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Abstract. Wireless Sensor Networks (WSN) have been studied inten-
sively for various applications such as monitoring and surveillance. Sen-
sor deployment is an essential part of WSN, because it affects both the
cost and capability of the sensor network. However, most deployment
schemes proposed so far have been based on over-simplified assump-
tions, where results may be far from optimal in practice. Our proposal
aims at automating and optimizing sensor deployment based on realis-
tic topographic information, and is thus different from previous work in
two ways: 1) it takes into account the 3D nature of the environment ;
2) it allows the use of anisotropic sensors. Based on the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES), the proposed approach
shows good potential for tackling diverse problems in the WSN domain.
Preliminary results are given for a mountainous area of North Carolina
where coverage is maximized.

1 Introduction

In recent years, Wireless Sensor Networks (WSN) have been studied intensively
for various applications such as environmental monitoring and surveillance. A
WSN usually consists of numerous wireless devices deployed in a region of inter-
est, each able to collect and process environmental information and communicate
with neighbour devices [2, 9, 19].

Sensor deployment is an essential issue in WSN, as it affects how well a region
is monitored by sensors. Considering a region monitored by sensors, one of the
most critical issues is the region coverage [9, 11–13, 19, 20]. One goal of a WSN
is that each location in a region should be within the sensing range of at least
one sensor. An alternative approach is to have a region covered simultaneously
by at least K sensors [19,20].

Many deterministic methods have been explored to address the problem of
coverage. It has been shown that covering an area with disks of equal radius
can be done in an optimal manner [2, 9, 11]. Similar results have been reported
when multiple coverage of the target area is required [2, 12, 19, 20]. Besides, the
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majority of optimization methods proposed are deterministic, and are generally
functions of omnidirectional sensor with a fixed sensing range.

However, most suggested methods are based on over-simplified assumptions
[12,14,15,19,20], and the theoretical perfect coverage shown in these determin-
istic methods may not hold true in practice for a number of reasons. First, most
sensor deployment optimization methods assume that sensors are placed on a 2D
plane, without taking terrain into account [2, 9, 11]. Second, most deterministic
methods suppose that sensors have omnidirectional sensing capabilities, which
is generally not accurate [10]. For instance, antennas have different 3D reception
area, depending on factors like orientation, distance, and other environmental
factors [10].

The disadvantages of deterministic deployment optimization methods are
thus evident, and the 100% coverage that they claim is often over-estimated.
This issue is critical because it further complicates the problem of sensor de-
ployment: while WSN seems to satisfy the requirements to achieve full coverage
on a target area using a deterministic method, the deployers have no means to
ensure that this coverage is truly effective in the real environment. This uncer-
tainty of coverage thus presents a challenge in sensor deployment.

Facing this challenge, we follow a more flexible non-deterministic avenue. Our
aim is to achieve automated sensor deployment optimization based on realistic
topographic terrain information, and realistic sensor modelling. It differs from
traditional deterministic methods in that: 1) deterministic schemes only consider
2D environments and ignore the effects of elevation, whereas our method takes
into account the 3D terrain information; 2) deterministic schemes usually assume
omnidirectional sensors, whereas our method allows for constraints to be applied
on sensors, such as limited sensing angles.

In an effort to tackle this more realistic problem, we opt for an evolutionary
algorithm approach. Some prior work has been conducted with such paradigms
[3, 16], but using more or less the same over-simplifying assumptions as the
deterministic approaches. Among available evolutionary algorithms, we chose
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8] for its good
performance and stability [6, 7]. The position and orientation of the sensors
are encoded inside an individual, and a population of individuals is evolved
through generations. At the end of the evolution, the individual with the best
coverage is chosen as the final solution. This CMA-ES optimization is linked to a
Geographical Information System (GIS) to provide essential environmental data
such as elevation of region of interest and obstacles in the area, to compute the
fitness of individuals.

The remainder of the paper is organized as follows. The problem statement is
presented in the next section (Sec. 2), followed by a presentation of the proposed
method (Sec. 3). The experimental protocol and results are then summarized
(Sec. 4), concluding the paper with discussions and perspectives (Sec. 5).
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2 Problem Statement

The main objective of this proposal is to build a realistic model of the environ-
ment and sensor network, and to optimize the sensor deployment accordingly.
The sensing model depends on distance, orientation, and visibility. We first as-
sume that all sensors are positioned at a certain constant height τ above the
ground level. The sensor position is thus described by a 3D point p = (x, y, z),
where (x, y) are free parameters, and z = g(x, y) is constrained by the ter-
rain elevation at position (x, y), as defined by a GIS. We further assume that
the anisotropic properties of sensors are fully defined by a pan angle θ around
the vertical axis (tilt angle is currently assumed null). Given the GIS, a sen-
sor network N = {s1, s2, . . . , sn} of n sensors is thus fully specified by 3n free
parameters si = (pi, θi), i = 1, 2, . . . , n, with pi = (xi, yi).

Now the coverage C(si,q) of sensor si at point q in the environment can be
defined as a function of distance d(si,q) = ||pi − q||, angle of view a(si,q) =
θi − ∠(q− pi), and visibility v(si,q) from the sensor:

C(si,q) = f [µd(||pi − q||), µa(θi − ∠(q− pi)), v(s,q)], (1)

where ∠(q−pi) is the pan angle of point q relative to pi. For q to be covered by
sensor si, it needs to be within its sensing range AND its field of view AND must
be visible, that is not blocked by any terrain obstacle such as hills. Let µd, µa ∈
[0, 1] represent the fuzzy membership functions of the first two conditions, then
Eq. 1 can be rewritten as:

C(si,q) = min

 µd(||pi − q||)
µa(θi − ∠(q− pi))

v(si,q)

 . (2)

Function v(si,q) is usually binary. If the line of sight between si and q is ob-
scured, then we assume that the coverage cannot be met (v = 0), otherwise
the visibility condition is fully respected (v = 1). Fig. 1 illustrates different
scenarios that assume rotational topographic symmetry. For real environments,
the visibility induces coverage which can produce many more complex shapes.
For instance, Fig. 2 gives a concrete example of an environment and how the
visibility condition can affect sensor coverage in this environment.

At each position q ∈ Ξ of environment Ξ, the coverage for a single sensor
is thus the minimum of the three above conditions. Value C = 1 means full
coverage, and C = 0 indicates no coverage. If more than one sensor covers q,
then we can compute the local network coverage Cl using:

Cl(N,q) = max
i=1,...,n

C(si,q), (3)

and the global coverage Cg using:

Cg(N,Ξ) =
1
|Ξ|

∑
q∈Ξ

Cl(N,q). (4)

Given an environment Ξ, the problem statement is thus to determine the sensor
network deployment N that maximizes Cg(N,Ξ).
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A. Eroded Coverage B. Donut−like Coverage C. Noncontinuous Coverage

Fig. 1. Examples of visibility induced coverage. The upper row shows different terrain
elevations as curves. The small rectangle boxes are sensors. The lower rank shows the
true coverage of sensors with those terrain elevations and sensor positions (assuming
rotational symmetry).

Large map

Medium 
map

Small map

(a) (b)

Fig. 2. Impact on coverage of visibility conditions for a given topographical map: (a)
elevation is depicted by colour (the subsections of the environment surrounded inside
the rectangles will be used in the result section to evaluate the performance of the
algorithm); (b) assuming that the sensor is placed in the medium map, the small black
square depicts the sensor location, the grey area exposes the induced visibility mask,
while the black circle represents the maximum sensing range (assuming an omnidirec-
tional sensor).

3 Methodology

The previous problem statement suggests a straight forward evolutionary al-
gorithm solution. We choose the Evolution Strategy (ES) paradigm and, in
particular, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
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algorithm [8]. In our simulations, we attempt to gain insights into these three
scenarios:

a) Deterministic deployment with 360◦ sensors;
b) CMA-ES deployment with 360◦ sensors;
c) CMA-ES deployment with 90◦ sensors.

For each of the three scenarios, sensors are positioned at τ = 1 meter above
the ground, and coverage is computed using Eq. 4. The fuzzy sets used, µd and
µa, are crisp sets:

µd(δ) =
{

1 if 0 ≤ δ ≤ rs
0 otherwise

and either:

µa(θ) =
{

1 if − 180 ≤ θ ≤ 180
0 otherwise

for 360◦ sensors, or:

µa(θ) =
{

1 if − 45 ≤ θ ≤ 45
0 otherwise

for 90◦ sensors.
The deterministic method has been shown to achieve full coverage on the

Cartesian plane [2, 9]. Fig. 3 illustrates this deployment pattern, where sensors
are organized in layers of horizontal strips. Assuming sensors with sensing range
rs, they are simply distributed

√
3 rs apart on every strip, and the strips are

themselves separated from one another by 3
2rs. Furthermore, the strips are in-

terleaved to form a triangular lattice pattern.
To conduct our experiments, we selected a mountainous area in North Car-

olina. The data come from a raster layer map in the “OSGeo Edu” dataset [18],
that stores geo-spatial information about parts of North Carolina State, USA.
More specifically, we focus on a portion of the map that covers a small watershed
in a rural area near NC capital city, Raleigh. The coordinate system of the map
is the NC State Plane (Lambert Conformal Conic projection), metric units and
NAD83 geodetic datum. We used three portions of the map for our experiments
(See Fig. 4, 5, and 6).

The full GIS data can be read using an open-source GIS software called Geo-
graphic Resources Analysis Support System (GRASS) [17], and these data pro-
vide crucial information on the terrain information of the target region (See Fig.
2). With the environmental data provided by GRASS, CMA-ES can carry out the
optimization task by modifying positions and orientations of deployed sensors.
CMA-ES is implemented using Evolutionary Algorithms in Python (EAP) [5],
an open source software developed at the Computer Vision and Systems Labo-
ratory of Université Laval.

4 Results

The algorithm’s parameters include the number of variables, the population size
(µ), the number of offspring (λ), the mutation factor (σ), and the number of
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Fig. 3. Pattern of the deterministic method [2, 9] implemented in the paper, where
da =

√
3rs, db = 3

2
rs, and rs is the sensing range for a sensor. Circles are sensor

sensing ranges, and dots are sensor positions.

Table 1. Parameters used for the CMA-ES runs

Parameter Small map 360◦ Med. map 360◦ Large map 360◦ Small map 90◦

Dimensionality 24 32 48 144
µ 6 7 7 9
λ 13 14 15 18
σ 0.167 0.167 0.167 0.167

Generations 350 350 350 450

generations through which the algorithm runs. Tab. 1 summarizes these values.
As for the sensors, we assumed that these are Passive Infrared (PIR) sensors
with a sensing range of 30 meters.

We have tested the system on three different portions of the environment.
While the deterministic method is supposed to achieve full coverage in each
environment, the actual coverage is not even close to that figure, with less than
90% coverage in all cases. By contrast, with the same number of sensors as in
the deterministic method, CMA-ES can adapt to different local elevations and
thus achieve significantly better coverage (see Tab. 2).

If we add the constraint of sensing angle, the problem is even more chal-
lenging. No deterministic method has ever been proposed to solve this type of
problem. However, one possible deterministic approach is to deploy four sensors
instead of one sensor at the optimal positions, and each sensor will be deployed
in a way that four sensors together can have an omnidirectional sensing angle.
A clear drawback of this deterministic approach is that we need four times as
many sensors to cover the region of interest. What is worse, the coverage is not
optimal, as demonstrated before. However, an evolutionary based method such
as CMA-ES again has proven its ability to deal with these problem. Using 48
sensors with 90◦ of sensing angle, CMA-ES demonstrates its capability to adapt
to the environment and fine-tune the orientation of each sensor deployed (See
Fig. 7).
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(a) (b) (c)

Fig. 4. Placement results on the small map: (a) two dimensional view of the environ-
ment, (b) area covered with 12 omnidirectional sensors using deterministic optimiza-
tion, and (c) area covered with 12 omnidirectional sensors using CMA-ES optimization.
Dark spots are sensor positions, grey areas are covered by sensors, while blank areas
are uncovered. Coordinates of the environment are N: 220750, S:220615, E: 638480, W:
638300, leading to a map of 135 rows and 180 columns, for the total of 24300 cells. The
data (elevation of terrain) range from 123.9 m to 131.5 m.

(a) (b) (c)

Fig. 5. Placement results on the medium map: (a) two dimensional view of the environ-
ment, (b) area covered with 16 omnidirectional sensors using deterministic optimiza-
tion, and (c) area covered with 16 omnidirectional sensors using CMA-ES optimization.
Dark spots are sensor positions, grey areas are covered by sensors, while blank areas
are uncovered. Coordinates of the environment are N: 220250, S:220070, E: 638786, W:
638606, leading to a map of 180 rows and 180 columns, for a total of 32400 cells. The
data (elevation of terrain) range from 109.7 m to 120.3 m.

CMA-ES does not only optimize sensor positions, but also sensor orienta-
tions. This capability is critical because a large proportion of existing sensors
are not omnidirectional, such as vision sensors, and the need to deploy them in
an efficient and optimal manner is thus of great importance.
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(a) (b) (c)

Fig. 6. Placement results on the large map: (a) two dimensional view of the environ-
ment, (b) area covered with 24 omnidirectional sensors using deterministic optimiza-
tion, and (c) area covered with 24 omnidirectional sensors using CMA-ES optimization.
Dark spots are sensor positions, grey areas are covered by sensors, while blank areas
are uncovered. Coordinates of the environment are N: 220490, S:220220, E: 639000, W:
638820, leading to a map of 270 rows and 180 columns, for a total of 32400 cells. The
data (elevation of terrain) range from 111.5 m to 123.8 m.

Fig. 7. Area covered by 48 sensors having a limited 90◦ sensing range, using CMA-ES
optimization. The terrain is the small map presented in Fig. 4. Dark spots are sensor
positions, grey areas are covered by sensors, while blank areas are the uncovered area.

5 Conclusion

Experimental results on topography-aware sensor deployment with CMA-ES
suggest that the proposed method is fully feasible and shows good promise in
optimizing sensor deployment. This project is the very first scheme to construct
a realistic model for sensor deployment. To our knowledge, no similar initiatives
have ever been reported in the literature.

This serves as a starting point to further investigate the use of evolutionary
algorithms in sensor deployment optimization. One of our future works is to
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Table 2. Coverage percentage on the target areas with various numbers of sensors
and approaches. The p-value shows the probability of the CMA-ES performance being
statistically similar to the deterministic one.

Method Small map 360◦ Med. map 360◦ Large map 360◦ Small map 90◦

Deterministic 85.9% 74.3% 86.1% –

CMA-ES run 1 98.1% 95.8% 94.5% 96.7%
CMA-ES run 2 98.9% 94.1% 98.0% 94.3%
CMA-ES run 3 95.9% 88.1% 97.1% 94.3%
CMA-ES run 4 95.7% 94.6% 97.5% 95.9%
CMA-ES run 5 98.0% 92.8% 95.2% 94.3%
CMA-ES run 6 97.8% 91.0% 97.3% 93.7%
CMA-ES run 7 95.3% 94.7% 97.9% 96.8%
CMA-ES run 8 97.6% 91.8% 97.2% 96.4%
CMA-ES run 9 97.2% 92.2% 95.6% 90.8%
CMA-ES run 10 97.4% 93.2% 96.2% 95.8%

Average 97.2% 92.8% 96.7% 94.9%
Std. dev. 1.2% 2.2% 1.2% 1.8%
p-value p < 0.0001 p < 0.0001 p < 0.0001 –

implement a probabilistic or fuzzy sensing range models rather than traditional
disk-like-models [2,11]. Although some probabilistic sensing range models [1,2,9,
11, 21] and sensing models with irregular sensing range [4] have been proposed,
without any exception they all work on a 2D flat space with omnidirectional
sensors. The combinational effects of terrain variations, of constraint sensing
angle or irregular sensing range, and probabilistic sensing property of sensors
have never been studied. Moreover, another potential future project will be the
multi-objective optimizations for sensor deployment, given the multiple concerns
such as number of sensors used, energy saving, multiple coverage, and robustness
of the network to sensor failures.

Acknowledgment

This work was supported by grant SII-PIV-70 from the GEOIDE Network of
Centres of Excellence (Canada). The authors are grateful to Annette Schwerdt-
feger for proofreading this manuscript.

References

1. N. Ahmed, S. S. Kanhere, and S. Jha. Probabilistic coverage in wireless sensor
networks. LCN ’05: Proceedings of the The IEEE Conference on Local Computer
Networks 30th Anniversary, pages 672–681, 2005.

2. X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai. Deploying wireless sensors to
achieve both coverage and connectivity. Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing, pages 131–142, 2006.

9



3. A. P. Bhondekar, R. Vig, M. L. Singla, C. Ghanshyam, and P. Kapur. Genetic
algorithm based node placement methodology for wireless sensor networks. In
Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, volume 1, 2009.

4. A. Boukerche and X. Fei. A coverage-preserving scheme for wireless sensor network
with irregular sensing range. Ad Hoc Network, 5(8):1303–1316, 2007.

5. F.-M. De Rainville, F.-A. Fortin, C. Gagné, and M. Parizeau. Evolutionary Algo-
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