point of interest is aligned with the y-axis and the normal to the osculating plane
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Rectifying plane
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ẍ(s)
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z = κτs3
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~b

Fig. 2. Model of local curve geometry

is aligned with the z-axis. The neighborhood considered around the origin is defined
as all points lying within the distance r along the curve from the origin. We may
then adopt the semi-parametric generative model with the samples si assumed to be
generated from a uniform distribution S ∼ Uniform(−r, r) with additive Gaussian
noise η ∼ N(0, σ2

0) as:

xi = si + ηx,i

yi =
κ

2
s2i + ηy,i

zi =
κτ

6
s3i + ηz,i,

(8)

which is valid for moderate slowly changing values of curvature (κ) and torsion (τ).
i.e. in a local neighborhood around the point of interest, curvature κ and torsion τ
are assumed bounded and near constant, i.e. κ̇(s), τ̇(s) ≈ 0. We also assume Inde-
pendent and Identically Distributed (i.i.d.) sensor noise that is zero-mean normally
distributed with variance σ2

0 affecting all three coordinates. In practice, this allows
the value of σ0 to differ across the scene to account for variation in noise level with
distance from the laser sensor.

4.1.1. The covariance matrix for curves

One technique to estimate the direction of the local tangent at a given sample point
on a curve is to look at the shape of a scatter matrix computed using points in its
neighborhood [17,32,33]. If the curve is smooth, it is reasonable to expect that the
scatter matrix will be elongated and that its major axis, or principal eigenvector, will
approximate the direction of the local tangent for some appropriate (and unknown)
range of neighborhood sizes. In this and the following subsection, we will derive and
analyze the conditions under which this assumption will hold for both 2D and 3D
curves.

The random variables X, Y and Z (denoted in capitals to distinguish them
from the data) are noisy functions of the random variable S whose distribution is
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assumed to be locally uniform. Hence the distribution of X, Y and Z, as well as
estimators of their 1st and 2nd order statistics will depend on the coefficients (κ, τ)
and order of the functions (given in (8)) as well as properties of the uniform (for S)
and Gaussian (for η) distributions.

We start by computing the mean and variance of the estimators used to con-
struct the sample covariance matrix M̂n. We will denote the true means of random
variables by µ (e.g. µX for X) and standard deviation by σ (e.g. σ2

X for variance of
X). Then

M̂n =

M11 M12 M13

M12 M22 M23

M13 M23 M33

 , (9)

where

M11 =
∑
i(xi−X̄n)2

n− 1
M12 =

∑
i(xi−X̄n)(yi−Ȳn)

n− 1
(10)

M22 =
∑
i(yi−Ȳn)2

n− 1
M13 =

∑
i(xi−X̄n)(zi−Z̄n)

n− 1
(11)

M33 =
∑
i(zi−Z̄n)2

n− 1
M23 =

∑
i(yi−Ȳn)(zi−Z̄n)

n− 1
, (12)

and X̄n = 1
n

∑
i xi is the sample mean estimator for X, and similarly for Ȳn and

Z̄n.
Note that the diagonal elements are unbiased estimators for variance (e.g. M11

is the estimator for variance σ2
X of X) and the off-diagonal elements are unbiased

estimators of covariance (e.g. M13 is the estimator for covariance cov(X,Z) of X
and Z).

From the distribution of S ∼ Uniform(−r, r), we can then compute the expected
values of each of the above quantities.

For example, using X = S + ηX

E(M11) = V(Xi) = V(S + η) = V(Si) + σ2
0

= σ2
X + σ2

0 =
∫ r

−r
s2

1
2r
ds+ σ2

0 =
r2

3
+ σ2

0 .
(13)

Using a similar procedure, we can derive the following identities under the model
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defined in (8).

