Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
Publications

 

 

 

 

CERVIM

REPARTI

MIVIM

Genetic Programming, Validation Sets, and Parsimony Pressure


Christian Gagné, Marc Schoenauer, Marc Parizeau and Marco Tomassini


Abstract - Fitness functions based on test cases are very common in Genetic Programming (GP). This process can be assimilated to a learning task, with the inference of models from a limited number of samples. This paper is an investigation on two methods to improve generalization in GP-based learning: 1) the selection of the best-of-run individuals using a three data sets methodology, and 2) the application of parsimony pressure in order to reduce the complexity of the solutions. Results using GP in a binary classification setup show that while the accuracy on the test sets is preserved, with less variances compared to baseline results, the mean tree size obtained with the tested methods is significantly reduced

download document

Bibtex:

@inproceedings{Gagné603,
    author    = { Christian Gagné and Marc Schoenauer and Marc Parizeau and Marco Tomassini },
    title     = { Genetic Programming, Validation Sets, and Parsimony Pressure },
    booktitle = { Proc. of the 9th European Conference on Genetic Programming (EuroGP 2006) },
    volume    = { 3905 },
    series    = { LNCS },
    pages     = { 109--120 },
    publisher = { Springer },
    year      = { 2006 },
    month     = { April 10-12 },
    location  = { Budapest, Hungary }
}

Dernière modification: 2006/01/11 par cgagne

     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés