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Abstract
In the current context of increased surveillance and security, more sophisticated surveillance systems are needed. One
idea relies on the use of pairs of video (visible spectrum) and thermal infrared (IR) cameras located around premises
of interest. To automate the system, a dedicated image processing approach is required, which is described in the
paper. The first step in the proposed study is to collect a database of known scenarios both indoor and outdoor with a
few pedestrians. These image sequences (video and TIR) are synchronized, geometrically corrected and temperature
calibrated. The next step is to develop a segmentation strategy to extract the regions of interest (ROI) corresponding
to pedestrians in the images. The retained strategy exploits the motion in the sequences. Next, the ROIs are grouped
from image to image separately for both video and TIR sequences before a fusion algorithm proceeds to track and
detect humans. This insures a more robust performance. Finally, specific criteria of size and temperature relevant to
humans are introduced as well. Results are presented for a few typical situations.

1. Introduction
In the current context of increased surveillance and security, the necessity has emerged for more sophisticated surveil-
lance systems, for instances around buildings. One idea that is promising relies on the use of pairs of video (visible
spectrum) and thermal infrared (IR) cameras distributed around premises of interest. Since it is not practical to have
humans observing the resulting images in real-time, it is proposed to add an “intelligent fusion/detection step” to the
system so that human observers are involved only in case “abnormal situations” occur.

Combining visible and thermal infrared images (TIR) is advantageous since visible images are much affected by
lighting conditions while TIR images provide enhanced contrast between human bodies and their environment. How-
ever in outdoor conditions, it was noticed that TIR images are somewhat sensitive to wind and temperature changes.
Nevertheless, these limitations for both modalities are independent and usually do not occur simultaneously. An intel-
ligent fusion of the information provided by both sensors reduces detection errors, thereby increasing the perfor-
mance of tracking and the robustness of the surveillance system.

A literature search reveals a few interesting papers on the exploitation of near - infrared information to track humans
[1-3]. These papers generally deal only with the face of observed people [1-2] and a few are concerned with the
whole body [3]. However, when looking to the efforts in the visible part of the spectrum for the same task, many
papers are available such as [4,5]. Surprisingly, the idea to couple visible and thermal infrared is not yet seen as a
popular research field for this application. One reason explaining this is probably due to the still high cost of the ther-
mal infrared cameras (~ 10 k$) versus their visible counter parts (~ 1-2 k$ for quality products). Moreover outdoor
scenarios are obviously more challenging to visible imagery due to shadows, light reflections, levels of darkness and
luminosity. However, with Planck’s law [6] in mind, it is clear that thermal infrared in bands 2-5 µm and especially 8-
12 µm offers better “light immunity” from the sun whose emitted radiation peaks at 0.5 µm right in the middle of the
visible spectrum (0.4-0.8 µm). Nevertheless, moving leaves and grass, cooling winds, moving shadows with clouds,
reflecting snow, etc., are challenging for TIR imagery.
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As stated in the title, the goal of the present work is to track pedestrians. This means: walking and standing humans,
excluding all “upside-down” - ! - or sitting people. No constraints are put on clothes (we tested our system in all four
seasons with subjects wearing from light clothes to heavy coats). The last restriction concerns the number of pedestri-
ans present in the scene. If too much pedestrians are present, the number of moving objects in the scene becomes too
large compared to the background and many pedestrians are simply represented by a blob. The fact that our system
exploits the two modalities and works with both indoor and outdoor scenes is not common in the literature.

In the paper, the acquisition system is first briefly presented. Next, the processing algorithm for pedestrian extraction
is presented. The paper ends with a presentation of a few results.

2. ACQUISITION SYSTEM
The acquisition system is composed of a ’mobile platform’ on which the two cameras with their own computer are
mounted. The system was moved around inside and outside our pavilion so that different scenarios were recorded.
The video camera is a 640 x 480 pixels, Pulnix TMC-6700CL color CCD connected to a Meteor II Camera Link
Matrox frame grabber while the IR is a 320 x 256 pixels, InSb SBF connected to a Genesis LC Matrox frame grabber.
Because of the non-versatile commercial acquisition software of the IR-camera, two computers were used. Infrared
images undergo a series of pre-processing steps to correct them for vignetting, fixed pattern noise, dead pixel and
finally temperature calibration [6].

Due to their different resolution (IR: 320 x 256 pixels and visible: 640 x 480 pixels) and non perfect colinearity align-
ment, visible and TIR images cannot be compared “pixels by pixels.” We have thus developed a “region-based”
rather than “pixel-based” approach; all proceeds in a relative rather than absolute manner. A geometric calibration is
done on both separate cameras to obtain intrinsic parameters [7]. The intrinsic parameters provide a scale factor in x
and y, the focal lens, and the radial distortion. 

Moreover, in the experiments, time synchronization is also performed manually through the observation of both
scenes with our dedicated program. It is to be noted that only the beginning of the sequence needs to be synchronized
because the acquisition frame-rate is known and accurate for both cameras.

3. IMAGE PROCESSING
The main part of the work concerns image processing. The goal here is to
extract pedestrian(s) from sequences. In this section, it is assumed video
and IR sequences are acquired and pre-processed as described in the pre-
vious section. An important hypothesis is that cameras do not move dur-
ing the recording of one given sequence (which is the case in most
surveillance systems). Figure 1 presents the overall image processing
algorithm. After image acquisition, the second step consists in extracting
moving regions with a background subtraction algorithm. The next step
deals with the tracking of the moving blob. Each blob is analysed and
eventually combined to create or update an object. In the fourth step,
tracking of the object is implemented for each modality. The next step
involves the correspondence between objects of the visible and IR
images to identify fusion hypotheses between objects. These hypotheses
can be fed back to the object tracking module for each modalities. The
last two steps correspond to detecting occlusion between fused objects
and using the statistics of the object to determine whether the object is a
pedestrian or not. It is worth noting that in the proposed architecture, sen-
sor fusion is applied at the level where an object representation is avail-
able. This modular architecture differs from an approach where fusion would occur at each step. It builds on the
processing pipeline of single modalities. 

Figure 1: Image processing 
architecture



Figure 2: a) Blob notation. b) Various cases
that are observed during the tracking.

b) a) 

Figure 3: Examples of list correspondences to follow blobs.

Figure 4: Object primitive (orange) and predicted 
areas (yellow).

Figure 5: Representation of the updated state for the 
predicted area.



3.1 Background subtraction

For the visible and IR sequences, an adaptive background subtraction algorithm [8] is performed that consists in
accumulating statistics (mean and standard deviation) for each pixel in the image and then comparing these statistics
with the pixel values in the newly acquired image. If the vector value (RGB for visible images and temperature for IR
images) is too different according to statistics, one considers a pixel as a foreground pixel. After all pixels have been
classified as foreground or background pixels, statistics are updated using the last image. This adaptive algorithm is
more robust to low light levels or temperature change during the day. For short sequences (less than 2 min.), 30
frames are typically required at the beginning of the sequence without any pedestrian to initialize statistics of the
background. 

The blobs in the image are obtained by using an eight-neighborhood connected component algorithm on the fore-
ground pixels. These blobs are used in the first level tracking algorithm. For speeding up the tracking process, the
region of interest (ROI) is rectangular and corresponds to the bounding box of the blob (See Figure 2a).

3.2 Two-level tracking

Tracking is performed at two levels. While the first level of the tracking algorithm consists in following the blobs in
an image sequence, the second level builds on the first and tracks a combination of one or more blobs, i.e. objects. To
do this, some feature parameters between blobs at time ’t’ and ’t-1’are first introduced.

“Overlapping”, O(a,b), between two blobs a and b, is defined formally as:
Omax(a,b) = Maximum(CS(a,b) / AROI(a), CS(a,b) / AROI(b)) , (1)
Omin(a,b) = Minimum(CS(a,b) / AROI(a), CS(a,b) / AROI(b)) , (2)

where AROI(i) is the area of the ith blob’s ROI and CS(a,b) is the intersection area between the two ROI.

“Similarity”, S(a,b), is defined as:
S(a,b) = 1 - [Abs(Aa-Ab) / Maximum(Aa, Ab)], (3)

where Ai is the actual area of the ith blob (see Figure 2a). 

“Resemblance”, R(a,b), between two ROI a and b is defined as: 

R(a,b) = [Omin(a,b) x S(a,b)]. (4)

During tracking, the maximum overlapping factor (Equation 1) is used to follow-up blobs between two frames of a
sequence. Figure 2b depicts all possible cases of blob tracking. When a one-to-one correspondence is obtained, the
same label is given to the blob of the new frame. When a complex case is obtained, a more accurate analysis must be
carried out so as to reduce blobs of the complex case to a simpler case such as in Figure 2b (one-to-one correspon-
dence, merging, separation, creation or destruction). An algorithm computing the resemblance factor between all of
the blobs is used to simplify the complex case. The resemblance factor eliminates much more of the correspondence
between the blobs, since it is based on the minimum overlapping and similarity factor. Following this, specific param-
eters, like the speed and the confidence, are computed for the blob. The confidence (C) is a feature that gives the per-
sistence of a blob over time and is described by the following equation:

, (5)

where a is for the new blob, b the preceding blob and n the number of preceding blobs that are greater than one in a
merging or a complex case.
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As seen from Equation 5, the confidence on matching from t-1 to t increases if the blob has been tracked for a long
time and the resemblance from two time steps is large. Obviously, confidence is zero at t = 0. Figure 3 gives an exam-
ple of blob tracking when the complex simplification algorithm is used: the complex case (1,2 -> a,b,c) can be
reduced to (1->a,b) and (2->c). Moreover to make sure no hypothesis is lost, all blobs are followed in the sequences,
not only those “believed to belong” to pedestrians.

Before we can detect a pedestrian, all blobs must be grouped together to create objects. An object can be made up
from several blobs. An object is initially created from an isolated blob or many closer blobs. The object has a primi-
tive area (PrA) that is generated from the ROI of each blob of the object and a predicted area (PdA) that evolves (size,
position and speed) differently from the primitive area (See, Figure 4). As time passes, an object at time t inherits the
blob(s) making up the object at time t-1. A blob that appears in a predicted area is also added to the object. A blob that
has an opposite movement from the object can be removed from the object. The object also has confidence that is
computed as the average of the confidence of individual blobs comprising the object. The predicted area is an impor-
tant feature that gives the real size, position and speed of the object. If no blob has been detected for a long period of
time, the object vanishes. A non-moving object where blobs appear and disappear in time may be labelled as a noisy
object such as a moving leaf in a tree.

The adjustment of the position of the predicted area is first estimated using the mean speed of the predictive area of
the last fifteen frames. Then, an algorithm corrects this estimated position by using the center of mass of the primitive
area. This correction is limited by the difference between the position of the boundary of the predictive and primitive
areas. Three examples illustrating the adjustment of the position of the predicted area are presented in Figure 5.
Finally, the mean speed is updated with the new position value.

3.3 Merging

The merging algorithm is driven by three goals. The first one consists in establishing a correspondence between the
objects detected in the visible and the IR images. For each pair of objects, the identification of the best object detected
(in visible or IR images) describes our second goal. The object with the best detection will be called master and the
second one slave. The confidence is used as a criterion for better detection and is computed for all the objects of each
frame in the sequence. In this manner the identification of the master and the slave will change rapidly for an object
when fast light illumination or temperature variation are present. Our last goal consists in using the information of the
master object to help in tracking the slave one. The merging process is done independently for each pair of objects.
For example, if at time t, three objects can be detected in the visible and infrared images, two objects can be master in
the infrared image, and one object can be a master in the visible image.

The merging algorithm can modify the position and the size of the predicted area computed during the second level of
tracking. But this only occurs when a great difference between the primitive area of the master object and the slave
object is detected. In this case we enter in the “enslavement” mode where the master predicted area controls the slave
predicted area. For example, if a pedestrian has a green T-shirt and walks in front of a green hedge, this person’s trunk
will tend to disappear and the slave object will be put in the enslavement mode. The IR object will maintain a good
detection and will help in tracking the pedestrian in the visible image because the body temperature is higher than that
green hedge temperature.

In the case where two objects disappear, objects will stay present in the system and the position of the predictive area
is assessed using the mean speed of the predictive area in the last frame. For example, if a pedestrian passes behind a
tree, the objects will disappear in both images. If the pedestrian maintains his speed and direction, the object will be
recovered when it appears on the other side of the tree. But if the pedestrian stops behind the tree and returns to the
same side, the algorithm will create a new object.

3.4 Occlusion detection

Since the system tracks many blobs and objects, it supports tracking of many pedestrians and deals with occlusions as
well. For an occlusion to occur we first need to have two objects that have been successfully associated and tracked



by the merging algorithm. So, a merging object cannot be in occlusion with another object detected by only one of the
sensors and probably representing noise. To be merged, objects have to be at a minimal distance from other merged
objects. So, two different parts of one pedestrian cannot be in occlusion and will probably be combined later with the
object already merged (since they make up that pedestrian). An occlusion occurs when blobs of two or more objects
detected by the two sensors are merged during the tracking. For example, during the tracking of the blobs, a blob A
belonging to an object 1 is combined with a blob B belonging to an object 2. A case of merging (Figure 2b) between
the blob A and the blob B is then identified and an occlusion occurs, since the blobs belong to two different objects
detected by the two sensors. When objects are in an occlusion state, the position of the predictive area is predicted for
each object. When blob separation is then detected, a verification is performed to determine whether each blob can
correspond to each object. If this is the case the occlusion is solved. An example of occlusion is presented in Figure 8.

3.5 Pedestrian validation

Three criteria are examined in order to determine whether or not a merged object is a human: the aspect ratio (length
over width), temperature and also step frequency. When a person walks, a certain frequency can be observed in the
manner in which she/he moves her/his arms and legs. It is the width of the predicted area which is used to compute
the step frequency with a FFT. This frequency helps to eliminate objects such as cars whose size does not vary peri-
odically. At each frame of the sequence, these three criteria are compared to a lower and upper bounds that represent
a pedestrian. If all of the criteria are respected in infrared or visible objects, a vote is taken. The number of votes is
computed and compared to the number of frames to give a percentage of pedestrian detection. For example, if the
three criteria are met over 30 frames in a 70 frame acquisition sequence, the detection of the pedestrian will be at
42%. It is also possible to give different comparison ranges for different types of objects like cars and trucks where
for example the frequency will be zero.

4. RESULTS
The algorithm described in the previous sections was tested on several sequences. Figures 6, 7, 8 illustrate various
cases. It is obviously not possible to render the dynamics of these sequences in a paper and thus, some interesting sit-
uations were selected. In Figure 6, an outdoor situation of one pedestrian walking near a wall is presented and shows
that the IR image can be helpful in removing shadows from the visible image. In Figure 7 two outdoor pedestrians are
shown where the blobs of one pedestrian are not well detected in both IR and visible images. The merging algorithm
improved detection for the predicted area of this pedestrian. Finally Figure 8 presents some snap shots of a sequence
of two crossing pedestrians to show the robustness of the occlusion algorithm.

The results shown illustrate the robustness of the system. In a future configuration, we want to have both IR and visi-
ble cameras linked to a common acquisition system on a single computer. This will enable real-time work on the
sequences instead of off-line work as of now. We want also to work with more than one “node.” A node consists in
one visible-IR camera pair. In a multi-node system, interaction between several nodes would allow tracking a given
individual from different points of view. 



Figure 6: Outdoor scene illustrating pedestrian extraction. a,b) Original IR and visible images. c,d) Repre-
sentation of the blob detected for both IR and visible images. Note that the blob in the visible image also
includes the shadow of the person. But the predicted region (labelled with zero in the upper-left corner) is
the same in all pictures. The ROI of blobs (labelled 18, 25, 30 and 31 to the upper-right corner) are very
different from the predicted regions in the visible image. The ROI of blob (labelled 7 in the upper-right
corner) is similar to the predicted region labelled 0.

Infrared Visible

a) b)

c) d)



Figure 7: Outdoor scene showing a two pedestrian extraction. a,b) Original IR and visible images. c,d)
Representation of the blob detected for both IR and visible images. The rectangles with the label in the
upper-left corner give the predicted area numbers (1,2,3,15) and the rectangles with the label in the upper-
right corner give the blob number. We can see that the left pedestrian was not completely detected by the
background subtraction algorithm in both IR and visible images. Meanwhile, the predicted area is well
estimated for the two pedestrians. 

a) b)

d)c)



Figure 8: Outdoor scene showing two pedestrians tracked in infrared (upper sequence) and visible (lower
sequence) for six snap shots. The labels 1 and 3 represent the two predicted area of the pedestrian in the
infrared images and the labels 2 and 15 represent the two predicted areas of the pedestrian in the visible
images. The other labels represent the blobs detected by the background subtraction algorithm.



5. CONCLUSION
In this paper, a system to automatically track pedestrians in simultaneous visible and IR sequences was presented.
The system features: outdoor operation, multiple (up to three) pedestrians at a time, no need for exact matching of
visible and IR cameras since the system is area-based rather than pixel-based. Image processing was discussed and
some typical results were presented for three different sequences. 
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