E(M12) = cov(X,Y ) =
κ

2
E(S3) = 0 (14)

E(M13) = cov(X,Z) =
κτ

6
E(S4) =

κτ

30
r4 (15)

E(M22) = V(Y ) =
κ2

4
V(S2) + σ2

0 =
κ2

45
r4 + σ2

0 (16)

E(M23) = cov(Y, Z) =
κ2τ

18
(E(S5)− E(S2)E(S3)) = 0 (17)

E(M33) = V(Z) =
(κτ

6

)2 r6

7
+ σ2

0 (18)

To proceed from here, we must use results on the variance of the sample variance
and sample covariance estimators. We state them below, and their proofs may be
found in [37].

Identity 1 (Variance of the sample variance estimator).

V(σ̂2
X) =

d4(X)
n
− (n− 3)
n(n− 1)

σ4
X (19)

for a random variable X, where

dn(X) , E(X − µX)n. (20)

Identity 2 (Variance of the sample covariance estimator).

V(ŜXY ) =
c2(X,Y )

n
+

σ2
Xσ

2
Y

n(n− 1)
− (n− 2)
n(n− 1)

c21(X,Y ) (21)

for random variables X and Y , where

cm(X,Y ) , E [(X − µX)(Y − µY )]m . (22)

Note that we use the hat symbol (ˆ) to distinguish the estimator from the true
quantity.

Under the curve model defined in (8), we can derive the expressions for d4(X),
d4(Y ) and d4(Z) in a manner similar to that used for (14)–(18), using the identity:

d4(X + η) = d4(X) + 6σ2
0d2(X) + 3σ4

0 (23)

for any random variable X affected by normally distributed independent noise η ∼
N(0, σ2

0). Note that the simplification is because the odd moments of η vanish and
E(η4) = 3σ4

0 . We may also similarly derive the expressions for c1 and c2 for all pairs
of X,Y and Z.

Once we have the required values for ci and di, we can then substitute them
back in (19) and (21) to get the variance of the individual estimators, which we
denote as V(Mij) with i, j = {1, 2}. The final expressions for V(Mij) were obtained
using MathematicaTM and are listed in [37] due to space limitations.
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Observe that the estimator for sample covariance matrix may be expressed as
the sum of the matrix of its expected value and a matrix of random variables as

M̂n = M̄ +Q. (24)

Here M̄ = E(M) is a symmetric matrix with elements given by (14)–(18), and Q is a
symmetric perturbation matrix of random variables each with mean 0 and variance
given by the expressions listed in [37].

4.1.2. Perturbation model

In the previous section, we were able to express the scatter matrix (M̂n) computed
in a local neighborhood as a sum of an uncorrupted intrinsic quantity (M̄) and a
random matrix (Q) existing due to finite sampling and noise. In this section we
compute the effect of the perturbation Q on the principal eigenvector of M̂n.

We denote the eigenvalues of M̄ = E(M) by λ1 ≥ λ2 ≥ λ3. Let the eigenvector
corresponding to λ1 be e1. Let ê1 be the eigenvector corresponding to the largest
eigenvalue of the estimated M̂n. If Q is the symmetric perturbation to the positive
semidefinite matrix M̄ , then the application of the matrix perturbation theorem
V.3.4 from [31] yields

sin (∠(ê1, e1)) ≤ ||Q||F
δ

, (25)

where ∠(ê1, e1) denotes the angle between the estimated ê1 and the true e1. The
quantity δ = λ1 − λ2 is the spectral gap of the matrix E(M), and ||Q||F represents
Frobenius norm of matrix Q.a

Since the matrix Q consists of random variables, we are confined to making
probabilistic statements about ||Q||F . Using Chebyshev’s inequality, the square of
the value attained by each element Qij can be upper bounded by

Q2
ij ≤

V(Mij)
nε

with probability 1− ε, where V(Mij) is the variance of corresponding finite sample
estimator of covariance (or variance if i = j). Note that minimizing the RHS of (25)
is equivalent to minimizing the ratio

B , ||Q||F /δ. (26)

We will analyze the function B for both 2D and 3D curves in the next section.

4.1.3. Angular bounds and their behavior

We first analyze the behavior of the perturbation bound to variation in sampling
density, noise and curvature by looking at the slightly simpler case of 2D curves.

aA similar result was used in [27] where the authors invoked theorem V.2.8 from [31] to bound
||ê1−e1|| and analyzed the stability of document-link matrices constructed for ranking web pages.
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Fig. 3. Plot of analytic 2D bound for varying sampling and geometry parameters

2D curves

We analyze the 2D case by working with the same assumptions as stated earlier
except that we discard the z coordinate (or equivalently nullify torsion). The scatter
matrix in this case is obtained as the top left 2 × 2 sub-matrix of Q, which we
will refer to as Q2. From our perturbation model in Section 4.1.2, we know that
Frobenius norm of Q2 is upper bounded with probability 1− ε by

||Q2||2F ≤
1
nε

2∑
i=1

2∑
j=1

V(Mij)

=
1
nε

[V(M11) + V(M22) + 2V(M12)] .

(27)

The spectral gap δ2 of the corresponding top-left 2× 2 sub-matrix M̄2 of E(M)
given by

M̄2 =

[
r2

3 + σ2
0 0

0 κ2

45 r
4 + σ2

0

]
(28)

is obtained easily by inspection as

δ2 =
r2

3
− κ2r4

45
. (29)
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This implies that for the dominant eigenvector of M̄ to be the vector
[
1 0
]
, the

value of radius r must satisfy

0 < r <
√

15/κ. (30)

The bound to be minimized then is

B2(r) ,
||Q2||F
δ2

. (31)

To study the analytical behavior of this bound, we need to replace the discrete
parameter n by a continuous function of radius r, and explicitly express their de-
pendency. To do this, we use the assumption of minimum local point density ρ and
substitute n = 2ρr to form the analytical plots that follow.

Note, however, that in the implementation of the proposed algorithm we directly
set n in (31) to equal the number of points observed in the neighborhood of candi-
date radius r and do not ever need to estimate ρ. The assumption of an underlying
ρ is used only for studying the expected behavior of the analytic bound in synthetic
data and is not used at runtime.

Before proceeding, we point out that there are two expected limitations in the
functional analysis of the derived expressions that will be relevant in their experi-
mental validation. Firstly, although the bounds are discontinuous functions of high
order polynomials in r, our analysis is restricted to the regime where the constraints
(30) required for eigenvector dominance are satisfied. In this regime, the bound is
convex with a unique minimum.

Secondly, and as also observed experimentally in [22, 26], the predicted error
tends to 0 as r → 0 for noise-free data. But for σ0 > 0, the error tends to sharply
increase for the same condition. This behavior is not reflected in our model as our
continuous relaxation of n as 2ρr is invalid for small r. Hence, we advocate the
interpretation of the function only in terms of the behavior of its minima in the
meaningful regimes of interest, rather than throughout the domain of the function.

Based on the analytical plots ofB2(r) in Figures 3(a)–3(c), we make the following
qualitative observations:

(1) Complexity: The closed-form expression in (31) unfortunately does not have a
simple form. However, it can be easily shown that the terms with coefficients
(n(n− 1))−1 in the numerator of B2(r) are dominated by the others for integer
values of n ≥ 2, reducing the expression to the ratio of the root of a 6th degree
polynomial and a 4th degree polynomial of r, both only containing even powers
of r.

(2) Variation with curvature κ: Figure 3(a) plots the function B2 for multiple values
of κ and fixed values of noise and sampling density. As one would expect,
the optimal radius r tends to increase with decreasing curvature in order to
compensate for noise and sparsity, without exceeding the bounds in (30) when
the eigenvector more closely aligned to the x-axis is no longer dominant.
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(3) Variation with sampling noise σ0 : Figure 3(b) plots the function B2 for multiple
values of κ and fixed values of noise and sampling density. It can be seen that as
the noise increases, the point of minima of B2 increases but only approaching
the required bounds for eigenvector dominance in (30).

(4) Variation with sampling density ρ : Figure 3(c) plots the function B2 for mul-
tiple values of sampling density and fixed values of noise and curvature. It is
interesting to note that although the value of the bound decreases as expected
with increased number of points, the location of the extremum hardly changes.
This is in contrast with the observations in [26] for surfaces which varies r
with ρ−0.5. We validate this later in Section 6.2.

4.1.4. 3D curves

The derivation and behavior of the angular bound for 3D curves is fairly similar to
the 2D case. From Section 4.1.2, the ||Q||F is upper bounded with probability 1− ε
by

||Q||2F ≤
1
nε

3∑
i=1

3∑
j=1

V(Mij)

=
1
nε

[
V(M11) + V(M22) + V(M33) + 2 (V(M12) + V(M13) + V(M23))

]
.

(32)

Substituting the results from Section 4.1.1 gives the required final expression [37].
The matrix of expected values can be written as

M̄ = E(M) =

 r
2

3 + σ2
0 0 κτ

30 r
4

0 κ2

45 r
4 + σ2

0 0
κτ
30 r

4 0
(
κτ
6

)2 r6

7 + σ2
0

 . (33)

We denote the eigenvalues of M̄ as λ1 ≥ λ2 ≥ λ3. The spectral gap of M̄ is not
as straightforward due to its off-diagonal terms. However, we can lower bound the
spectral gap using the Gershgorin circle theorem (GCT) [8]. This gives the system
of inequalities:

|λ1 − r2

3
+ σ2

0 | ≤
κτ

30
r4 (34)

λ2 =
κ2

45
r4 + σ2

0 (35)

|λ3 −
(κτ

6

)2 r6

7
+ σ2

0 | ≤
κτ

30
r4 (36)

Under the conditions of (30), this gives the additional constraint on radius as

r ≤
√

28/5τ , (37)
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and a bound on spectral gap as

δ3 ≥ r2

3
− κ2r4

45
− κτ r

4

15
. (38)

Combining (32) and (38) with the continuous relaxation n = 2ρr in (26) gives the
desired result.

The observations we make on the analytic behavior of B(r) are analogous to
those in the 2D case. The main effect of torsion is that due to its presence as an
off-diagonal term in E(M), it always induces a finite angular offset of the dominant
eigenvector in the rectifying plane (see Figure 2).

However as the radius is decreased, the off-diagonal term tends to 0 with r4

while the leading eigenvector decays with r2. Thus in moving from the 2D to 3D
analysis, the overall effect of torsion is to decrease the optimal scale of analysis with
increasing τ . This shift can be verified in Figure 4 which has the same parameters
as the 2D curve of Figure 3(a) but with a non-zero torsion τ = 0.3.

To summarize this section, we have shown how to relate the error in estimating
the shape (specifically the tangent) of a curve locally from few observations to both
its geometry related parameters, namely the curvature, torsion and sampling noise,
as well as to the choice of support radius size. What this allows us to do in practice
is to vary the free parameter of support radius size so that we get the best possible
estimate of the model parameters. Furthermore, because an upper bound of the
allowable search radius can be computed from the data, the search for the optimal
radius that minimizes the error bound is easy to perform. From the plots showing
the variation of the error bound to changes in geometry parameters, it can also be
seen that the strategy of choosing a radius that minimizes the error bound has the
behavior of automatically adapting the locality of the geometric fitting procedure
to the unknown underlying shape.

5. From Curves to Surfaces

We now extend the analysis in the previous section from 2D curves to 3D surfaces
by following elementary concepts from differential geometry.
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Adhering to the notation from the previous section, our available data is a set
of n unordered points {x1,x2, . . . ,xn}, where each point xi = {xi, yi, zi} is now
considered as a noisy observation of a point on a 3D surface M. Without loss of
generality, we assume a Darboux reference frame with origin located at the point
of interest such that the surface normal is aligned with the positive z-axis, and
the principal curvatures κ1 and κ2 are aligned with the positive x-axis and y-axis
respectively.

There exists a family Π of planes that contain the origin and its normal vector.
Each such plane Πα, lying at an angle α to some reference vector in the tangent
plane, intersects the surface M at a curve Γα termed the normal curve. (See Fig-
ure 5.)

The neighborhood considered around the origin on the surface is defined as all
points lying within the distance r along any normal curve Γα from the origin. For
each curve Γα, we may then adopt the semi-parametric generative model with the
samples si assumed to be generated from a uniform distribution S ∼ Uniform(−r, r)
with additive Gaussian noise η ∼ N(0, σ2

0) as

xi = si cos(α) + ηx,i

yi = si sin(α) + ηy,i

zi =
κ

2
s2i + ηz,i,

(39)

where the sectional curvature [10,41] is given by

κ = κ1 cos2(α) + κ2 sin2(α). (40)

As before, sensor noise is assumed i.i.d. and zero-mean normally distributed with
variance σ2

0 affecting all three coordinates.
Following this generative model, each sampled point is assumed to be generated

by randomly picking an angle α ∈ [0, π] and then picking a point from its normal
curve Γα at distance s ∈ [−r, r] following a uniform distribution in that interval.

Thus, the expected value of any function g(X,Y, Z) of the associated random
variables in a neighborhood N (0, r) under the above generative model may be
obtained by integrating over each normal curve over all angles α ∈ [0, π] as

E(g(X,Y, Z)) =
∫ ∞
−∞

∫ r

−r

∫ 2π

0

1
2r

1
π
g(X,Y, Z)p(η)dα ds dη, (41)

where p(η) denotes the Gaussian distribution on the error variables.
The estimator for surface normal may be chosen in a similar manner as for

tangents to curves, as the eigenvector corresponding to the minimum eigenvalue of
the 3 × 3 scatter matrix M̂n computed as per the expression (9) with terms given
by (10) through (12).

The locally semi-parametric analysis of the defined surface normal estimator
then proceeds similarly to the case of curves in the previous section. First, we
decompose the scatter matrix estimator into two components – an expected matrix
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component M̄ = E(M̂n) and a perturbation matrix component Q that vanishes for
infinite number of data points. The expected matrix may be computed analytically
using (39) and (41) as

M̄ = E(M̂n) =

 d2(X) c2(X,Y ) c2(X,Z)
c2(X,Y ) d2(Y ) c2(Y,Z)
c2(X,Z) c2(Y,Z) d2(Z)



=


r2

6 + σ2 0 0
0 r2

6 + σ2 0

0 0
r4(17κ12−2κ1κ2+17κ22)

1440 + σ2

 .
(42)

Thus the spectral gap δ is given simply by inspection as

δ =
r2

6
− r4

(
17κ2

1 − 2κ1κ2 + 17κ2
2

)
1440

. (43)

Thus, for the minimal eigenvector of the computed scatter matrix M̂n to be
aligned with the true surface normal, the condition δ > 0 must be satisfied. This
translates to

0 < r <

√
240

17κ2
1 − 2κ1κ2 + 17κ2

2

(44)

when κ1, κ2 ≥ 0. Figure 6 plots the variation in spectral gap for κ1, κ2 = 1. It may
be seen that beyond a certain critical radius, the spectral gap changes sign. Hence
this critical radius may be used to bound the search for the radius r that minimizes
the estimation error derived below.

From Section 4.1.4 the perturbation ||Q||F is upper bounded with probability
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parameters

1− ε by

||Q||2F ≤
1
nε

3∑
i=1

3∑
j=1

V(Mij)

=
1
nε

[
V(M11) + V(M22) + V(M33) + 2 (V(M12) + V(M13) + V(M23))

]
,

(45)

where the individual variance terms may be computed using the Identities 1 and 2
from Section 4.1.1.

Thus error in the estimate of surface normal B(r) from the true normal is
bounded by

B(r) ,
||Q||F
δ

. (46)

From the plots of B(r) in Figures 7(a)–7(c), we can make the following qualita-
tive observations:
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Algorithm 1 Estimation of tangents (normals) from unorganized points
Data: Points X = {xi} ∈ R3 with i = 1 . . . n.

