Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
Séminaires REPARTI


Les Séminaires CerVIM, Université Laval ont lieu le vendredi à 11h00.
Veuillez consulter le programme pour plus de détails.
Sep 25 2020 11:00AM
Séminaire
Webinaire CeRVIM: Workspace enlargement and joint trajectory optimisation of a (6+3)-dof 3-[R(RR-RRR)SR] kinematically redundant hybrid parallel robot
Oct 23 2020 11:45AM
Séminaire
Webinaire CeRVIM: Semi-automated inspection and monitoring system of tunnels water ingress

 

 

 

 

REPARTI

MIVIM

Feb 10 2020 1:30PM

Prof. Flavie Lavoie-Cardinal
Chercheure, Centre de recherche CERVO
Professeure associée, Dép. de Physique, Génie Physique et Optique
Université Laval

Machine-learning-assisted microscopy : from smart scanning approaches to the generation of synthetic super-resolution images



Résumé

Super-resolution microscopy (or optical nanoscopy) techniques allow the characterization of molecular interactions inside living cells with unprecedented spatiotemporal resolution. These techniques come with several layers of complexity in their implementation. My research team focuses on transdisciplinary approaches at the interface of molecular neurosciences, multimodal optical nanoscopy, and machine learning to study structure/function relationship of synapses in the brain. We develop machine learning and deep learning tools to increase the adaptability and accessibility of high-end imaging methods (e.g. optical nanoscopy) to complex experimental paradigms. Recently, we implemented a machine learning assisted optimization framework for optical nanoscopy allowing real-time optimization of multi-modal live-cell imaging of synaptic activity and structure proteins. We also implemented diverse deep learning approaches for high throughput microscopy image analysis, allowing us to characterize activity-dependent remodelling of neuronal proteins. We develop weakly supervised deep learning strategies to reduce the burden of extensive labeling of complex images and evaluate how they can be applied to real-time microscopy image analysis. We aim at developing new AI-assisted microscopy techniques that will adapt in real-time to the sample, predict changes in the structures and modify the experimental protocol depending on the measured response to a stimuli.

La présentation sera donnée en français et les diapos seront en anglais.


Le séminaire sera présenté à 13h30 à la salle PLT-3370.




     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés