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Universit́e Laval, Ste-Foy (Qc), Canada, G1K 7P4.
E-mail: {vignolaj, lalond02, bergevin}@gel.ulaval.ca

Abstract

This paper proposes a method to fit a skeleton or stick-
model to a blob to determine the pose of a person in an
image. The input is a binary image representing the sil-
houette of a person and the ouput is a stick-model co-
herent with the pose of the person in this image. A torso
model is first defined, and is then scaled and fitted to the
blob using the distance transform of the original image.
Then, the fitting is performed independently for each of
the four limbs (two arms, two legs), using again the dis-
tance transform. The fact that each limb is fitted indepen-
dently speeds-up the fitting process, avoiding the combi-
natorial complexity problems that are frequent with this
type of method.
Keywords: Skeleton fitting, Stick-model, Distance
transform, Pose estimation.

1 Introduction

A method fitting a skeleton to the image region occupied
by a person is needed as part of a monitoring system
which attempts to recognize the same person from two
different points of view or at different times. Matching
persons is to be done according to the appearance of its
different limbs in the image. This is why a part-based
description of the person is needed, i.e. which groups of
pixels represent the arm, the leg, etc.

The skeleton is a stick-model that represents the pose
of the person in the image and makes it possible to seg-
ment the person into different parts. However, to reduce
the high combinatorial complexity typical of the prob-
lem at hand, the fit should be obtained in a progressive
manner, i.e. one limb at a time, after each limb has been
previously scaled with respect to the blob’s size.

Typical situations the system should handle include
people walking parallel to or facing the camera (see fig-
ure 2). However, the system must be robust and toler-
ate more complex situations. The main assumption to be
made is that people shall be in an upright position.

2 Related work

The ideal solution to the skeleton fitting problem would
be to process the whole image instead of only a binary
blob. This way it would be possible to obtain more details
about the actions of a person (for example, is the person
facing the camera or moving away from it?). Such details
are unavailable when using a binary blob. Unfortunately,
at this time, there is no technique that can segment a per-
son’s silhouette and extract his different parts from a real
complex scene accurately and fast enough for a system
such as the one described herein [9, 10].

The fitting process may be performed automatically
or non-automatically, as well as intrusively or non-
intrusively. Intrusive manners include, for example, im-
posing optical markers on the subject [8] while non-
automatic method could involve interacting manually to
set the joints on the image, such as in [2]. These meth-
ods are inappropriate for a monitoring system such as
the one described herein which strives to be non-intrusive
and automatic. People have to be monitored without in-
teractions and this operation must be processed without
human interaction.

Many methods have been tested to find the pose of
a human subject in an automatic and non-intrusive man-
ner. Some of these methods only provide the position of
extremities (in most cases these extremities are the head,
hands and feet), while other systems give the complete
position of all of the joints of the person (these joints usu-
ally include the neck, shoulder, elbow, etc.). The system
described by Haritaogluet al. [7] belongs to the former
category and uses geometrical features to divide the blob
and determine the different extremities. Fujiyoshi and
Lipton [5] have no model but rather determine the ex-
tremities of the blob with respect to the centroid and as-
sume that these points represent the head, hands and feet.
The exact position of the body parts is not required for
their application. In the second class, involving systems
which provide the exact position of all body joints, one
can find [6], which uses a stick-model and tries to fit it
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Figure 1:Overview of the system.

to the blob. Neural networks [13] and genetic algorithms
[12] are also used. Finally, [4] presents a method dealing
specifically with the detection of armed robbery. This
method analyses the skeletonization of the blob to decide
whether or not a robbery is taking place in the scene.

The interest of the method described herein is that it
combines, in the same system, the speed of some tech-
niques and the robustness of others, while giving a com-
plete description of the body. These three elements are
almost never present simultaneoustly in a system.

3 Proposed approach

A general overview of the system is presented in 1.

3.1 Blobs Extraction

A custom background subtraction method is used to ex-
tract the silhouette of the person. That is, the mean and
the standard deviation of each pixel is computed in a se-
ries of images without any person. Then, a pixel is re-
garded as belonging to a moving object if the difference
between the mean and the current value of that pixel is
higher than a certain threshold related to the standard de-
viation. Figure 2 b) shows background subtraction.

Once this step is completed, a test is made on each of
the blobs obtained to ensure that the area is sufficient, and
not composed only of noise. Blobs which are too small
are eliminated. A filling algorithm is then used to ensure
that the blobs are exempt of any holes. Finally, two steps
of dilation are carried out to obtain a smooth silhouette.

Then, a distance transform is computed on this image,
using an implementation of the two pass algorithm [3].
The result, shown in figure 3, is an image which gives,
for each pixel, the distance from the nearest contour. This
result is used in further processing.

In our method, the fitting is carried out progressively,
one limb at a time. It is necessary to ensure that each limb
covers his part of the blob. This is why the bounding box
is divided into four parts. To do this, the center of mass

is computed for the whole blob. Then the blob is divided
in four sections by tracing vertical and horizontal lines
through the center of mass. The new bounding boxes are
computed for each of the four sub-images. These four
bounding boxes will serve in the limbs fitting module.

a) b)

Figure 2: a) Typical situation the system has to handle. b)
Blobs extraction before any treatment.

a) b)

Figure 3:a) A binary blob and the four corresponding bound-
ing boxes. b) The distance transform obtained for image a) and
normalized between 0 and 255.

3.2 Skeleton model

The skeleton model used herein is represented by a vector
of 14 body parts. It is shown in figure 4.

B = {bp1, bp2, . . . , bp14} (1)
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Figure 4:a) The stick-model used to do the fitting. b) A closer
look at the right arm.

The proportions between the different parts are fixed
and were determined by consulting the NASA Anthro-
pometric Source Book [11] as well as work reported
by other research teams specializing in human modeling
[1, 2]. Each body part has its own range of possible mo-
tion. Angle constraints ensure that the stick-model will
not take on any undesirable positions, i.e. positions a hu-
man cannot take.

Each body part is composed of two extremities, these
two extremities representing the coordinates of the body
part in the image plan:

bpi = {exi,1, exi,2} (2)

where
exi,j = (xi,j , yi,j) (3)

xi,j is the x coordinate of extremityj of body parti and
yi,j is the y coordinate of extremityj of body parti.

3.3 Torso fitting

The torso (T) is defined as being a subset ofB, i.e.

T = {bp1, bp2, bp5, bp8, bp9, bp12} (4)

The trunk (bp8) schematically represents the spinal
cord of the person. The success of positioning the whole
skeleton relies on the trunk, which is the process’ starting
point and is based on human morphological proportions.
The neck (ex8,1) has been located at 2/15 of the total hu-
man height, starting from the head, while the hips (ex8,2)
are located at 8/15.

However, the total height of the person might not be
the same as the total height of the bounding box. For
example, a person could have an arm raised above his
head. To overcome this problem, the height is measured
by sampling points in the y axis in the upper part of the

blob and finding the maximum of the distance transform
for each of the sampled points. Using linear regression,
a line is fitted on the points sampled, and the height is
found by raising a segment up following the line direction
until the blob’s frontiers are reached.

Let DT be the distance transform image.DT(x,y)
would be the value (between 0 and 255) of the pixel at
coordinate(x,y) in the distance transform image. The first
extremity of the trunk isex8,1 = (x8,1, y8,1). y8,1 is set
constant to 2/15 of the person’s height andx8,1 is com-
puted as being the pixel that maximize the value of the
distance transform. Letxl be the left x coordinate of the
bounding box, andxr be the right coordinate. We can
compute

x8,1 = x| max
xl<i<xr

(DT (i, y8,1)) (5)

The same process is repeated forx8,2 wherey8,2 is
set to 8/15 of the total human height. In this way, a rough
approximation of the two trunk points is obtained. In or-
der to have a better approximation, the position of these
points is refined by using the distance transform image
once again. The points are moved toward the ascending
gradient until they reach a local maximum. This process
is repeated a fixed number of iterations. Once these two
points are calculated, the torso can be scaled with respect
to the distance between those two points. The fact that
the trunk extremities are positioned relative to the per-
son’s height justifies the need for the real height of the
person, instead of only the blob’s height. Figure 5 illus-
trates torso fitting.

Once the trunk has been placed, the system has to
choose between a frontal and a side model. To do this,
a perpendicular line to the trunk is traced, crossingex8,1,
and the width of the blob is computed. If this value is
above a fixed threshold, the frontal model is selected.
Otherwise, the side model is chosen. One should note
that the only difference in the two models is the clavicles
(bp2 andbp5) length.

3.4 Limbs fitting

Limbs include the right arm, left arm, right leg and left
leg. As for the torso, each limb is a subset ofB. It is
composed of two body parts. For example,

Armright = {bp3, bp4} (6)

Because of the skeleton model, all limbs have the fol-
lowing form

Li = {bpi, bpi+1} (7)

and are linked tobpi−1.
Once the torso is fitted, all four limbs are scaled based

on the torso size. Then, to fitbpi andbpi+1 , exi,1 is first



Figure 5:Torso fitting. The lenght of the torso is defined based
on the blob’s size. Then the torso model is scaled and his po-
sition is determined using an algorithm based on the distance
transform.

fixed as having the same coordinates asexi−1,2 (these co-
ordinates are known becauseexi−1,2 belongs to the torso
and the torso has already been fitted). Then, the setS
of all candidate solutions for this limb is generated. In
other words, all the possible positions forbpi andbpi+1

are generated according to the angle constraints that were
imposed, and with a predefined sampling angle (see fig-
ure 6). This angle influences the robustness and speed of
the technique. If the sampling angle is too large, a good
solution could be overlooked. However, the whole pro-
cess might be too long if the sampling angle is chosen
small. It then becomes possible to sample points along
bpi andbpi+1 for each candidate solution. For a particu-
lar solution, if the angle betweenbpi−1 andbpi is α and
angle betweenbpi andbpi+1 is β, these sampled points
are

Pα
i = {pα

1,i, . . . , p
α
n,i} (8)

P β
i+1 = {pβ

1,i+1, . . . , p
β
m,i+1} (9)

wherepα
1,i is the coordinate of the first sampled point of

the body partbpi in the candidate solution with angleα.
Heren andmdepend on the sampling rate. The sampling
rate is an adjustable parameter that also influences the
robustness and speed of the method. Indeed, the more
points there are along a line to validate a solution, the
more robust the system is if a part of a limb has been
poorly extracted. However, the more time-consuming the
fitting process becomes.

Two criteria have been developed which determine if
a solution is good or not. The first one is theinterior rat-
ing (IR), which is computed with the distance transform

Figure 6:One particular position forbp3 and all the candidate
positions generated by the system forbp4. This process is re-
peated for all possible positions ofbp3 admitted by the angle
constraints. The sampling angle in this case isπ/32.

image:

IRαβ
i =

n∑
k=1

DT (pα
k,i) +

m∑
k=1

DT (pβ
k,i+1) (10)

whereDT (pα
k,i) is the value of the pixelpα

k,i in the dis-
tance transform image.

The greater the distance between the limb and any
contour, the highest theIR value is.

The second criterion is thecoverage rating (CR),
which is related to the bounding box. It is a boolean vari-
able. Since the bounding box has been divided into four
parts, there is oneCR for every limb. WhenLi is fitted,
a test is processed to ensure that the blob is covered, i.e.
ex2i+1 is close enough from the limb’s bounding box. If
so, CR takes the value true. Otherwise, it assumes the
value false. At this point, the minimal distance to fix the
CRcriterion as true has been set to 10% of the person’s
height. If CR is true, the solution is accepted and the
correspondingIR value is compared to those of the other
potential solutions. The solution meeting theCR crite-
rion and having the highestIR is considered as being the
best solution.

4 Strength

This method is fast compared to a global fitting method.
The whole process takes about one second on a Pentium
III 550MHz. The fact that all limbs are fitted indepen-
dently of each other speeds-up the process and avoids
the combinatorial complexity problem which would oc-
cur with a global method.
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Figure 7:Limbs fitting. Fitting is done independently for each
limb. This local method speeds up the process and improves
the robustness if some regions of the blob have been poorly ex-
tracted.

This method also facilitates the segmentation of the
body into different parts. Indeed, the system does not
only extract the position of an extremity (a hand or a
foot, for example), but rather a segment that represents
the whole limb. This element will be very useful when
the pixels representing this limb must be extracted. A
system which only provides the extremity position does
not give any indication as to where the limb connected to
this extremity is located.

A local method such as the one presented here also
increases the robustness of the whole system in the fol-
lowing way. If some region of the blob has been poorly
extracted, it is likely that only this part will be poorly fit-
ted and that the other limbs will be succesfully fitted, at
least if the torso has been successfully fitted. In the case
of a global method, a small error can lead to the failure
of the whole fitting module.

5 Experimental results

The different modules of the system have been tested on
a series of 500 images. These blobs represent silhou-
ettes with varying scales, point of vues, standing poses
(including poses where the head does not represent the
highest point of the blob or where the person is bending)
and levels of precision in the blob extraction.

Tested images have 640x480 pixels and typical sil-

houettes are between 137 and 320 pixels high. For a blob
with defaults (shadow, incomplete parts, etc.), the local
fitting method permits in most cases to obtain satisfac-
tory results, at least for the body parts that have been cor-
rectly extracted. Figure 9 shows that the method is able to
process blobs that are not well shaped, for instance more
difficult cases with different kinds of shadows.

An evaluation technique to analyse the results has
been developed to classify a given solution for a partic-
ular blob as being either acceptable or not by comparing
how the stick-model has been fitted to a blob by the sys-
tem and by humans. First, the skeleton is fitted by the
computer and the joints of the skeleton are saved. The
same blob is then fitted by a human. This is considered
as the optimal solution. To compare these two solutions,
the distance between each of the main joints is computed.
This distance is then normalized to compensate for the
scale effect. The results presented herein are for a trunk
of 100 pixels. Mean and standard deviations shown in ta-
ble 1 have been determined for 500 silhouettes. Table 2
presents results for the 10 best fitted skeletons and table
3 gives results for average fitted skeleton. Finally, table 4
shows results for poorly fitted skeletons.

Experiments show that an error of less than 5 pixels
for a joint is excellent and that an error of about 10 pixels
is acceptable. The reader will notice that poor fitting is
mainly due to scaling errors, i.e. the height of the blob has
not been correctly determined, and to unusual positions,
for example if a limb is not visible in the image. However,
because of the local fitting method, even if one part is
missed, the overall fitting is often acceptable.

Figure 8: The segmentation of the body in his different parts
is the next step toward building an operational and efficient sys-
tem.



6 Conclusion

In this paper, a new method of stick-model or skeleton fit-
ting has been presented. This technique is original in that
it is performed progressively, one limb at a time, instead
of globally. This way, the process is faster. A skeleton
model was defined and scaled with respect to the person’s
height. However, the blob’s height does not always rep-
resents the person’s height and this could lead to an error
in the scaling factor. To overcome this problem, an algo-
rithm was developed to compute the height of the person
even in situations where the head is not the highest point
of the blob.

The four limbs of the model are scaled with respect to
the torso size. Then, they are fitted individually by gener-
ating all possible positions and selecting the best position.
This best solution is computed using two criteria. First,
theIR criterion gives a measure of thedepthof a limb in a
blob, i.e. how far the limb is located from any contour, by
using the distance transform of the blob’s binary image.
TheCRcriterion then involves the validation of the posi-
tion of the limb by checking if the limb covers the total
bounding box area. As the fitting is conducted separately
for each limb, a different bounding box is computed for
each part of the blob.

Future work includes segmenting the person into dif-
ferent parts (see figure 8) as well as possibly improving
the system by adding a module to analyse the posture of
the subject based on the skeleton position.
Acknowledgements:This research was supported by an
NSERC grant to R. Bergevin.
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Stats Head Upper
Trunk

Right
Elbow

Right
Hand

Left
Elbow

Left
Hand

Lower
Trunk

Right
Knee

Right
Foot

Left
Knee

Left
Foot

Global

µ 9.32 8.40 13.22 16.67 9.41 10.33 10.40 16.17 15.51 15.43 15.51 12.76
σ 9.58 10.20 15.70 30.63 7.30 8.05 8.01 8.58 8.79 8.50 8.79 7.66

Table 1:Mean difference (µ) and Standard deviation (σ) for the 500 images. The distance is computed in pixels and normalized
for a trunk of 100 pixels. TheGlobal column represents the mean of all distances.

ID Head Upper
Trunk

Right
Elbow

Right
Hand

Left
Elbow

Left
Hand

Lower
Trunk

Right
Knee

Right
Foot

Left
Knee

Left
Foot

Global

406 3.34 2.11 1.49 2.11 4.72 5.38 6.67 6.33 1.49 10.55 1.49 4.15
295 2.31 5.17 3.27 4.90 1.63 4.62 0.00 13.96 1.63 6.74 1.63 4.17
164 6.56 1.82 3.64 5.75 4.07 6.56 4.07 7.71 4.07 4.07 4.07 4.76
297 1.61 4.82 3.21 6.81 6.81 2.27 3.59 18.79 1.61 7.18 1.61 5.30
475 5.02 1.22 0.00 6.56 4.39 6.09 1.72 8.18 8.18 9.83 8.18 5.40
236 7.93 3.55 3.55 10.64 5.72 8.09 1.59 7.93 4.49 1.59 4.49 5.41
381 3.15 2.81 1.41 4.45 5.07 3.98 8.56 8.90 7.96 5.80 7.96 5.46
403 4.94 1.56 3.13 4.94 6.25 9.38 7.97 6.99 3.49 9.50 3.49 5.60
301 3.65 4.61 3.26 6.73 0.00 4.61 7.30 12.42 3.65 11.88 3.65 5.61
410 5.65 1.94 4.94 3.06 3.06 3.06 10.96 8.33 4.94 12.63 4.94 5.77

Table 2: The difference for joint location for the ten skeletons with the best fitting. The distance is computed in pixels and
normalized for a trunk of 100 pixels. TheID column represents the frame number and some results presented herein can be
referenced in figure 9.

ID Head Upper
Trunk

Right
Elbow

Right
Hand

Left
Elbow

Left
Hand

Lower
Trunk

Right
Knee

Right
Foot

Left
Knee

Left
Foot

Global

207 5.17 5.45 12.06 6.89 11.56 11.56 5.45 16.97 12.06 11.56 12.06 10.07
307 3.72 6.00 30.15 29.50 6.00 6.86 5.26 10.13 4.99 3.33 4.99 10.09
316 6.64 5.81 10.81 14.85 6.83 8.06 1.61 11.73 14.41 16.11 14.41 10.12
152 6.67 5.85 6.67 6.67 0.00 9.25 3.70 14.45 21.10 15.81 21.10 10.12
651 9.82 6.09 16.69 32.90 5.81 5.29 6.61 8.37 13.41 11.56 13.41 11.81

Table 3:The difference for joint location for skeletons with average fitting. The distance is computed in pixels and normalized for
a trunk of 100 pixels.

ID Head Upper
Trunk

Right
Elbow

Right
Hand

Left
Elbow

Left
Hand

Lower
Trunk

Right
Knee

Right
Foot

Left
Knee

Left
Foot

Global

461 52.28 36.28 74.24 157.59 26.74 2.05 18.57 16.41 4.35 13.37 4.35 36.93
350 50.52 52.34 44.89 29.72 68.85 91.97 20.39 19.37 10.75 10.75 10.75 37.30
501 31.50 42.15 50.83 34.69 28.10 21.51 50.37 55.04 53.22 53.72 53.22 43.12
131 27.41 29.59 64.10 152.37 28.16 27.79 14.40 19.58 41.04 33.61 41.04 43.55
132 33.98 33.98 61.53 150.00 36.52 30.81 30.81 35.16 36.52 36.52 36.52 47.49

Table 4:The difference for joint location for skeletons with poor fitting. The distance is computed in pixels and normalized for a
trunk of 100 pixels.
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Figure 9: Some results obtained with the described method. First and third columns represent the original images,
second and fourth columns represent the fitted skeleton. Figures a) to j) show very good results obtained in different
situations. Figures k) and l) are an average fitted skeleton. Shoulders are a bit too large, but the scale factor is the
good one and the overall fitting is acceptable. Figures m) to p) present poor fitting. In these two cases, the height is
not the good one, which leads to scaling error. This is due to the head position. However, the overall fitting is still not
so bad. Finally, figures q) to t) demonstrates, with images took in different conditions, that using the bounding box
constraints, the skeleton is well fitted even if there is shadow between the two legs (r) or side shadow (t).


