Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
Publications

 

 

 

 

CERVIM

REPARTI

MIVIM

Algorithmes évolutionnaires appliqués à la reconnaissance des formes et à la conception optique


Christian Gagné


Abstract -

Les algorithmes évolutionnaires (AE) constituent une famille d'algorithmes inspirés de l'évolution naturelle. Ces algorithmes sont particulièrement utiles pour la résolution de problèmes où les algorithmes classiques d'optimisation, d'apprentissage ou de conception automatique sont incapables de produire des résultats satisfaisants. On propose dans cette thèse une approche méthodologique pour le développement de systèmes intelligents basés sur les AE. Cette approche méthodologique repose sur cinq principes : 1) utiliser des algorithmes et des représentations adaptés au problème; 2) développer des hybrides entre des AE et des heuristiques du domaine d'application; 3) tirer profit de l'optimisation évolutionnaire à plusieurs objectifs; 4) faire de la co-évolution pour résoudre simultanément plusieurs sous-problèmes d'une application ou favoriser la robustesse; et 5) utiliser un outil logiciel générique pour le développement rapide d'AE non conventionnels. Cette approche méthodologique est illustrée par quatre applications des AE à des problèmes difficiles. De plus, le cinquième principe est appuyé par l'étude sur la généricité dans les outils logiciels d'AE.

Le développement d'applications complexes avec les AE exige l'utilisation d'un outil logiciel générique. Six critères sont proposés ici pour évaluer la généricité des outils d'AE. De nombreux outils logiciels d'AE sont disponibles dans la communauté, mais peu d'entre eux peuvent être véritablement qualifiés de génériques. En effet, une évaluation de quelques outils relativement populaires nous indique que seulement trois satisfont pleinement à tous ces critères, dont la framework d'AE Open BEAGLE, développée durant le doctorat. Open BEAGLE est organisé en trois couches logicielles principales, avec à la base les fondations orientées objet, sur lesquelles s'ajoute une framework générique comprenant les mécanismes généraux de l'outil, ainsi que plusieurs frameworks spécialisées qui implantent différentes saveurs d'AE. L'outil comporte également deuxextensions servant à distribuer des calculs sur plusieurs ordinateurs et à visualiser des résultats.

Ensuite, trois applications illustrent différentes approches d'utilisation des AE dans un contexte de reconnaissance des formes. Premièrement, on optimise des classifieurs basés sur la règle du plus proche voisin avec la sélection de prototypes par un algorithme génétique, simultanément à la construction de mesures de voisinage par programmation génétique (PG). À cette co-évolution coopérative à deuxespèces, on ajoute la co-évolution compétitive d'une troisième espèce pour la sélection de données de test, afin d'améliorer la capacité de généralisation des solutions. La deuxième application consiste en l'ingénierie de représentations par PG pour la reconnaissance de caractères manuscrits. Cette ingénierie évolutionnaire s'effectue par un positionnement automatique de régions dans la fenêtre d'attention jumelé à la sélection d'ensembles flous pour l'extraction de caractéristiques. Cette application permet d'automatiser la recherche de représentations de caractères, opération généralement effectuée par des experts humains suite à un processus d'essais et erreurs. Pour la troisième application en reconnaissance des formes, on propose un système extensible pour la combinaison hiérarchique de classifieurs dans un arbre de décision flou. Dans ce système, la topologie des arbres est évoluée par PG alors que les paramètres numériques des unités de classement sont déterminés par des techniques d'apprentissage spécialisées. Le système est testé avec trois types simples d'unités de classement. Pour toutes ces applications en reconnaissance des formes, on utilise une mesure d'adéquation à deux objectifs afin de minimiser les erreurs de classement et la complexité dessolutions.

Une dernière application démontre l'efficacité des AE pour la conception de systèmes de lentilles. On utilise des stratégies d'évolution auto-adaptatives hybridées avec une technique d'optimisation locale spécialisée pour la résolution de deux problèmes complexes de conception optique. Dans les deux cas, on démontre que les AE hybrides sont capables de générer des résultats comparables ou supérieurs à ceux produits par des experts humains. Ces résultats sont prometteurs dans la perspective d'une automatisation plus poussée de la conception optique. On présente également une expérience supplémentaire avec une mesure à deux objectifs servant à maximiser la qualité de l'image et à minimiser le coût du système de lentilles.

download document

Bibtex:

@phdthesis{Gagné528,
    author    = { Christian Gagné },
    title     = { Algorithmes évolutionnaires appliqués à la reconnaissance des formes et à la conception optique },
    address   = { Québec (Québec) },
    year      = { 2005 },
    month     = { Mai },
    affiliation = { Université Laval },
    school    = { Université Laval },
    location  = { Québec (Québec) },
    language  = { French }
}

Dernière modification: 2005/05/25 par cgagne

     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés