|
![]() |
![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() |
Publications | ![]() |
![]() |
Domaines Capteurs et modélisation 3D Réalité virtuelle et simulation Thermographie et vision infrarouge Traitement de sequences video Vision biologique Vision cognitive Projets E-Inclusion COBVIS-D Auto21 SKALPEL-ICT COGNOIS VERTEX VRES Chercheurs Christian Gagné Xavier Maldague Denis Poussart Simon Gagné Marc Parizeau Robert Bergevin André Zaccarin Jean-François Lalonde Abdel Hakim Bendada Dates Trier par date dans l'ordre decroissant |
![]() |
Topography-Aware Sensor Deployment Optimization with CMA-ESAbstract - Wireless Sensor Networks (WSN) have been studied intensively for various applications such as monitoring and surveillance. Sensor deployment is an essential part of WSN, because it affects both the cost and capability of the sensor network. However, most deployment schemes proposed so far have been based on over-simplified assumptions, where results may be far from optimal in practice. Our proposal aims at automating and optimizing sensor deployment based on realistic topographic information, and is thus different from previous work in two ways: 1) it takes into account the 3D nature of the environment ; 2) it allows the use of anisotropic sensors. Based on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the proposed approach shows good potential for tackling diverse problems in the WSN domain. Preliminary results are given for a mountainous area of North Carolina where coverage is maximized. ![]() Bibtex:
@inproceedings{Akbarzadeh862, Dernière modification: 2010/09/21 par cgagne |
![]() |
![]() |
![]() |
![]() |
|||
©2002-2025. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés |