Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
Publications

 

 

 

 

CERVIM

REPARTI

MIVIM

Combinatorial Optimization EDA using Hidden Markov Models


Marc-André Gardner, Christian Gagné and Marc Parizeau


Abstract - Estimation of Distribution Algorithms (EDAs) have been successfully applied to a wide variety of problems. The algorithmic model of EDA is generic and can virtually be used with any distribution model, ranging from the mere Bernoulli distribution to the sophisticated Bayesian network. The Hidden Markov Model (HMM) is a well-known graphical model useful for modelling populations of variable-length sequences of discrete values. Surprisingly, HMMs have not yet been used as distribution estimators for an EDA, although they are a very powerful tool for estimating sequential samples. This paper thus proposes a new method, called HMM-EDA, implementing this idea, along with some preliminary experimental results.

download document

Bibtex:

@inproceedings{Gardner976,
    author    = { Marc-André Gardner and Christian Gagné and Marc Parizeau },
    title     = { Combinatorial Optimization EDA using Hidden Markov Models },
    booktitle = { Student Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2013) },
    year      = { 2013 },
    month     = { July 6-10 },
    location  = { Amsterdam, The Netherlands }
}

Dernière modification: 2013/05/21 par cgagne

     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés