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Abstract

This paper proposes an approach for surface reconstruction
of free-form rigid objects from an arbitrary set of intersect-
ing range curves. A strategy for updating the reconstructed
surface during data acquisition is described as well. Geo-
metric and color information is accumulated in a volumet-
ric structure in which a vector field is built and updated.
Moreover, the information that is needed for efficient curve
registration is directly available in this vector field. This
leads to a unified modeling approach combining surface re-
construction and curve registration. The algorithm imple-
menting the approach is of linear complexity with respect
to the number of input curves and makes it suitable for in-
teractive modeling. A compression scheme based on a mul-
tiresolution decomposition of vector fields is introduced as
well. Simulated data from a set of curvilinear patterns as
well as data acquired with a hand-held range sensor are
used to validate the approach.

1. Introduction

Surface reconstruction algorithms from range data can
accept as input either range images [3, 10, 14] or unorga-
nized sets of points [8, 12]. However, these algorithms fail
when applied to arbitrary curves. For this reason, hand-held
range sensors extracting profiles from well-focused laser
sheets are constrained to scan the surface along a nearly reg-
ular scanning path thus allowing local surface images to be
built [2, 7, 9, 12]. An alternative is to collect a very dense
set of arbitrary profiles on the surface and then process them
as a cloud of points. The structure of the collected data is
then lost. A second type of hand-held sensor collects range
images [11, 13] but most of these sensors actually collect
a rigid set of curves and do not provide the same density
of measurements along all directions. Our goal is to de-
velop a new class of surface reconstruction algorithms from
range curves. These algorithms are particularily suitable for
hand-held sensors and can advantageously exploit various
projected patterns such as a crosshair, circles or grids.

Surface curves contain more information about the mea-

sured surface than an unorganized set of points, namely tan-
gents that can be exploited to improve the quality of the re-
constructed surface. A local estimate of the surface can be
obtained using the tangents of intersecting curves. Figure
1 illustrates the most simple case where a surface is recon-
structed in the neighborhood of two intersecting curves. Al-
though the error of the approximated surface increases with
the distance from the intersection, the reconstructed surface
still follows the shape of the curves faithfully. This can-
not be achieved by reducing curves to unorganized sets of
points, i.e. by fitting a plane in the neighborhood of a point.

Besides surface reconstruction, modeling from range
data faces another challenge: pose refinement or registra-
tion. If registration is frequently used for conventional
range sensors, it becomes a key aspect for hand-held mo-
bile sensors. When obtained from a positioning system,
the sensor’s pose is submitted to error and it can be refined
before integrating the measurements in a global reference
frame. For range images of rigid objects ICP-based algo-
rithms (Iterated Closest Points) have been developed [1] for
registration. For simultaneous registration, this type of al-
gorithm is of complexityO(N2) with respect to the number
of range images. If the same algorithm is applied for regis-
tering curves, the complexity quickly becomes prohibitive
since the number of curves required for completely recon-
structing the surface of an object is at least an order of mag-
nitude larger than the equivalent number of range images.

Volumetric structures have been exploited for recon-
structing surfaces from range images or unordered sets of
points [3, 7, 10, 12] in order to reduce computational com-
plexity and provide incremental reconstruction. These volu-
metric approaches use an implicit representation of the sur-
face i.e. a scalar signed distance field computed in a volu-
metric grid where the reconstructed surface is located at the
zero crossings of the field. This paper demonstrates how
such a volumetric representation can be built directly from
a set of measured curves without any intermediate surface
representation. The computational complexity with respect
to the number of curves is linear and the reconstruction is in-
cremental and order independent, thus relaxing constraints
on sensor displacement. If one not only encodes the signed



Figure 1. Reconstruction from two intersecting
curves.

distance field in the volumetric structure but also the di-
rection toward the nearest zero crossing, then matching for
a control point can be obtained directly from the nearest
voxel. We have developed this idea to provide near real-
time registration of range images [15]. This paper explains
how to provide the same linear complexity for surface curve
registration by aligning them with the reconstructed surface.

The principle for intersecting curves has been presented
in [16] as well as the algorithms and their behavior in the
presence of noise. This paper builds on this work. The next
sections describe the basic principle supporting surface re-
construction from curves including color information when
collected at measured points. Section 2.5 describes curve
registration in a vector field. Vector field compression is
outlined in section 2.6. It is shown how the vector field can
be used for an efficient compression of volumetric surface
representation. The results presented in section 3 illustrate
each aspect of the approach from simulated and real data.

2. Modeling using Range Curves

The reconstructed surface is represented implicitly as
a vector field. Such avolumetric representation contains
both the reconstructed surface and its corresponding match-
ing information as direction and distance toward the recon-
structed surface. While the surface is represented as the
zero-crossing of the norm of the field, the distance and di-
rection are represented by the field itself. In the following
section, we describe how such an implicit representation of
the surface can be created from a set of non-parallel, inter-
secting surface curves.

2.1. Reconstruction from intersecting curves

The main idea behind our approach is to perform recon-
struction byapproximating the surface in the neighborhood
of the intersection points of the surface curves. The recon-
struction is based on a fundamental property of differential
surfaces stating that all surface curves passing through some
point have tangents located in a plane tangent to the surface
at the same point [4]. The most relevant consequence of this
property is that the tangent plane of a surface can be com-

Figure 2. Reconstruction from multiple curves. The
normal is obtained as a least-squares from the tan-
gents ti, i = 1, 2, 3, 4 at the closest points pi of the
four curves.

puted at the intersection point of at least two surface curves
if their respective tangents are known at this point.

Formally, the reconstructed surfaceŜ is represented as a
vector fieldf : R3 → R3 wheref(p) represents the direc-
tion and the distance from a pointp to the closest pointpc

on the surfacêS, such that:

p + f(p) = pc ∈ Ŝ, (1)

where
pc = argmin

q∈Ŝ

d(p,q), (2)

and whered denotes a distance measure. In the next section,
the distance measure will be defined to minimize the effect
of the noise on the registration procedure, but for now, it can
be assumed that the distanced is the Euclidean distance.

In practice, the fieldf(p) is computed at points (vox-
els) on a regular lattice (volumetric grid) in the vicinity of
a surface usually referred to as its envelope. The envelope
encloses lattice points which are located at a distance to the
surface being smaller than a predefined valueε. In this work,

the envelope is defined for each curve and contains the set of
lattice points closer than a predefined distance to the curve.

The approximation of the surface, i.e. the tangent plane
at the closest point on the surface to some voxelp can be
obtained as a least-squares estimate of the normal using tan-
gents at the closest points of all nearby curves; this is illus-
trated in Figure 2. This estimate corresponds to the ”most
perpendicular” vector to a set of tangents.

More formally, letα1, . . . , αN beN surface curves pass-
ing within some predefined distanceε > 0 from a point
(voxel) p and lett1, . . . , tN be their respective tangents at



the closest points top. Then, at the pointp, the normal on
the surface is obtained as the vectorn = [nx, ny, nz]T that
minimizes the following expression:

ξ =
N∑

i=1

〈ti,n〉2. (3)

Taking the derivatives ofξ with respect tonx, ny andnz

and setting them equal to zero defines the following system
of equations:

1
N

N∑

i=1

titT
i n = Cn =

[
0 0 0

]T
. (4)

The estimated value forn is the eigenvector associated
with the smallest eigenvalue of matrixC which is just a
covariance matrix of the tangents.

The distance toward the surface is obtained as the aver-
age value of the projected distance vectorsvi = pi − p on
the estimated normal, i.e.

d(p, Ŝ) =
N∑

i=1

〈pi − p,n〉, (5)

wherepi is the closest point on the curveαi. Finally the
value of the field at pointp is:

f(p) = d(p, S)n. (6)

In order to estimate the tangent plane to a surface at some
point p, at least two non-parallel tangents are needed to
compute matrixC at p since a single tangent does not de-
fine a plane. This condition can be verified by analyzing the
eigenvalues of matrixC: if two eigenvalues are zero then
only one tangent (or two or more parallel tangents) exists
and the normal estimated at that point is not used.

At the intersection points of noiseless curves, all tangents
are coplanar, hence one eigenvalue is always equal to zero
and the tangents span a plane. In practice, all three eigen-
values are larger than zero since the surface is approximated
in the neighborhood of the intersection points. Also, if the
tangents are estimated from very noisy data, the three eigen-
values may have similar values, in which case the tangents
span an ellipsoid and the estimate of the tangent plane is
meaningless. To make sure that the estimated tangent plane
is valid, an additional verification is made on the eigenval-
ues. Letλ1, λ2 andλ3 be the three eigenvalues such that
λ1 < λ2 < λ3. Since matrixC is normalized, the sum of
eigenvalues is always equal to one i.e.λ1+λ2+λ3 = 1. The
eigenvalues have to satisfy the following two conditions:
λ2 > 0.05 andλ1 < 0.5λ2. While using these two thresh-
olds does not affect the shape of the reconstructed surface,
imposing them makes sure that the tangents used to com-
puteC are approximately coplanar; otherwise no surface is
locally reconstructed.

A single curve influences the field only at points located
inside its envelope with its influence dropping to zero out-
side the envelope. The computed field is thus discontinu-
ous over the edges of the envelope and the reconstructed
surface appears discontinuous as well. The solution to this
problem is to weight the tangents using a continuous func-
tion of distance ideally dropping to zero at the edge of the
envelope. Any decreasing monotonic function can be used
for this purpose. In our experiments the following function
proved to be useful:

ω(d) = e−d2/σ. (7)

The value ofσ is chosen equal to1/2ε to make sure thatω
is close to zero outside of the envelope.

The tangents can also be weighted in such a way to re-
duce influence of less-confident data, for example by mea-
suring the angle between the surface (curve) normal and the
measurement direction. The weighting valueτ is defined
as the cosine of the angle between the two directions. By
taking into accountτ andω, the matrix defined in Eq. 4
becomes

C =
1

∑N
i=1 τiωi

N∑

i=1

τiωititT
i . (8)

Finally, the reconstructed surface can be extracted from
the vector fieldf using a modified Marching Cubes algo-
rithm. Actually, instead of searching zero-crossings of a
scalar field between neighboring voxels, the modified algo-
rithm searches for pairs of voxels whose values of the vector
field are oriented in opposite directions.

2.2. Incremental reconstruction

For the reconstruction approach described above, it was
assumed that all the data has been collected prior to recon-
structing the surface. If the reconstruction has to be per-
formed on-line, then the field needs to be updated incre-
mentally by integrating a single curve at a time. However,
the least-squares estimate of the surface normal and, conse-
quently the vector field, cannot be computed incrementally.
On the other hand, matrixC computed at some voxelp is
obtained as a sum and can therefore be updated incremen-
tally. LetC(p) be the matrixC for voxelp. Equation 8 can
be rewritten as:

C(p) =
1

∑N
i=1 τiωi

N∑

i=1

τiωiCi(p), (9)

whereCi(p) = titT
i . During reconstruction, a matrix

C(p) is attached to each voxel and is updated after acquir-
ing each curveαi by summing it withCi(p). Matrix Ci(p)
depends only onαi and is computed using tangentti at the
point on the curve that is closest top. The value of the field
f(p) is computed only during the extraction of the surface
or during registration.
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Figure 3. The distance in the direction of interpo-
lated normals. The distance d between point p to
the line segment pipi+1 is defined as the distance be-
tween p and the point pc whose normal nc passes
through p.

2.3. Reconstruction of the surface color

In addition to 3D points measured on the surface of an
object, some scanners can also provide color at the same
points. In this case, the color of the final model can be re-
constructed as well. To do so, the color for each voxel is
incrementally computed in the same way as the covariance
matrix. The color vectors = [R,G,B] at voxelp is com-
puted as:

s =
1

∑N
i=1 τiωi

N∑

i=1

τiωisi, (10)

wheresi is the color of the curvei at its closest point to
the voxelv. The vertices of the surface extracted from the
field using the Marching Cubes are colored by interpolating
the color at the two closest voxels. An example of color
reconstruction is shown in Figure 12.

2.4. Defining the distance measure

As illustrated in Figure 4.a, points with high noise level
tend to attract a large number of correspondences. This
slows down the registration process and may reduce accu-
racy. To improve the robustness of matching, thedirection
toward the closest point on the line segment has to be cor-
rected while taking into account two important constraints:
i) the distance field has to be continuous ii) the position of
measured 3D points should not be altered. The solution to
this problem is to redefine the distance instead of using the
Euclidean distance.

A curveα is represented as a set of line segmentsα =
{l1, . . . , lN−1} between the measured points{p1 . . .pN},
with li = pipi+1. The tangentti at each measured pointpi

is computed and filtered by averaging it with its neighbors.
The tangents are then interpolated over the line segments.

The distance between a pointp and the curveα is always
computed with respect to the closest line segmentlc. It is
therefore sufficient to provide the distance from a point to a
line segment. The set of all points for which a line segment
lc is the closest is called afundamental cellassociated with
the generator line segmentlc. For the purpose of surface

(a) (b) (c)
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Figure 4. The effect of noise on the matching step of
registration. a) Matching with a noisy curve (or sur-
face) S2 using Euclidean distance. Since the noisy
point in this example is closest to S1 it attracts most
of the points. b) Matching using the distance defined
in Eq. 11 with unfiltered normals. c) Matching in
the direction of filtered normals. Matched points are
evenly distributed over S2.

modeling, the field needs to be calculated only within a rel-
atively small distanceε > 0 from the measured curve, thus
limiting the size of the cell to the set of points which are
closer thanε. If d is the Euclidean distance then the funda-
mental cells correspond to the cells of the Voronoi diagram
for a set of line segments.

The distanced between pointp and the line segment
pipi+1 is defined as the distance betweenp and the point
pc whose normalnc passes throughp. The normalnc is
defined as the vector that is perpendicular to the tangent at
pc and contained in the planepipi+1p. This is illustrated
in Figure 3. More formally:

d(p,pipi+1) = d(p, l(uc)) = e, 0 ≤ uc ≤ 1, (11)

such that
p = l(uc) + e · nc, (12)

where
l(u) = pi + u(pi+1 − pi), 0 ≤ u ≤ 1. (13)

To obtain a closed-form solution for the distance be-
tween a pointp and a line segmentpipi+1 according to
the above definition, we note that, if the distance isd, then
the point lies on the line segment whose end points are
qi = pi +e ·ni andqi+1 = pi+1 +e ·ni+1, as illustrated in
Figure 3. This line segment is aniso-segmentwhose points
are all located at a distanced from the generator line seg-
mentpipi+1. The distance is computed by making the area
of the triangleqiqi+1p equal to zero, i.e. the cross-product
of qi − p andqi+1 − p is zero. This leads to a system of
three quadratic equations with a single unknownd. Any of
these equations can be used to solve ford after making sure
that the chosen parameters do not vanish altogether.

The effect of choosing the distance defined in Eq. 11 is
illustrated in Figure 4b and c. Filtering the tangents, and
consequently the normals, affects the direction toward the
closest point, and therefore the matching directions. This
makes the matched points more evenly distributed over the
reconstructed surface. It is important to note that only tan-
gents on the curves are filtered, the measured 3D data re-
mains unchanged.
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Figure 5. Matching a point p using the closest voxel
centre pv. The point pc is obtained using Eq. 14.

2.5. Registration using vector fields
On one hand, unlike range images, surface curves cannot

be registered with each other one pair at a time. In general,
the number of intersections between two curves is insuffi-
cient to compute the rigid transformation needed to align
the curves. For instance, two surface profiles intersect at
a single point. On the other hand, registering all curves
simultaneously hasO(N2) complexity with respect to the
number of curves and quickly becomes limiting due to the
large number of curves that is needed to reconstruct an ob-
ject. An efficient way to circumvent these problems is to
register curves to thereconstructed model. Since the vec-
tor field contains all the information needed for matching,
the computational complexity remains linear with respect to
the number of curves. Matching a single control point is of
O(1) complexity.

Once the vector field is computed, registering a curve
becomes straightforward: for a control pointp on a curve,
the corresponding pointpc on the reconstructed surface is
approximated by the value of the vector field at the clos-
est voxelpv to the pointp. An error introduced by field
discretization can be corrected by linearly interpolating the
value of the field at the voxelpv (see Figure 5):

pc = p + f(pv) +
f(pv) < f(pv), (pv − p) >

‖f(pv)‖2 . (14)

The rigid transformation minimizing the sum of dis-
tances(pc−p) is applied to each curve. For registration, the
model is first reconstructed from all available curves. Then,
each curve is registered to this model one at a time. The
vector field is then recomputed, and the whole procedure is
repeated until no further improvement is possible.

In this work, all curve points are used as control points.
Convergence is verified by measuring the displacement of
points after applying the computed transformation; when it
falls below a threshold the algorithm stops.
2.6. Compression of the vector field

The most simple software implementation of vector field
representation is to allocate the memory for all grid points
(voxels) in a volume. Since the vector field is computed
only within an envelope of the surface, the number of used

p

pv

(a) (b)

Figure 6. Principle of the compression of vector
fields. In regions where the surface is planar or
changes slowly (a), groups of voxels can be removed
and replaced without loss by a smaller number of
voxels at lower resolution (b).

voxels is very small with respect to the total number of vox-
els. This is a very inefficient approach since the largest part
of allocated memory is used for unoccupied voxels. This
problem could be solved by employing run-length encod-
ing [3] or octrees. Even though these methods reduce the
amount of memory, they are still inefficient since they en-
code only occupancy of the voxels without taking into ac-
count the shape of the represented surface. Furthermore,
the compression rate depends significantly on the orienta-
tion and position of the object with respect to the volume.

The vector field representation offers a possibility to ad-
dress these two problems related to run-length encoding and
octrees. The compression is based on the fact that a vector
field at any given voxel, together with the voxel position it-
self, defines a plane that corresponds to the tangent plane
at the closest surface point. If the surface is planar in some
region of the volume (see Figure 6a), all voxels define ex-
actly the same plane. Therefore, the surface can be repre-
sented by a single voxel while all other voxels in the same
region are redundant and can be removed (see Figure 6b).
If the field is encoded in an octree, then groups of 8 voxels
that represent a planar surface can be removed and replaced
by a single voxel at lower resolution. The same procedure
can be repeated for voxels at lower resolutions, thus further
compressing the field. If the value of the field is required at
some of the removed voxels, it can be recovered using Eq.
14. It should be noted that the field for the planar surface
can be reduced to a single voxel without loss,regardless
of the position and the orientation of the surface. If the
geometry of the surface changes in some region of the vol-
ume, then it cannot be further compressed without loss. The
value of the field at the voxel of lower resolution is chosen
to minimize the error and if it is below some threshold, the
higher resolution voxels are discarded. This type of com-
pression corresponds to the wavelet based compression and
multiresolution analysis [17] which was adapted for vector
fields.
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Figure 7. Amount of memory (number of octree
nodes) for uncompressed and compressed octree
representation of the field (log scale). While the
amount of memory for uncompressed octree (dashed
curve) grows exponentially, the amount of memory
for the compressed field (solid curve) is bounded.
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Figure 8. Light patterns used in experiments.

For every signal there is a maximum required sampling
frequency (determined by the Shannon theorem). Increas-
ing the sampling frequency over this value does not add any
new information about the signal. The same argument ap-
plies to vector fields. Therefore, the most important aspect
of compression is to remove this redundant information and
prevent unnecessary exponential growth of the memory re-
quirements when resolution is increased. As shown in Fig-
ure 7, there is an upper bound on the amount of required
memory for a compressed field as the resolution increases.
This upper bound depends on the geometry of the object.

Locally, the vector field for a single surface might re-
quire different sampling resolutions. For example, the vec-
tor field around flat regions of a surface can be sampled with
lower resolution than the regions where the surface deforms
rapidly. This adaptive sampling is also provided with the
proposed compression scheme since high-resolution voxels
are discarded only in regions where the resulting error is
lower than a threshold.

3. Results

An example of reconstruction from multiple curves, us-
ing real range data is shown in Figure 9b. The data for this
model has been acquired using the 3D sensor described in
[6] which acquires surface curves by measuring distances
to a cross-hair laser pattern (see Figure 8a) projected on the
surface of an object. In Figure 9, one will note that the al-
gorithm performs well even where the density of the curves

(a) (b)

Figure 9. Reconstruction from real range data. a)
Raw range data (cross-hair pattern). b) Recon-
structed surface.

vary (right-hand side of the figure). However, if the distance
between the curves becomes larger than the size of the enve-
lope, holes appear in the reconstructed model. As expected,
this is due to the validation test in section 2.1.

The quality of registration has been assessed by register-
ing synthetic curves with varying levels of noise, outliers
and initial registration errors. For that purpose a highly ac-
curate model of the head measured using a range sensor
with 25µm accuracy was used to generate synthetic data.
The curves generated using the6 laser patterns in Figure 8,
have been randomly rotated for up to4 degrees and trans-
lated for up to4mm in a working volume of200mm. Noise
was simulated by translating each point in the direction of
the laser projector for up to4mm, while outliers were gen-
erated by randomly choosing1% of the total number of
points and displacing them for a random distance smaller
than10mm. Values for the curve displacement and noise
levels were chosen smaller than the size of the envelope
(4mm). Otherwise, some curves are located outside of the
envelope and cannot be matched and registered. The size of
the model is approximately20cm while the size of a voxel
is 1mm.

Color encoded residual errors are shown in Figure 10.
The average error for all six patterns was below 0.32mm
with a variance below 0.12mm. This error level is suffi-
ciently small to yield a reconstructed surface without visi-
ble artefacts. On the other hand, the maximum residual er-
ror in some cases was as high as 9mm. However, since the
variance and average error are low, the number of curves
showing such a high error is small. As illustrated in Figure
10 the curves with large errors are located at the boundary
of the scanned area where the density of curves is low. In
these regions, the field could not be computed, and curves
are only partially matched against the reconstructed surface,
thus leading to unreliable registration. Among 450 curves,
only three curves showed an error larger than 1mm. This
problem can be solved by rejecting curves that are partially
matched.
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Figure 10. Color encoded distribution of residual
registration errors (mm). Curves on the border of the
scanned area are only partially matched and there-
fore unreliably registered. Only three curves have a
registration error larger than 1mm.

Registering real range data of the same head model ob-
tained with the hand-held sensor described in [6] leads
to similar results. Initial average registration errors were
0.35mm and with a variance of0.09mm2. After registra-
tion, these errors were reduced to0.26mm (average) and
0.07mm2 (variance), which is in conformity with results
obtained with synthetic data. The residual registration er-
ror was evaluated using the reference head model measured
with 25µm accuracy.

The registration algorithm converges quickly, typically
in less than 30 iterations. No important differences with re-
spect to convergence have been observed for different scan-
ning patterns. A more detailed analysis of convergence as
well as a detailed analysis of performance of registration in
the presence of noise and varying levels of initial registra-
tion errors are presented in [16].

In planar or rotationally symmetric regions, the objective
function of an ICP algorithm (sum of distances toward the
closest points) reaches a minimum in a flat region, which
causes the registration to converge towards the closest min-
imum. For example, a curve measured in a planar region
of the surface can be translated and rotated arbitrarily in the
same plane without increasing the distance to the surface
and without affecting the geometry of the reconstructed sur-
face. This ”sliding” effect can be measured by comparing
the distance of registered points totheir exact position and
the distance to the closest pointon the reference model. As
expected, the distance to the exact positions is higher in rel-
atively flat regions of the surface (see Figure 11).

Even though the sliding effect does not affect the geome-
try of the object, it becomes very important when the colors
have to be reconstructed as well. As illustrated in Figure
12, although the initial registration errors were large, the re-
constructed geometry is well preserved, but the colors may
become erroneous.

Using a hand-held sensor [6], the presented algorithms

(a) (b)

Figure 11. a) Residual registration error (brighter
color indicates larger error) measured as the dis-
tance between the corrected positions of points and
their exact position. The regions of larger errors are
featureless regions such as forehead and cheeks. b)
Residual registration error measured as the distance
towards the closest point on the reference surface.
Errors are uniformly distributed over the surface.

were exploited to create an interactive modeling system.
The incremental reconstruction from curves having approx-
imately 250 points, each is performed in real-time at the
frame rate of the sensor (30fps). Thereafter, the registration
algorithm is run. The total registration and reconstruction
time depends mostly on the size of the envelope: for 450
curves it is 55 sec forε = 3 mm and 140 sec forε = 5 mm.
Another factor that affects the execution time is initial reg-
istration errors. Smaller errors require less iterations thus
reducing the number of field recomputations which is the
most computationally intensive operation. An incremental
variant of the proposed registration algorithm can be used to
reduce modeling time. The registration can proceed online
as soon as an initial field is created from a relatively small
number of curves (typically one hundred). This way, the
registration can be performed at the frame rate of the sensor
despite a somewhat reduced quality.

4. Conclusion
A volumetric approach for modeling from arbitrary inter-

secting curves measured on the surface of a free-form ob-
ject is proposed. An implicit representation of the surface is
created incrementally from a set of unordered curves with-
out any intermediate surface representations. All steps of
the modeling procedure, including matching, are of linear
complexity, making this approach particularly well-suited
for interactive modeling and hand-held sensors. Robustness
of the algorithm with respect to noise and outliers is im-
proved by redefining the distance measure. The proposed
approach allows easy integration of the color in the recon-
struction procedure.

As a variant of ICP, the proposed registration algorithm



Figure 12. Example of reconstruction of color mod-
els. Top row: original model. Middle: reconstruction
from curves without registration errors. Bottom row:
Reconstruction from registered data with large initial
registration errors. Sliding effect (see text) does not
affect the geometry of the reconstructed model (left-
hand side) but it renders reconstructed color blurred
(bottom-right image).

fails to recover the exact position of curves in rotationally
symmetric or flat regions of the surface. This makes the
surface color reconstruction unreliable whenever the initial
registration errors are large. We believe that constraining
the registration using color information should solve this
problem. Providing an algorithm similar to [5] for curve
registration will be a starting point of our future work.
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