
Scale Selection for Classification of Point-sampled 3-D Surfaces

Jean-François Lalonde, Ranjith Unnikrishnan, Nicolas Vandapel and Martial Hebert
Carnegie Mellon University

{jlalonde,ranjith,vandapel,hebert}@ri.cmu.edu

Abstract

Three-dimensional ladar data are commonly used to per-
form scene understanding for outdoor mobile robots, specif-
ically in natural terrain. One effective method is to classify
points using features based on local point cloud distribu-
tion into surfaces, linear structures or clutter volumes. But
the local features are computed using 3-D points within a
support-volume. Local and global point density variations
and the presence of multiple manifolds make the problem
of selecting the size of this support volume, or scale, chal-
lenging. In this paper we adopt an approach inspired by
recent developments in computational geometry [5] and in-
vestigate the problem of automatic data-driven scale selec-
tion to improve point cloud classification. The approach is
validated with results using data from different sensors in
various environments classified into different terrain types
(vegetation, solid surface and linear structure)1.

1. Introduction

Autonomous navigation in vegetated terrain remains a
challenging problem in robotics due to the difficulties in
modeling the high variability of outdoor environments. In
this effort, laser range-finders have proven to be invalu-
able due to their high speed and direct sensing of depth
information in the form of unorganized 3-D point clouds
from objects in the scene. Depth cues allow more natu-
ral modeling of smooth, porous and linear surfaces as 3-D
textures. Labeled data can then be used to compute 3-D
features and train classifiers for distinguishing load-bearing
surfaces, vegetation and linear structures respectively.

However the perspective sensing geometry of laser-range
finders introduces significant variation in spatial density
of observed points, both over the field-of-view as well as
within the objects of interest. This poses the question of

1Prepared through collaborative participation in the Robotics Consor-
tium sponsored by the U.S Army Research Laboratory under the Collab-
orative Technology Alliance Program, Cooperative AgreementDAAD19-
01-209912.

Figure 1. Support region sizes for selected
points in outdoor vegetated terrain. Points
are color-coded by height.

how to select the size of the support region, orscaleof ob-
servation, for computing 3-D features that are representative
of the local geometry. Scale theory has a rich literature for
2-D and 3-D images but no equivalent exists for unorga-
nized point-sampled data. One method to circumvent this
problem is to use a fixed scale that is satisfactory over the
entire dataset. This however compromises feature compu-
tation both in regions where data is sparse as well as near
the spatial boundaries between neighboring data belonging
to two different classes. Sensor noise also confounds the
feature computation process as a larger support region size
may be needed to compensate for noise.

This paper presents a technique for determining the scale
of observation of point-sampled data by computing the op-
timal size of the support region for computing surface nor-
mals as illustrated in Figure 1. Spatial features are then
computed at this support size and used in a Bayes classifier
for 3-D data segmentation. The method implicitly assumes
that the scale that is representative of local geometry at a
point is also the one that best discriminates its true class in
feature space. We validate this assumption through exten-



sive experiments and detail our approach and its limitations
in the sections that follow.

The next section presents various approaches followed
previously to try to address the scale selection issue. The
third section details the approach proposed for optimal scale
selection to perform terrain classification. Results from var-
ious terrains sensed by three different ladar are presentedin
the next to last section. It is followed by concluding remarks
and a discussion.

2. Related work

It is widely accepted that real world objects appear as
meaningful entities at different scales of observation. This
has driven the need for rigorous, data-driven formalisms to
identify representative scales in data, both for data repre-
sentation as well as identification.

Pioneering work by Lindeberg [3] equated analysis of
continuous signals at successive scales to the suppression
of local extrema, and showed that successive smoothing of
the signal by gaussian convolution satisfied this property.
By this principle, the scale at which the signal response to
a normalized differential operator achieves local extremais
a characteristic length of the structure in the signal. This
methodology has been extended to discrete signals in 1-D,
2-D and N-D lattices [2]. The scale-invariance property has
since been exploited extensively in computer vision as a
technique to extract regions with sizes that accommodate
scaling of the image and from which invariant features can
be computed. However this body of work has focused solely
on functions defined on a regular lattice and its applicability
to unorganized point samples is unclear.

In the domain of point sampled data, efforts have been
made to address the problem of scale for surface recon-
struction and feature extraction. The tensor voting frame-
work in [7] equated scale to the region of influence of each
tensor, and used it for fine-to-coarse analysis for surface re-
construction. However, no direct relation could be drawn
between a choice of region size for tensor voting and that for
computing a representative feature for classification. Work
in [1] usesk-neighborhoods to compensate for differences
in sampling rate before computing eigenvalue-based fea-
tures for detecting surfaces, creases and borders. How-
ever, no guarantee was given that a certain fixed choice of
k would be representative of the underlying surface at all
points.

Tang et al. [8] use a Kalman filter-based discontinuity
preserving line-smoother to detect junctions in 2-D scans.
Successive iterations of the smoothing algorithm defined in-
creasing scales of data. However, the method was focused
to data modeled as piecewise lines and not applicable to
classification. Work in [6] classifies points based on eigen-
values of the local covariance matrix in itsn-neighborhood.

It defines a measure of deviation from planarity at a point
that is a function of the eigen-values. The value of the scale
(n) that maximizes the measure for 1-D sinusoidal signals is
observed to be related to the wavelength of the signal. The
scale corresponding to the maximum value is then chosen
for computing the feature. However no theoretical guaran-
tees were made regarding suitability of the proposed mea-
sure for 3-D surfaces or its optimality for classification.

In contrast, this paper proposes to use a neighborhood
size consistent with the estimate of local geometry at a
point. We make use of recent work in computational geom-
etry [5][4] and compute a neighborhood size that minimizes
an upper bound on expected angular error between the nor-
mal estimated at a point through PCA and the true normal.
The quality of this estimate is improved with knowledge
of sensor geometry and error characteristics. A by-product
of this process is an estimate of the local covariance ma-
trix that is most consistent with the surface geometry. The
eigen-values of this covariance matrix are used in a Bayes
classifier to perform point-wise classification of the scene.

Section 3 details the estimation of the support size and
our proposed algorithm. In Section 4 we present classifi-
cation results on real outdoor data, and then summarize the
contributions in Section 5.

3. Approach

3.1. Normal Estimation in 3-D

This section details the analysis of normal estimation on
surfaces in 3-D point cloud data (PCD) as summarized in
[5][4]. We start with a set ofNp points,pi =

[

xi yi zi
]T

,
drawn at random from a surface inR3. The goal is to com-
pute the normal at each point of a point cloud with greatest
accuracy. This is done by choosing a spatial neighborhood
sizer that minimizes theexpectedangular deviation of the
computed normal at a point from its true normal. In contrast
to the analysis in [5], we express the unknown parameters
explicitly in terms of data dependent quantities and record
their dependence on the data distribution and sensor model.

The total least-squares (TLS) estimate of the normal to a
set ofk pointspi is given by the eigen-vector corresponding
to the smallest eigen-value of the covariance matrix

M =
1
k

k

∑
i=1

(pi − p̄)(pi − p̄)T =





m11 m12 m13

m12 m22 m23

m13 m23 m33



 (1)

wherep̄ = 1
k ∑k

i=1pi . Note thatM is always symmetric
positive semi-definite (M � 0) and thus has non-negative
eigenvalues.

The remainder of the discussion makes the following as-
sumptions:
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(A1) Centered data: Without loss of generality, the dataset
is centered about the originO which is the point of
interest. The z-axis is the normal to the surface atO
and the points of the PCD in the sphere of radiusr
aroundO are i.i.d samples of a topological diskR on
the underlying surface. We may then model the surface
as a functionz= g(x,y) that isC

2 continuous over the
r-disk.

(A2) Spatial density: There exists anr0 < γ such that a
sphere of radiusr0 anywhere inR contains at least
k0 > 0 points. This implies that data has no holes and
has spatial densityρ > ρ0 > 0 everywhere.

(A3) Termzi is observed with i.i.d. noiseni ∼N that is iden-
tically distributed over the intervalR with zero mean,
varianceσ2

n and lies in the range[−n,n].

(A4) Bounded curvature in some neighborhood around the
interest point: There exists a positive constantκ such
that the HessianH of g satisfies‖H‖2 ≤ κ in the r-
neighborhood. In Section 3.1, we show a case where
this assumption is violated and we propose a modifica-
tion to address it.

(A5) Noiseσn and curvatureκ are small: This in turn im-
plies thatm11 andm22 are the two dominant entries in
M.

We proceed by computing bounds on the values inM and
then use them to compute a bound on the angular error in
the estimated normal atO.

Bounding entries ofM By definitionm11 = 1
k ∑k

i=1(xi −
x̄)2. The assumption of the points being evenly distributed
in thexy-plane boundsm11 in the interval:

θ1r2 ≤ m11 ≤ r2 (2)

whereθ1 ∈ [0,1]. Symmetrically, the same applies for
m22.

Also by definition:

|m12| =
∣

∣

∣

∣

∣

1
k

k

∑
i=1

xiyi −
1
k2

k

∑
i=1

xi

k

∑
i=1

yi

∣

∣

∣

∣

∣

We assume thatxi and yi are independently drawn in-
stances of random variablesX and Y respectively. So
E[XY] = E[X].E[Y], and henceE[m12] = 0. Sincexi andyi

are bounded inR, we have a trivial upper bound on variance
of m12 asV[m12] ≤ 1

kθ2r4. It follows from Chebyshev’s in-
equality that with probability 1− ε :

|m12| ≤
√

θ2r4
√

εk
=

√

θ2r4
√

ερr2
=
√

θ2
r√ερ

(3)

From the Taylor expansion of the surfacez = g(x,y)
about(0,0), and the assumption of bounded curvature (A4),
we have∀xi ,yi ∈ R:

|zi | = |g(xi ,yi)| ≤ κ
(

x2
i

2
+

y2
i

2

)

+ni (4)

From the definition ofm13:

|m13| =
∣

∣

∣

∣

∣

1
k

k

∑
i=1

xizi −
1
k2

k

∑
i=1

xi

k

∑
i=1

zi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1
k

k

∑
i=1

xizi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1
k2

k

∑
i=1

xi

k

∑
i=1

zi

∣

∣

∣

∣

∣

Substituting Eqn. (4), and since|xi | ≤ r and|yi | ≤ r:

|m13| ≤ 2κr3 +

∣

∣

∣

∣

∣

1
k

k

∑
i=1

xini

∣

∣

∣

∣

∣

+ r

∣

∣

∣

∣

∣

1
k

k

∑
i=1

ni

∣

∣

∣

∣

∣

Under the assumption thatX andN are independent, we
note thatE[xini ] = E[xi ]E[ni ] = 0 sinceE[ni ] = 0. Assume
V(xini) = (Crσn)

2 for some constantC. Using Chebyshev’s
inequality, we have that with probability 1− ε:

|m13| ≤ 2κr3 +θ3
σn√ερ

(5)

where θ3 =

√

V(xini)

rσn
+1 (6)

Symmetrically, the same procedure applies tom23, by re-
placingxi by yi .

Finally for m33,

m33 =
1
k

k

∑
i=1

z2
i −

1
k2

(

k

∑
i=1

zi

)2

≤ 1
k

k

∑
i=1

z2
i

≤ 2κ2r4 +θ4σ2
n

(7)

whereθ4 relates the noise varianceσ2
n to the width, 2n, of

the noise range.

Eigen analysis We may write the covariance matrixM as

M =





m11 m12 m13

m12 m22 m23

m13 m23 m33





∆
=

[

M11 M13

MT
13 m33

]

(8)

Let λ1 ≤ λ2 be the eigen-values ofM11. Using the Ger-
shgorin Circle Theorem (GCT), we have thatm11−|m12| ≤
λ1 ≤ λ2 ≤ m22−|m12|

Let us define a new dimensionless quantityα as:

α ∆
=

|m13|+ |m23|+m33

m11−|m12|
(9)
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Let λ be the smallest eigen-value ofM. Using GCT again
givesλ ≤ |m13|+ |m23|+ m33 = α(m11− |m12|) ≤ αλ1. If
we take the eigen-vector corresponding to the minimum
eigen-value ofM as[~vT,1]T, then

[

M11 M13

MT
13 m33

][

~v
1

]

= λ
[

~v
1

]

Expanding to solve the individual equations for~v and
squaring gives the upper bound:

‖~v‖2 ≤
(

‖(M11−λI)−2‖2

‖(I+(M11−λI)−2M13M
T
13)

−1‖2

)

×
(

‖(M11−λI)‖2 ‖M13‖2

+‖M13‖2 |(m33−λ)|
)

(10)

It can be shown [5] that

‖~v‖2 ≤
α(1+α)

1−2α
λ2

λ1
≈
(

λ2

λ1

)

α (11)

for smallα.
Hence the angle between the computed normal and the

true normal is bounded from above by

tan−1‖~v‖2 ≤
λ2

λ1
α ≤ (m22+ |m12|)

(m11−|m12|)
α (12)

Error bound for the estimated normals From Eqns.
(2),(3),(5) and (7), we can replace eachmi j term in Eqn.
(9) by its appropriate bound value to give:

α ≤ 2κ2r4

θ1r2 +
θ4σ2

n

θ1r2 +
2
∣

∣

∣
2κr3 + θ3σn√ερ

∣

∣

∣

θ1r2

Since the valuesκ, r, σn andρ are always positive, by
simplifying and re-arranging, we get:

α ≤ 2
θ1

κ2r2 +
θ4

θ1

σ2
n

r2 +
4
θ1

κr +
2θ3

θ1

σn

r2√ερ

Let us defineβ ∆
= m12/m11 and consider cases whereβ <

1/2. Since we have

λ1

λ2
α ≤ m22

m11

(1+β)

(1−β)
α ≤ Kα (13)

we have from the previous lower bound

λ1

λ2
α ≤ K

(

θ4

θ1

σ2
n

r2 +
4
θ1

κr +
2θ3

θ1

σn

r2√ερ

)

(14)

Differentiating Eqn.(14) w.r.tr gives the required result:
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Figure 2. Plot of estimated support region
size ( r) at each iteration showing improve-
ment with damped updates.

r =

(

1
κ

(

θ3
σn√ερ

+
θ4

2
σ2

n

))
1
3

(15)

where the constantsd1 = θ3 andd2 = θ4/2, as given in
[5][4] are to be determined experimentally. Note thatd1

andd2 depend only on the distribution of the PCD, since, as
shown in Eqns. (5) and (7),θ3 is related toV(xini) while θ4

is related toσn.

Estimating the optimal support region size The optimal
r is estimated using an iterative procedure based on the sug-
gestions in [5]. An initial value ofk = k(i) is used to com-
pute a starting value of curvatureκ(i) andr(i) is taken as the
distance to thek-th nearest neighbor. An estimate of density
ρ(i) is also obtained fromk = k(i). The value ofσ2 is taken
from the sensor model as a fixed function of the distance of
the point from the laser. The value ofr(i+1) for the(i +1)-
th iteration is then computed using Eqn.(15).k(i+1) is then
computed as the number of points in a neighborhood sized
r(i+1) and the process is continued.

We observed that the iterative procedure suggested in
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[5][4] had poor convergence properties when assumption
(A4) is broken. Figure 2 shows the computed values ofr(i)

oscillating for points selected near regions of higher curva-
ture, as in the case of intersecting walls in Figure 5. We
modify the algorithm to perform damped updates tok using
a learning rateγ with γ ∈ [0,1] as in:

k(i+1) = γk(i+1)
computed+(1− γ)k(i) (16)

This modification ensures controlled updates in each it-
eration and assures sensible values ofr near intersections
of manifolds. This is reflected in the smaller support-region
size near the intersections of the two walls in Figure 5 and
in the region where the tree trunks meet the ground in Fig-
ure 1.

3.2. Terrain Classification

We focus on segmentation of ladar data into 3 classes
– clutter to represent vegetation,linear structuresto rep-
resent thin objects like wires and tree branches, andsur-
face to capture ground, rock and tree-trunk surfaces. Our
approach for classification is based on computing saliency
features [9] that capture the local geometry at a point in
terms of spatial distribution of points in its neighborhood.
The distribution of saliency features is learned using a
Gaussian mixture Model (GMM) automatically using the
Expectation-Maximization (EM) algorithm. Given the dis-
tribution learned off-line, we can classify new data online
using a Bayes classifier.

Saliency features Our choice of features is inspired by
the tensor voting framework in [7]. However, instead of
looking at the distribution of surface normals in a neigh-
borhood, we directly inspect the local distribution of 3-D
points. This is done by computing the covariance matrixM
( Eqn. (1) ) corresponding to the scatter of the points in a
local neighborhood, the support region.

The size of the support region defines thescaleof the
feature and is chosen to be the radiusr computed in Sec-
tion 3.1. Note thatM is computed in the intermediate steps
while estimatingr, and is representative of the local geom-
etry of the neighborhood. Letλ1 ≤ λ2 ≤ λ3 be the eigen-
values ofM corresponding to eigen-vectorsm1,m2,m3 re-
spectively. In case of clutter,λ1 ≈ λ2 ≈ λ3 and there is no
dominant direction. For points on surfaces,λ3,λ2 � λ1 and
e3,e2 span the local plane of observations. For linear struc-
turesλ3 � λ2,λ1 ande3 is the dominant direction locally.
Our saliency feature is defined as a linear combination of
eigen-values in the 3-vector:





point-ness
surface-ness
curve-ness





∆
=





λ1

λ2−λ1

λ3−λ2



 (17)

Bayesian classification Using the features of Eqn. (17)
and a dataset labeled into the 3 classes, we train a
GMM using the EM algorithm. Let theni components
of the Gaussian mixture in thei-th class be specified
by the set of weights, means and covariances asCi =
{(w(i, j),µ(i, j),Σ(i, j)) j=1...ni} for i = 1,2,3. The likelihood
of a new pointx with feature f (x) ∈ R

3 computed with
Eqn.(17) belonging to classCi is given by:

P( f (x)|Ci) =
ni

∑
j=1

( w(i, j)

(2π)3/2|Σ(i, j)|1/2

×e
−1

2( f (x)−µ(i, j))
TΣ−1

(i, j)( f (x)−µ(i, j))
)

(18)

The estimated class is the maximizer of the class poste-
rior:

Cest = argmax
i

(P(Ci | f (x)))

= argmax
i

(P( f (x)|Ci)P(Ci))
(19)

whereP(Ci) represents the corresponding class prior.

4. Experiments

4.1. Sensors and terrains

To validate the approach presented we used data col-
lected with a Minolta scanner, an actuated SICK laser, a
Zoller-Fröhlich high resolution scanner and the CMU au-
tonomous helicopter. The Minolta Vivid 700 is a laser line
striper that produces a 200× 200-pixel range image with
8 bits resolution. A SICK LMS-291 is attached to a cus-
tom made scanning mount. The laser collects 60,000 points
per scan. The angular separation between laser beams is1

4
degree over 100 degrees field of view. The angular sep-
aration between laser sweeps is2

3 of a degree over 115
degrees. The Zoller-Fröhlich (Z+F) LARA 21400 has a
360o×±35o FOV, producing 8000×1400 pixels range and
reflectance images of the environment up to 21.4 m. The
CMU autonomous helicopter is equipped with a modified
Riegl laser range finder that is capable of collecting 3D
color data, with 10 cm accuracy. We used these sensors
to collect data from outdoor environments in urban settings,
in natural open space and in a forest.

4.2. Validation of computed normals

In this section, we validate our implementation of the
algorithm proposed by [5] by testing it on geometric mod-
els for which the ground truth normals are known for each
point.
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(a)

(b)

Figure 3. Normal estimation for the aerial
data. Normal estimation and corresponding
support region for selected points overlaid on
top of the aerial data (a) (see text for explana-
tion of the color coding) and ground data (b)
with the elevation color coded.

Aerial ladar scan We tested this approach using data
from an open space natural environment containing a 1.5 m
high pile of gravel surrounded by short-cut and long grass.
We collected high resolution, high density data with the
Z+F laser. We also collected low-resolution aerial data for
the same scene with the CMU autonomous helicopter. The
two data sets are co-registered. We use the Z+F data to
produce the ground truth used to estimate the normal recon-
struction error in the aerial data.

Figure 3-(a) shows the computed normals and the sup-
port regions for selected points in the aerial data. Figure
3-(b) shows the normal and support regions for the same
points but overlaid on top of the high-resolution ground
data. Points in Figure 3-(a) are color-coded by the differ-
ence between the error in estimated normals and the lowest
possible error obtainable for any choice of support region in
the aerial data.

Figure 4. Plot of ground points with estimated
support region size ( r). Note the significant
decrease in spatial density and correspond-
ing increase in r with distance from the laser
position

4.3. Validation of support regions

Outdoor ground scan In some situations, the density
varies with the distance to the sensor and may become very
low. This is illustrated in Figure 4, which shows a scan of
the ground taken by the SICK laser. The ground truth is
defined as normals pointing along the positivez-axis. The
noise standard deviationσn is computed using calibration
data, and depends on the distance to the sensor. Its value
ranges fromσmin = 0.0037 at 1 meter, andσmax = 0.0125
at 60 meters. As expected, the support region size grows
with the distance to the sensor. Moreover, the discontinu-
ities located at the boundaries of the laser FOV represent
a second important difference and break the assumptions
stated in Section 3.1. In this case, it doesn’t affect the per-
formance of the algorithm because all the points lie in the
same plane.

Scan of wall corner This dataset is a scan of walls made
using the SICK laser, and the sensor was placed at a dis-
tance of approximately 30 meters from the scene. Again,σn

is computed using calibration data, and the same parameters
are used in the algorithm. The scene presents a sharp change
in curvature at the junction of both walls. This implies the
presence of two different manifolds in the neighborhood of
points located in that region. Intuitively, we would expect
that the support region should be relatively small near the
junction, as not to include points lying on a different man-
ifold. However, Figure 5 shows that it is not the case with
the original algorithm. Undamped iterations cause the al-
gorithm to stop at arbitrary values after a fixed number of
iterations, with no guarantee of convergence. This resultsin
significant error in normal estimation, especially around the
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(a)

(b)

Figure 5. Estimate of support region size for
wall corner (a) without and (b) with damped
updates to k in each iterations.

discontinuity region. The results obtained with the learn-
ing rateγ = 0.3 (Figure 5) introduced in Section 3.1 cor-
responds to what we expected. The normal estimation is
much better for the points lying near the corner, and is still
as good for the other points.

Outdoor natural terrain This dataset was obtained us-
ing the SICK scanner and by looking at outdoor natural ter-
rain, comprised of ground, trees and vegetation. Again, we
would expect the support region to be small near sharp an-
gles in the geometry of the scene, and larger if the scene is
flat, or if the density is small. For this dataset, no ground
truth is available, therefore the results are evaluated visu-
ally. Figure 1 shows the support region determined by our
algorithm for different points chosen at interesting locations
in the scene. For example, the support regions of points lo-
cated near the boundary of tree trunks and ground are much
smaller than those in the center of the ground. This corre-
sponds to the expected behavior.

4.4. Ground-based ladar classification of natural
terrain

In this section, we use the algorithm with the classifier
described in Section 3.2. The dataset is divided into cubic
voxels with 10 cm edges. The classifier is then trained at
scales ranging from 0.1 m to 2 m using manually labeled
data. The best scale is chosen by applying our method and
rounding the resulting support region radius to the nearest
subdivision. Figure 6-(a) shows the classification resultsus-
ing the fixed support region size (radius of 40 cm, deter-
mined to be the best fixed scale experimentally) currently
in use in our system. Obvious misclassification errors are
made near the junction of the leftmost tree and the ground,
and on the ground at a distance. Figure 6-(b) shows the
improvement over the old strategy. We also present classi-
fication results on data collected with the Riegl scanner, as
shown in Figure 6-(c/d). The data was manually labeled to
produce ground truth classification. In performance evalua-
tion, we only consider points that were misclassified using
the fixed-scale strategy. The new strategy is found to give
a 30% improvement in classification rate for the previously
misclassified points.

4.5. Comparison with multi-scale approach

A näıve alternative to the proposed algorithm is to train
a different classifier for each scale in the set of considered
scales, evaluate a test point on all the classifiers, and simply
assign it the label returned with most confidence (highest
posterior probability). However, when applying this strat-
egy (with scales ranging from 0.1 m to 2 m) to outdoor nat-
ural terrain such as the one shown in Figure 6, we obtain a
mere 45% of correctly classified points, as opposed to 84%
with the method presented in this paper. As expected, the
näıve strategy incorrectly favors very large support regions
that include a large number of out-of-class points to give the
commonly incorrect label of “vegetation” with high confi-
dence.

5. Conclusions and Discussion

This paper presented a geometry-driven approach for
choosing the scale of observation for classifying point-
sampled surfaces in outdoor range data. Extensive exper-
iments with outdoor and synthetic datasets confirm our hy-
pothesis that feature computation at scales that are optimal
in terms of inferred local geometry improve the quality of
classification.

One implicit hypothesis of the proposed approach is that
there exists at least one scale at which the data is classi-
fied correctly. Closer analysis of points misclassified in Fig-
ure 6-(b/d) in the boundary regions of the dataset show that
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(a) (b)

(c) (d)

Figure 6. Outdoor terrain classification: (a-b) from the dat a set using in Figure 1 and (c-d) from data
collected with the Riegl laser scanner. Points are colored g reen (vegetation), red (surface) or blue
(linear structure). Darker shades indicate higher confiden ce in the estimated label. (a/c) Former
strategy. (b/d) New strategy.

this hypothesis is violated. We attribute this to (1) the in-
troduction of edge-effects in the chosen features (Eqn. (17))
causing them to be undescriptive of the local geometry, and
(2) the possibly poor discriminative ability of the classifier.
The assumption of an underlying surface of bounded curva-
ture at each point is also violated for scattered point clouds.
In some regions this results in a reduction of confidence
for the vegetation class. The design of more representa-
tive shape features as well as eigen-analysis for curved and
porous geometry is the subject of our current research.
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