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Abstract

In this paper, a top-down approach based on perceptual
grouping is proposed for multi-part objects detection. The
abstract conceptual category of multi-part objects is for-
malized by a set of global criteria. These criteria will en-
able the evaluation of the segmentation quality in order to
determine if the whole grouping is perceptually significant
and if it has a good perceptual shape. A new cognitive vi-
sion methodology, called SAFE (Subjectivity And Formal-
ism Explicitly), is presented. Its goal is to help identify the
proper global criteria and to validate the judgment derived
from formal calculations of these criteria by human judg-
ment.
Keywords: perceptual grouping, top-down process-
ing, methodology, object detection.

1. Introduction

The goal of image segmentation is to partition the image
in order to identify structures that correspond to meaning-
ful objects. One of image segmentation techniques is based
on perceptual grouping, which can be defined as the abil-
ity of the visual system to organize primary data as pixels,
segments or regions present in the observed scene into per-
ceptually significant groupings. In the following, we will re-
fer to these primary data as primitives.

Perceptual grouping relies on a set of properties, known
as Gestalt laws or perceptual grouping cues, the most com-
mon being parallelism, symmetry, closure, proximity, sim-
ilarity, smoothness [7]. Lowe [9] introduced the use of
grouping for object recognition in the 1980’s.

Though great works have been done, our review of per-
ceptual grouping literature has shown that only a few ideas
of the Gestalt movement have been exploited. Few works
incorporate the principle of Prägnanz, in spite of its impor-
tance. Pr̈agnanz was defined as the tendency of humans to
group primitives in accordance to criteria such as regular-
ity, smoothness and visual balance. On the other hand, the

Gestalt basic principle is that the whole (e.g. an object like
a car) carries a greater cognitive significance than its indi-
vidual components. In a way, these two principles permit
to give meaningful global quality to the whole grouping.
Nevertheless, most of the proposed methods in perceptual
grouping do not consider this global concept because they
follow a bottom-up process.

Indeed, most works of perceptual grouping are based on
a bottom-up process [12]. In this approach, the primitives
are grouped in a hierarchical way according to the Gestalt
laws without a priori knowledge of the image contents [13],
[4], [11].

Top-down segmentation looks for a predefined object in
the input image and is guided by a priori knowledge about
the object, such as its shape, color, or texture. Research
works in this area are essentially model-based. In the do-
main of perceptual grouping, past efforts have been made
to form simple and small groupings such as convex group-
ings, rectangles or simple polygons. They are then aggre-
gated in order to extract large and complex groupings that
should correspond to meaningful objects in the image [11].
Jainet al. [6] observed the lack of top-down processing that
incorporates Gestalt principles for object recognition, in the
state-of-the-art of computer vision. This is due, partly, to the
fact that top-down process to obtain directly large and com-
plex groupings has a very high computational cost. For in-
stance, the dimension of the search space to find such group-
ings in a set of primitives grows exponentially with respect
to the number of primitives.

However, in our application, it is needed to extract such
large and complex groupings. Our aim is to design an algo-
rithm for the detection of multi-part objects. In this paper,
we present a top-down approach based on Gestalt princi-
ples to extract their boundary.

Related works on object boundary extraction based on
perceptual grouping exist in the literature [14], [5], [3], [2],
[10]. They use essentially Gestalt laws of closure, continu-
ity, proximity and convexity. The objects of interest are sim-
pler than ours, since these algorithms work well for natural,



smooth and compact objects. Moreover, the grouping cues
are defined intuitively and are never validated by human ob-
servation.

The main contributions of this paper include: (i) a top-
down approach that relies on the identification of global cri-
teria for an abstract object category, more specifically multi-
part object category, by subjective human observations, (ii)
an incorporation of the principles of Prägnanz and Gestalt
laws into these global criteria, (iii) a formalization of these
global criteria, (iv) a new methodology, referred to as SAFE
(Subjectivity And Formalism Explicitly), that helps identify
and validate the global criteria.

This paper is organized as follows. In Section 2, we de-
scribe the SAFE methodology and in Section 3, we present
its application to the detection of multi-part objects.

2. The SAFE methodology

A well-known methodology for model-based ob-
ject recognition utilizes a supervised learning from a large
set of sample objects. A pattern representing a set of fea-
tures is used and decision-theoretic methods are applied
according to the statistical results of the learning.

The methodology presented in this paper is different
since it is based on an a priori identification of global cri-
teria corresponding to a given abstract conceptual category.
We believe that these global criteria should be similar to
those used by human visual system. Indeed, although so-
phisticated artificial visual systems exist, no one can per-
form as well as humans to detect objects. In our approach,
we have to emphasize that such human capabilities are inte-
grated in the design of our algorithms, which is fundamen-
tally different to existing a posteriori psycho-evaluations of
segmented images.

A flowchart of the methodology is presented in Fig. 1.
For our application, the input data are a set ofN constant
curvature primitives (CCPs),P = {pj , j = 1..N}, where
pj is a primitive (arc or line segment), extracted from an
image that may contain one or many multi-part objects.

This methodology is applied to top-down segmentation
under the following hypotheses:

• nature of objects: multi-part objects

• low-textured objects

• relatively low-cluttered background

In order to apply the methodology, we have designed an
interactive software tool, that we call SAFE-T for SAFE-
Tool, with a graphical user interface (see Fig. 2).

The methodology consists of four steps (SGT, FGT, FV,
SV): its goal is to validate the judgment derived from for-
mal calculations which we refer to as FGT (Formal Ground
Truth) by human judgment which we refer to as SGT (Sub-
jective Ground Truth).

Figure 1. The SAFE methodology.

Subjective Ground Truth (SGT): In this first step, a
list of groupings or subsets fromP is generated. This list
corresponds to possible solutions of the image segmenta-
tion and may reflect a certain degree of perturbation around
the best solution (see Fig. 2).

A subset is formed as an ordered sequence of primi-
tives, e.g., selected manually by means of SAFE-T. A sub-
setSi ⊂ P is defined asSi = {pj , j = 1..ni}, where the
number of primitivesni can be different from a subset to an-
other (ni ≥ 2).

Then, the operator is asked to evaluate the perceptual
quality of each subset of the list by answering the question:
”How good is this subset as a multi-part object boundary ?”.
For each subsetSi, he is asked to give a score, referred to as
subjective score and notedu(Si), in accordance to his own
subjective judgment of the subset. The subset correspond-
ing score represents the relative quality of the solution.

Once subjectively evaluated, the list of subsets is sorted
by decreasing value ofu(Si). Therefore, the best evaluated

Figure 2. SAFE-Tool graphical user interface.



solution is ranked first. The SGT step will yield a sorted
subjective set,S = {Si, a(Si), u(Si)}, wherea(Si) is the
subjective rank of the subset(Si). A subset which has been
judged according to the subjective scoreu(Si) will be called
subjective subset.

At the end of this step,S should reflect the percep-
tual properties of an hypothesized multi-part object.
A verbal description of the abstract conceptual cate-
gory of the object is then identified, leading to a set of
global criteria to be optimized for the multi-part object de-
tection. This step is repeated for several images with
different multi-part objects in order to refine and com-
plete the set of criteria.

Formal Ground Truth (FGT): In this second step, for-
mal model of each global criterion is proposed. These cri-
teria are combined in a unique measure, notedv(Si), and
referred to as formal main score in the rest of the pa-
per. The list of subsets defined in SGT step is evalu-
ated objectively by means of the formal main score. This
list is then sorted by decreasing value ofv(Si) and a
sorted formal set, notedF = {Si, b(Si), v(Si)} is ob-
tained, whereb(Si) is the formal rank. A subset which has
been judged according to the formal scorev(Si) will be re-
ferred to as formal subset.

Formal validation (FV): This step consists in verify-
ing the implementation of each global criterion. The vali-
dation could be applied on either synthetic or real data.

Subjective validation (SV): The aim of this step is
to validate the formal model of the global criteria by hu-
man judgment. This is achieved by comparing the two
rankings defined in SGT and FGT. The criteria formal-
ization and implementation are validated when the list
of subsets has the same ranking in SGT and FGT, i.e.
b(Si) = a(Si). If this is the case, the segmentation al-
gorithm design is achieved, otherwise the formalization
or the implementation of the algorithm must be cor-
rected. This leads to a closed-loop process.

3. Application

By following the SAFE methodology, we have identi-
fied a set of global criteria that correspond to the formaliza-
tion of the abstract concept category of multi-part objects.
We have observed that these criteria are in accordance to the
theory of Pr̈agnanz and to Gestalt laws.

3.1. Criteria formalization

The criteria values are normalized so as to be in the range
[0,1].

As some criteria need to be computed on closed bound-
aries, we fill the gap between two oriented primitives by
joining their two endpoints with a virtual line.

3.1.1. Number of parts
This criterion is important to our application since we are

looking for multi-part objects. In this paper, we do not want
to determine a precise decomposition of an object into its
constituent parts because we are interested in a general form
of a given object category. Therefore, an approximate num-
ber of parts is sufficient.

In order to determine approximately the number of parts
of the object, we propose to use concavities on the object
boundary, which are present at significant negative curva-
ture points. These dominant points are interesting, as they
are situated at significant visual part cuts. However, their
saliency is not sufficient to obtain part decomposition since
they may correspond to noise. In order to overcome this
problem, we propose to use the relevance measure proposed
in [8], and apply two kinds of recursive filtering based on
this measure so that significant noises on the boundary are
eliminated without modifying its global shape.

This measure, notedK(p1, p2) depends on the turn an-
gle and the length of two consecutive primitives(p1, p2) and
is computed as:

K(p1, p2) =
β(p1, p2)l(p1)l(p2)

l(p1) + l(p2)
(1)

wherel is the length of the segment andβ() is the turn an-
gle between(p1, p2).

The definition of the turn angle is shown in Fig. 3), where
T2(B) is the tangent direction that opens the second arc and
T1(B) the one that closes the first arc, both at common point
B.

Figure 3. Turn angles for arc and line seg-
ment.

The dominant points are determined as those situated
at points where the saliency of two consecutive primitives
computed byK(p1, p2) is negatively high. The first filter-
ing is to eliminate irrelevant turn angle, i.e. very small value
of turn angle: this is done by evolving the boundary until
the minimum value of turn angle is superior to a predefined
thresholdΘ1.



Furthermore, we observe that, for the same
value of β(p1, p2): if l(p1) � l(p2), then
K(p1, p2) ≈ β(p1, p2)l(p2); and if l(p1) ≈ l(p2)
thenK(p1, p2) ≈ β(p1,p2)l(p2)

2 .
It means that, for the same value of turn angle, even when

the length of one of the primitive is very large,K() is only
influenced by the length of the shortest one. Furthermore, if
we compare the two cases, a ratio of 2 always exists be-
tween the two values ofK() whatever the length of the
longest one, i.e. they are not normalized to the total length
of the two primitives.

The second filtering takes into account this length influ-
ence and linearizes the boundary if one of the following
cases occurs: (i)l(p1) ≤ L and l(p2) ≤ L (ii) l(p1) ≤ L
andl(p2) ≥ R · L andβ(p1, p2) ≤ Θ2 (iii) l(p2) ≤ L and
l(p1) ≥ R · L andβ(p1, p2) ≤ Θ2.

A problem may appear when the so-filtered boundary
has two or several consecutive negative curvature points,
also known as “U” concavities. Such points are counted as
one concavity.

The parts number of the object is then formalized as:

Np = N + 1 (2)

whereN is the number of concavities, we add one so as to
count the body part of the object.

We decided to most favor objects with six parts (see
Fig. 4). We observed that this number corresponds approxi-
mately to the number of significant parts of many common
multi-part objects at a natural observation scale: hand, body,
airplane, star, chair, fish, tools, etc. Moreover, Biederman
[1] showed that human perceptual vision arrives to identify
an object with two or three parts. If we want to take into ac-
count the possible partial self-occlusions of 3D multi-part
objects, then six visible parts seems to be a good number.

The parts number criterion is computed as:

C1 = f(Np) (3)

wheref(Np) is a linear function (see Fig. 4).

Figure 4. Part function.

In Fig. 5, once filtered, the hand boundary has several
“U” concavities. Our approach permits to calculate six parts
for this object, the same number as for the ideal case of the
star.

Figure 5. Parts number: (Left) Original im-
ages, (Right) Filtered images. The two ob-
jects have six parts.

3.1.2. Closure

C2 =
L1,n

L1,n + G1,n
(4)

where:L1,n =
n∑

k=1

l(pi) andL1,n =
n∑

k=1

l(hi). l(pi) is the

length of a primitivepi andl(hi) the length of a gaphi be-
tween two consecutive primitives.

3.1.3. Visual balance
There are different sorts of visual balance.

• Shape visual balance:

C3 = 1− dist(G, Gbb)
0.5D1

(5)

G = 1
n

n∑
i=1

gi, andGbb are the centroids of the sub-

set and of the bounding box respectively,D1 is the di-
agonal length of the bounding box.gi is the mass cen-
ter of a primitive; for a line segment, it is its middle
point, but for an arc segment, it is computed as:

gix = R
sinαcosθ

α
+ Cx

giy
= R

sinαsinθ

α
+ Cy

whereα = γ
2 , θ = φ + γ

2 , φ andγ are the starting and
the sweeping angle of the arc respectively,R is the arc
radius, and(Cx, Cy) the arc center.

An example is presented in Fig. 6 where the first
case looks better balanced; this is attested by a higher
value ofC3 than for the second case.

• Location visual balance: A subset is perceptu-
ally salient if it is located at the center of the scene.

C4 = 1− dist(G, GI)
0.5D

(6)

whereG andGI are the centroids of the subset and of
the image, respectively,D is the diagonal length of the
image, anddist() is the distance between two points.



(a) (b)

Figure 6. Shape visual balance: (a) 0.92 , (b)
0.79.

• Size visual balance: A large object in the image is more
salient than a small one.

C5 = 1− A−As

A
(7)

whereA andAs are the area of the image and of the
subset respectively.

3.1.4. Smoothness

C6 =
1
n

n∑
i=1

1 + cos βi

2
(8)

whereβi is the turn angle between two consecutive oriented
primitives,n is the number of primitives of the subset.

An example is shown in Fig. 7, where the second subset
is a less regular shape than the first one. This is validated by
a smaller value ofC6 for (b).

(a) (b)
Figure 7. Smoothness: (a) 0.80 , (b) 0.67.

3.1.5. Gap distribution
A subset seems to have better perceptual significance if the

gaps are equally distributed on its boundary than if they are
random. If there are no gaps, this criteria is equal to 1, oth-
erwise, it is computed as:

C7 = 1− dist(Gr, Gv)
0.5D1

(9)

whereGr andGv are the mass centers of the real and vir-
tual primitives, as computed before.

In Fig. 8, by visual observations, the subset (b) obtained
higher subjective confidence than the subset (d), which is
validated by higher formal value ofC7.

Figure 8. Gap distribution (a) 1, (b) 0.90, (c)
0.85, (d) 0.20.

3.1.6. Compactness
A good shape must be relatively compact. A circle is the

most compact form, but as we are looking for multi-part ob-
jects, we propose:

C8 = 1− 4πA

P 2
(10)

whereP is the perimeter andA is the area of the subset.

3.1.7. Border Criterion
This criterion, notedC9, has just a boolean value: if the

subset bounding box is too close to one of the image bor-
ders, it is equal to 0, otherwise it is equal to 1.

3.1.8. Criteria combination
In order to compute the formal main score presented in

Section 2, we have to integrate the global criteriaCk into
the single measurev(Si).

One of the well-known multi-criteria methods is the ad-
ditive combination of those criteria weighted by parameters
to be adjusted:

v(Si) =
K∑

k=1

wk(Si)Ck(Si) (11)

whereK is the number of criteria.
We define thatv(Si) must decrease as perceptual signif-

icance of a valid subsetSi decreases. A valid subset is one
that respects the constraints of non-crossing and simple cy-
cle of primitives.

3.2. Results for multi-part objects detection

In this section, we present the results of SAFE method-
ology on five images (see Fig. 9).

3.2.1. Validation measures
The subjective validation (SV) is evaluated by a recall es-

timate, notedR:

R =
1
n

n∑
i=1

Pi (12)



Figure 9. Original images and their corre-
sponding primitive maps.

with

Pi =

{
1 if b(Si) = a(Si)
0 else

R defines the proportion of validated subsets, i.e. those
such thatb(Si) = a(Si).

In order to evaluate the discrepancy of the ranking within
the subsets list, we compute a precision estimate, notedP :

P = 1− 1
n

n∑
i=1

ri (13)

with:

ri =
|b(Si)− a(Si)|

M − 1
ri is the normalized difference between the ranks, M is the
total number of subsets, i.e. the worst rank difference be-
tweenb(Si) anda(Si) is equal to(M − 1), andn is the
number of subsets for which we want to computeR andP .

Note that these definitions are similar but not identical to
the ones used in content-base image retrieval. Here, they es-
timate the rank similarity between the subjective and formal
setsS andF .

3.2.2. Experiments
A subjective setS corresponding to possible solutions is

built up (see Section 2), for each image in Fig. 9 (SGT).
When forming the list of solutions, it is preferable that it

contains a large variety of situations, so that a great number
of criteria can be investigated to model the human percep-
tion of a good shape, for a given category. However, gen-
erating such a large list of possible solutions is not an easy
task since there could be a huge combination of primitives.
For example, we have produced a list of 1000 random sub-
sets, for a given image. The problem is that this so-built list
does not illustrate the variety of situations, that we, as hu-
man being, can predict. Therefore, this experiment of a large
random list was not conclusive. Thus, we opted for a man-
ual selection so that we can choose the subsets in accor-
dance to predictable situations like occlusions, background
clutter, gaps and so on.

We have observed that the production of a large subjec-
tive setS is a challenging task. As pointed out in [1], ac-

curate absolute judgment of human visual system rarely ex-
ceeds7± 2 categories and comparing reliably a huge num-
ber of subsets with too small differences is not easy. There-
fore, we decided to work with a reduced list of subsets, more
exactly 30 subsets for each image, but that have large dis-
crepancy between them.

The formal main scorev(Si) is computed for each sub-
set by incorporating, one by one, each formal global crite-
rion (FGT). The ranking evolution between the formal set
and the subjective one is observed, i.e.b(Si) is compared to
a(Si) (SV). The recall values for each criterion except for
C1, C4 andC9, are presented on Table 1. The recall values
for these latter criteria are not presented since they are sim-
ilar for several subsets and do not allow the sorting. The ob-
tained results are very poor, i.e. a unique Gestalt cue is not
sufficient to reliably detect an object. Nevertheless, for the
angel fish image, the result is not too bad since 50% of the
top ten formal subsets obtained the same subjective judg-
ment.

Images C2 C3 C5 C6 C7 C8

Airplane 10% 10% 10% 0% 10% 0%
Compass 0% 0% 0% 0% 0% 0%
Angel fish 50% 0% 20% 0% 10% 0%
Hand 0% 0% 20% 0% 0% 0%
Man 0% 0 % 20% 10% 0% 0%

Table 1. Recall for each single criterion.

In Fig. 10(a) are presented the first nine subjective sub-
sets for the airplane image, the best subjective solution is on
the top left. The subjective rank is displayed on the top left
of each subset. In Fig. 10(b) are shown the first nine sub-
sets sorted in accordance to the closure criterion, which was
agreed as powerful cue by several works [2], [10], [14]. We
observe that bad solutions, in accordance to human judg-
ment, are ranked among the best ten solutions of the for-
mal setF , e.g. the subset#19 or #18 have low subjective
scores.

In this paper, we determined the weights of the linear
multi-criteria combination empirically. For the set of im-
ages presented in Fig. 9, we have used the following param-
eter values:

• combination weights:wk = 1, except forC2, C5 and
C6 for whichwk = 5.

• filtering: Θ1 = 15, Θ2 = 40, L = 40, R = 10.

The result obtained with the multi-criteria formal main
scorev(Si), for the airplane image is shown in Fig. 10 (c)
and (d). The top nine best (c) and nine worst subsets (d) of
F are presented. The best formal solution is on the top left
of Fig. 10(c).



(a) (b)

(c) (d)

Figure 10. (a) Top nine subjective subsets, (b) Top nine subsets sorted by closure criterion, (c) Nine
best formal subsets, (d) Nine worst formal subsets. Recall = 80%, Precision = 93%.

We can note on this figure that the best perceptually sig-
nificant subsets are among the best formal ones, and the
worst ones are really among the worst formal ones. Note
also the subset#18, which was ranked among the top ten
best subsets for the single closure criterion. Thanks to the
multi-criteria combination, this subset is ranked among the
ten worst, which is coherent with its subjective ranking.

Similar improvements are obtained with the other multi-
part objects. For example, the formal result obtained with
the multi-criteria combination for the man image is shown
in Fig. 11. The top nine best (a) and nine worst subsets (b)
of F are presented. The best formal solution is on the top
left of Fig. 11(a).

We have observed that it is more interesting to compute
the recall value for the top ten best and the ten worst sub-
sets because these two sets reflect more the reliability of
the main global scorev(Si). For the precision, we take the
whole list of subsets because this value is normalized to the
formal and subjective sets cardinality. The recall and pre-
cision values for the images in Fig. 9 are presented on Ta-
ble 2.

The multi-criteria combination improves considerably
the recall values, and the precision values are quite high.
This indicates that the formal evaluation of these solutions
tends to be similar to the human judgment. This important

(a) (b)

Figure 11. (a) Nine best formal subsets, (b)
Nine worst formal subsets. Recall = 80%, Pre-
cision = 93%.

result is needed for computer vision systems as Jainet al.
mentioned in their paper [6]. Indeed, they observed, for their
shape-based trademarks retrieval system, that the ranking of
the top ten images retrieved by their artificial system is sig-
nificantly different from the ranking of those selected by
humans. To their point of view, this clearly shows that com-



Images Recall Precision
Airplane 80% 93%
Compass 70% 88%
Angel fish 70% 93%
Hand 60% 93%
Man 80% 93%

Table 2. Recall and precision for the first top
ten subsets of the images in Fig. 9.

puter vision systems should take into account human visual
perception to design segmentation algorithms. The SAFE
methodology tends toward achieving this goal.

4. Conclusion and Future Work

We have proposed an approach that combines top-down
processing and perceptual grouping in order to detect a par-
ticular category of objects, in this case multi-part objects.
Instead of being model-based as existing approaches in the
literature, it is based on the identification of a set of global
criteria that formalize the abstract conceptual category of
multi-part objects. An original methodology, called SAFE,
is presented that permits to identify and validate the formal
model of these global criteria by human psycho-evaluation.
These criteria are in accordance with the law of Prägnanz,
which represents the global percept of a grouping.

The detection of these so-categorized objects is not easy
since large and complex groupings must be generated. The
extraction of a perceptually significant grouping is a diffi-
cult problem but the perceptual evaluation of this grouping
is even more challenging as it entails the visual assessment
of its proper shape. We address this latter problem and eval-
uate the quality of an hypothesized multi-part object bound-
ary.

The proposed approach is designed to detect a generic
category of objects, but it could be further refined to deal
with the categorization of specific objects. The conceptu-
alization of an object category is a difficult task, there-
fore great efforts must be done in order to determine ad-
ditional criteria. Linear combination of these criteria is the
most straightforward method, but since reliable weights are
needed in order to control the balance between each cri-
terion, other methods must be investigated. The next step
of our work will be to automatically segment an image so
that primitives that optimize a multi-criteria cost function
are extracted. We will investigate more specifically graph-
theoretic approaches.

The preliminary results presented in this paper are en-
couraging since they demonstrate that it is possible to de-
sign artificial visual systems which tend to perform as
well as humans. Though important works have been con-

ducted, existing computer vision systems are still far
from attaining the human visual performance. The orig-
inal methodology presented in this paper is a step to-
ward this.
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