Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
Publications

 

 

 

 

CERVIM

REPARTI

MIVIM

ROBUST KEY FRAME EXTRACTION FOR 3D RECONSTRUCTION FROM VIDEO STREAMS


Mirza Tahir Ahmed, Matthew N. Dailey, Jose Luis Landabaso and Nicolas Herrero


Abstract - Automatic reconstruction of 3D models from video sequences requires selection of appropriate video frames for performing the reconstruction. We introduce a complete method for key frame selection that automatically avoids degeneracies and is robust to inaccurate correspondences caused by motion blur. Our method combines selection criteria based on the number of frame-to-frame point correspondences, Torr’s geometrical robust information criterion (GRIC) scores for the frame-to-frame homography and fundamental matrix, and the point-to-epipolar line cost for the frame-to-frame point correspondence set. In a series of experiments with real and synthetic data sets, we show that our method achieves robust 3D reconstruction in the presence of noise and degenerate motion.

download document

Bibtex:

@inproceedings{Ahmed832,
    author    = { Mirza Tahir Ahmed and Matthew N. Dailey and Jose Luis Landabaso and Nicolas Herrero },
    title     = { ROBUST KEY FRAME EXTRACTION FOR 3D RECONSTRUCTION FROM VIDEO STREAMS },
    booktitle = { International Conference on Computer Vision Theory and Applications (VISAPP) },
    year      = { 2010 },
    month     = { MAY },
    keywords  = { 3D reconstruction, Key frame extraction, 3D video player, Geometrical robust information criterion (GRIC), 3D reconstruction degeneracy },
    location  = { Angers, France },
    language  = { English }
}

Dernière modification: 2010/05/18 par TAMIR

     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés