Scale Selection for Classification of Point-sampled 3-D Surfaces

Jean-François Lalonde, Ranjith Unnikrishnan, Nicolas Vandapel and Martial Hebert

Carnegie Mellon University

Problem

Processing of large 3-D point cloud data from ladar

3DIM 2005

Example

- Terrain classification
 - Through local processing [Vandapel-ICRA04]

Local computation on 3-D point sets

Local computation on 3-D point sets

Terrain classification

- Compute scatter matrix within support region
- Extract principal components
- Features are linear combination of eigenvalues [Tang-PAMI04]

- Train a GMM classifier on hand-labelled data using EM
- Classification: maximum likelihood class
- Scale is fixed

06/15/05

Problems with fixed scale

3DIM 2005

Problems with fixed scale

High density

Low density

What is the best support region size?

- Scale theory well-known in 2-D [Lindeberg-PAMI90, Lindeberg-JAS94]
- No such theory in 3-D
 - some methods exist [Tang-ICRA04, Pauly-Eurographics03]

06/15/05

Approach

- Focus analysis to surfaces
 - Larger source of errors

$$\lambda_0 \approx \lambda_1 > > \lambda_2$$

$$F_{\text{planar}} = (\lambda_1 - \lambda_2) \cdot e_2$$

- Closely related to normal estimation

• Extend method for optimal scale selection for normal estimation [Mitra-IJCGA05]

[Mitra-IJCGA05] N. Mitra, A. Nguyen and L. Guibas, Estimating surface normals in noisy point cloud data. Intl. Journal of Computational Geometry and Applications (to appear), 2005. 06/15/05 3DIM 2005

Optimal scale selection for normal estimation [Mitra-IJCGA05]

• Analytic expression for optimal scale

* Curvature estimation from [Gumhold-01]

Algorithm [Mitra-IJCGA05]

- Initial value of $k = k^{(i)}$ nearest neighbors
- Iterative procedure

iteration *i*

- Estimate curvature $\kappa^{(i)}$ and density $\rho^{(i)}$
- Compute $r^{(i+1)}$
- $k^{(i+1)}$ is number of points in neighborhood of size $r^{(i+1)}$

Algorithm [Mitra-I.ICGA05]

- Works well for
 - Minimum spatial density (no hc
 - No discontinuities
 - Small noise and curvature
- Real-world data
 - High density variation
 - Holes
 - Unbounded curvature
 - Discontinuities, junctions

Ladar data

Real-world data, normal estimation

3DIM 2005

Real-world data, convergence

Proposed algorithm

- Initial value of $k = k^{(i)}$
- Iterative procedure
 - Estimate curvature $\kappa^{(i)}$ and density $\rho^{(i)}$
 - Compute $r^{(i+1)}$
 - k_{computed} is number of points in neighborhood of size $r^{(i+1)}$
 - Dampening on k:

$$k^{(i+1)} = \gamma k_{\text{computed}} + (1 - \gamma) k^{(i)}$$

V

Dampening factor

Effect of dampening on convergence

Effect of dampening on normal estimation

Original method (no dampening)

With dampening

Variation of density

- Data subsampled for clarity
- Normals estimated from support region
- Scale determined by the algorithm

06/15/05

• SICK scanner

Fixed scale (0.4 m)

Variable scale at each point

- 0.4m best fixed scale, determined experimentally
- Improvement of 30% for previously misclassified points

06/15/05

3DIM 2005

• SICK scanner

• RIEGL scanner

• RIEGL scanner

Fixed scale (0.4 m)

Variable scale at each point

• RIEGL scanner

Fixed scale (0.4 m)

Variable scale at each point

Conclusion

- Problem
 - Terrain classification errors due to fixed scale
- Contributions
 - Assumptions
 - Minimum spatial density
 - No discontinuities
 - Small curvature
 - Improves convergence / reduce oscillations
 - Apply variable scale to classification
 - Extensive experimental verification shows 30% improvement
- Limitations
 - Points misclassified regardless of scale

Conclusion

- Acknowledgements
 - General Dynamics Robotics Systems
 - U.S. Army Research Laboratory