1: Construct a graph G on the points from which approximate geodesic distances
may be computed as graph path distances. Distance dG(xi, xj) between any pair
of points xi,xj can be computed efficiently using Dijkstra’s algorithm.

2: for x ∈ {xi} do
3: Choose starting neighborhood radius rt=0, say using distance to the k-th

nearest neighbor for a small k.
4: repeat
5: Estimate curvature κt(r) (and torsion τt(r)) for points in geodesic radius

r = rt from xi.
6: Perform a 1D line search to solve rt+1 = arg minB(rt, κt, τt) subject to

boundary conditions on r to enforce positive spectral gap δ > 0.
7: until convergence of rt, else t = t+ 1
8: end for

• Variation with curvature κ: Figure 7(a) plots the function B(r) for multiple
values of κ1 = κ2 = κ and fixed values of noise and sampling density. As one
would expect, the optimal radius r tends to increase with decreasing curva-
ture in order to compensate for noise and sparsity upto the point where the
eigenvector more closely aligned to the z-axis is no longer dominant.

• Variation with sampling noise σ0 : Figure 7(b) plots the function B(r) for
multiple values of κ1 = κ2 = κ and fixed values of noise and sampling density.
As with the case of curves, with increasing noise, the point of minima of B
increases but only approaching the required bounds for eigenvector dominance.

• Variation with sampling density ρ : Figure 7(c) plots the function B(r) for
multiple values of sampling density and fixed values of noise and curvature. As
expected the value of the bound decreases with increased number of points, but
the location of the extremum hardly changes.

6. Experiments

In this section we present experimental results to validate the theoretical behav-
ior predicted by the models built in the previous section for curves and surfaces,
and also study the numerical accuracy and stability of the resulting algorithms.
We start with an outline of the algorithm procedure and draw attention to a few
implementation details below.

6.1. Algorithm and Implementation

Algorithm 1 outlines the procedure used to estimate tangents (normals) from
points sampled from curves (surfaces). We give a verbal description for the case of
curves and draw attention to some implementation details below.
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At t = 0, for a starting neighborhood size r(t), we estimate the curvature (κ(t))
and torsion (τ (t)) using [22] and use a sensor model to obtain the value of sample
noise. Then we perform line-estimation on r to obtain the r(t+1) minimizing (31),
subject to (30) using values at time t. We then re-estimate κ(t+1) and τ (t+1) cor-
responding to the new value of radius r and iterate till convergence. To prevent
large changes in estimates of r between iterations, we use a damping factor α = 0.5,
although no significant difference in results was observed without it.

To estimate κ and τ for curves at each iteration, we use the procedure from [22]
setting its scale parameter to the current estimate of r. Both the technique in [22]
and our method for scale selection approximates distances between points along the
underlying curve by a sum of edge distances in a graph constructed on the points.
For the case of surfaces, we use the curvature estimation procedure suggested in [26].

We chose to construct the graph as the sum of disjoint minimum spanning
trees (DMST) as suggested in [5], followed by a post-processing step of rejecting
edges with length greater than that determined by our assumed minimum global
density (ρ0). Figure 8 shows an example of a construction for points acquired from
a concertina wire. The range sensor used is a SICK LMS-291 attached to a custom
made scanning mount. The angular separation between laser beams is 1

4

◦ over a 100◦

field of view. The angular separation between laser sweeps is 2
3

◦ over a range of 115◦.
The construction using DMSTs has some desirable properties over traditional

k-nearest neighbor or ε-ball schemes. In practice, it produces connected graphs
without undesirable gaps and does not induce edges to clump together in noisy
regions having relatively higher point density. The only parameter to be chosen is
the number of spanning trees (in our case, = 2 for curves and = 4 for surfaces) and
we have observed it to be robust to changes in the dataset for our choice.

6.2. Validation with synthetic data

In this section we use synthetic data to validate the model presented in sections 4
and 5.

6.2.1. Curves in 2D and 3D

As a first step, we test our model by attempting to validate the behavior predicted
by the analytical bounds of Section 4.1.3 for the 2D case. The test curve is a 2D
parabola and the error in tangent direction is evaluated at the apex for various values
of curvature and point density. The estimation is done using PCA for various values
of neighborhood radius. The reader is encouraged to compare Figures 9(a)-9(c) with
the analytic curves of Figures 3(a)-3(c).

Figure 9(a) shows the observed angular error with varying curvature κ of the
parabola. It can be seen to show the predicted systematic decrease in scale for
increased curvature. The variation of estimation error with sample noise σ2

0 in Fig-
ure 9(b) shows the increase in optimal scale for increased noise. Figure 9(c) shows
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(a) (b)

(c)

(d) (e)

Fig. 8. Laser scan of a concertina wire having the geometry of two oppositely wound helices of

equal diameter: (a) Illustration of a concertina wire (b) Scene outline showing the concertina wire
structure and the ground plane (c) Raw 3-D points color-coded by elevation [axis length = 0.5m],

(d) DMST graph constructed on manually extracted non-ground points, (e) Estimated tangents
using scale-adaptive PCA.

the relatively small change in choice of optimal scale except at a low density. It also
shows the expected decrease in error with increasing sample density.

6.2.2. Surfaces

We perform a validation experiment similar to that done for curves but with a
paraboloid surface. The estimate of surface normal at a fixed point is evaluated for
varying values of geometric and sampling parameters. Figures 10(a), 10(b) and 10(c)
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Fig. 9. Plot of angular error observed when computing tangents from points sampled from 2D
parabolas for varying sampling and geometric parameters. (Figure is best seen in color.)

show variation in estimation error the radius of curvature, sampling noise level and
number of points. The conclusion obtained on comparing these figures with the
corresponding figures in Section 5 are similar to those for curves, and are omitted
here for brevity.

6.3. Stability and Accuracy

6.3.1. Synthetic curves

We choose to compare the proposed method with the polynomial fitting algorithm
of [22], as the latter performed nearly uniformly better experimentally on a variety of
synthetic curves against a large family of other fitting approaches based on Gaussian
smoothing, Fourier transforms and others.

Figure 11 presents results on 100 samples from two synthetic curves, a 2D
hypocycloid and a 3D conical helix (as also used in [22]). The hypocycloid has
the parametric form

(
4 cos(t) − cos(2t), 4 sin(t) + sin(2t)

)
with t ∈ [0, 2π] and the

helix has the form (t cos(t), t sin(t), t) with t ∈ [π/2, 5π/2]. These two are presented
as their constantly varying curvature violates the assumptions made in both al-
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Fig. 10. Plots of angular error observed when computing normals from points sampled from

paraboloid surfaces for varying geometry and sampling parameters. (Figure is best seen in color.)

gorithms, and PCA is intuitively not expected to perform well on them under its
simplistic assumption of local linearity. The algorithms were run for 30 datasets
each for varied sample noise (σ). A range of values for radius r0 were used to fix
the scale for polynomial fitting and correspondingly serve as the starting point of
the proposed PCA algorithm.

As seen in Figure 11, the scale-adaptive PCA performs surprisingly well in terms
of error rate, and is much more stable to varying values of r0. Similar results were
observed on comparison with other 2D and 3D curves from [22].

6.3.2. Actual surfaces

The accuracy of the adaptive PCA algorithm for surface normal estimation was
tested using data from an open space natural environment containing a 1.5 m high
pile of gravel surrounded by short cut and non cut grass. We collected high resolu-
tion, high density data with the Z+F laser and also collected low-resolution aerial
data for the same scene with the CMU autonomous helicopter [18, 25]. The two
data sets are co-registered. The Z+F data was used to produce the ground truth
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Fig. 11. Plot of observed error on (a) 3D conical helix and (b) 2D hypocycloid dataset. The top

row plots the true curves along with a typical example of points sampled from them. The middle
row (c-d) plots error obtained with the method of [22] and the bottom row (e-f) plots error with
proposed scale-adaptive PCA. Error plots in the same column have the same axis limits. The lower

variation in the more stable PCA method as indicated by its thinner shaded region can be clearly
seen.

used to estimate the normal reconstruction error in the aerial data.
Figure 12 shows the results obtained. Figure 12-(a) shows the computed normals

and the support regions for selected points in the aerial data. Figure 12-(b) shows
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(a) Illustration of the terrain

(b) Low-resolution raw data

(c) High-resolution data used as ground-truth

Fig. 12. Normal estimation from the Zoller+Fröhlich (Z+F) laser dataset. (a) Estimated surface
normals and corresponding support region for selected points are overlaid on top of the low-
resolution data. Points are colored by the angular error (in degrees) of the estimated normal.
Error is computed using ground-truth obtained from a high-resolution mesh (b) that also have the
normals and support regions overlaid. (See text for details.)

the normal and support regions for the same points but overlaid on top of the high-
resolution ground data. Points in Figure 12-(a) are color-coded by the difference
between the error in estimated normals and the lowest possible error obtainable
for any choice of support region in the aerial data. The algorithm was run on 6604
points and the median error was only 3.74◦ with an interquartile range of 5.42◦.
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7. Discussion

As elaborated in Section 3, the problem of fitting lines or surfaces to unorganized
point clouds is one that does not fit easily into the realm of classical statistical
methods. Furthermore, in trying to make formal guarantees in the accuracy of
traditional methods, one is forced to make do with asymptotic guarantees which do
not necessarily translate to real world performance. What this work shows is that
it is possible to relate surface (or curve) geometry to finite sample accuracy of a
statistical estimator, and exploit the available free parameter of support radius to
minimize this estimation error. Thus, with principled scale selection, the error in
tangent estimation using a simple estimator such as näıve local PCA can be made
comparable, somewhat counter-intuitively, to the best fixed-scale alternative based
on local polynomial fitting.

It is important to realize that the method of analysis proposed in this work is
not restricted to the PCA-based estimators presented in Section 4 and Section 5.
These particular choices were largely motivated by the need to study existing ap-
proaches that are popularly used [14, 26, 32, 33, 42] for the same kinds of tasks.
There is potential for modifying many other algorithms that may be recast as local
model fitting methods so that the chosen support radius is automatically adapted
to the fitted surface. We may also expect some of these alternatives to have better
numerical accuracy and stability than the algorithms presented in this paper. For
instance, by choosing to fit a local quadric instead of a local plane for the surface
fitting problem of Section 5, we can eliminate the need for a separate procedure to
estimate the mean curvature κ and explicitly reparameterize x as a function of only
the coefficients of the fitted surface.

One of the assumptions made about the surfaces (and curves) reconstructed with
the proposed method is that they vary smoothly. This can pose challenges in sev-
eral domains, particularly those involving man-made objects, where the underlying
geometry consists of surfaces that are only piece-wise smooth. Such objects pos-
sess sharp features such as corners and edges which are created when these smooth
surfaces intersect. One way to overcome this is may be to use a modified local
regression technique, such as presented in [35], that models sharp intersections as
an implicit product of lower dimensional subspaces. The geometric fitting of these
sharp features may be done by iteratively first solving a generalized eigenvector
problem to fit a smooth surface and then subjecting the solution to some non-linear
constraints required for the model parameters to represent a degenerate surface.
By using a local parameterization, the component of the model fitting problem in-
volving the generalized eigenvector solution may then be analyzed in the manner
presented in this paper.

For future work, it would be interesting to study the effect of different methods
for neighborhood graph construction on the result of both algorithms. The same
theoretical analysis could also be performed for the more robust variant of weighted
PCA for some fixed family of weighting functions (e.g. Gaussian). This would make
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the proposed algorithm more robust overall to outliers as well as to poor graph
construction.
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