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Abstract

Traditional approaches for surface reconstruction from
range data require that the input data be either range im-
ages or unorganized sets of points. Since a large number of
range sensors provide data along curvilinear patterns such
as profiles, this paper presents an approach for reconstruct-
ing a surface from a set of unorganized curves. A strategy
for updating the reconstructed surface during data acquisi-
tion is described as well. Curves are accumulated in a volu-
metric structure in which a vector field is built and updated.
The information that is needed for efficient curve registra-
tion is also directly available in this vector field. This leads
to a unified modeling approach combining surface recon-
struction and curve registration. The algorithm implement-
ing the approach is of linear complexity with respect to the
number of input curves and makes it suitable for interactive
modeling. Simulated data based on a set of six curvilinear
patterns as well as data acquired with a range sensor are
used to illustrate the various steps of the algorithm.

1. Introduction

Most surface reconstruction algorithms from range data
accept either range images [3, 10, 13] or unorganized sets of
points [8, 12] as input. Nevertheless, a very common type
of range sensors acquire curvilinear measurements on the
surface of an object. Based on optical triangulation, these
sensors use a well-focused laser pattern projected on the
surface and can robustly provide dense profiles in a very
short time frame. Methods for surface reconstruction from
arbitrary curves have not been developed yet. Instead, it
is assumed that the profiles are gathered at regular inter-
vals along a well-defined path such as to group neighboring
profiles into a surface. The relative pose of each profile is
assumed to be accurate. For hand-held sensors that collect
profiles, it is not possible to scan a surface along a fully
predefined scanning path. Thus, methods have been pro-
posed to build local surface patches from a rigid series of
profiles with known positions but only with a nearly regu-

lar scanning path [7, 2, 9, 12]. There are still two problems
with these methods. First, the only type of surface curves
that can be used are surface profiles. Second, although data
acquisition introduces an error on the sensor position, it is
not possible to adjust the pose for a single profile. This re-
sults in a loss of quality. The current alternative for low cost
hand-held sensors is to collect range images [4, 11] at the
expense of losing robustness of laser sensors. In this paper,
an approach is proposed for reconstructing the surface of
free-form objects from arbitrary curves as well as for refin-
ing each individual curve pose.

Surface curves contain more information about the mea-
sured surface than an unorganized set of points, namely sur-
face tangents that can be exploited to improve the quality
of the reconstructed surface. Actually, local estimates of
the surface can be obtained using tangents of intersecting
curves. Furthermore it can be achieved efficiently by using
a volumetric structure where the surface is incrementally
recovered as new surface curves are scanned.

Volumetric structures have been exploited for surface
reconstruction from range images or an unordered set of
points [3, 7, 10, 12] to reduce computational complexity
and provide incremental reconstruction. These volumet-
ric approaches use an implicit representation of the surface
i.e. a scalar signed distance field computed in a volumet-
ric grid where the reconstructed surface corresponds to the
zero crossing of the field. Our first contribution is to show
how to build such a volumetric representation directly from
a set of measured curves without any intermediate surface
representation. Furthermore, the computational complexity
with respect to the number of curves is linear and the re-
construction is incremental and order independent; thus no
constraints are imposed on sensor displacement. Any light
pattern can be used as long as the measured curves intersect.

Very little work has been reported on the subject of sur-
face curves pose refinement (registration) [6]. Although the
stability of curve registration may have contributed to this,
the main reason is the computational complexity of the reg-
istration process. The simultaneous registration based on
ICP (Iterated Closest Points) algorithm [1] is of complex-



ity O(N2) with respect to the number of range images. If
the same algorithm is applied to register surface curves, the
complexity quickly becomes prohibitive since the number
of curves required for a complete reconstruction of an ob-
ject is at least an order of magnitude larger than the equiv-
alent number of range images. It can easily reach several
thousand curves.

If one not only encodes the signed distance field in the
volumetric structure but also the direction toward the near-
est zero crossing in each voxel, then matching for a con-
trol point can be obtained directly from the nearest voxel.
We have developed this idea to provide near real-time reg-
istration of range images [14]. The second contribution of
this paper is to provide the same linear complexity registra-
tion for surface curves by registering them with the recon-
structed surface. Another important aspect of our approach
is a novel definition of a distance measure that improves ro-
bustness of registration in the presence of noise.

The next section describes the principle of surface recon-
struction from curves, followed by section 2.2 which ex-
plains a modification required to allow incremental recon-
struction. Section 2.3 exposes curve registration. A novel
definition of a distance aimed at improving robustness of
registration is presented in section 2.4. Efficient computa-
tion of the vector field required for reconstruction is detailed
in section 2.5. The results presented in section 3 illustrate
each aspect of the approach from simulated and real data.

2. Modeling using Range Curves

As reported in [14], the reconstructed surface is repre-
sented implicitly as a vector field. Such avolumetric rep-
resentation contains both the reconstructed surface and its
corresponding matching information as direction and dis-
tance toward the reconstructed surface. While the surface
is represented as the zero-crossing of the norm of the field,
the distance and direction are represented by the field it-
self. In the following section, we describe how an implicit
representation of the surface can be created from a set of
non-parallel, intersecting surface curves.

2.1 Reconstruction from intersecting curves

The main idea behind our approach is to perform recon-
struction byapproximating the surface in the neighborhood
of the intersection points of the surface curves. The recon-
struction is based on a fundamental property of differential
surfaces stating that all surface curves passing through some
point have tangents located in a plane tangent to the surface
at this point. The most important consequence of this prop-
erty is that the tangent plane of a surface can be computed at
the intersection point of at least two surface curves if their
respective tangents are known at this point.

Figure 1. Reconstruction from multiple
curves. The normal is obtained as a least-
squares estimate of the "most perpendicular"
vector to the tangents ti, i = 1, 2, 3, 4 at the
closest points pi of the four curves.

As mentioned earlier, the reconstructed surfaceŜ is rep-
resented as a vector fieldf : R3 → R3 wheref(p) is the
direction, and the distance from a pointp to the closest point
pc on the surfacêS is:

p + f(p) = pc ∈ Ŝ, (1)

where
pc = argmin

q∈Ŝ

d(p,q), (2)

and whered denotes a distance measure. In practice, the
field f(p) is computed at points (voxels) on a regular lat-
tice (volumetric grid) in the vicinity of a surface usually
referred to as its envelope. The envelope encloses lattice
points which are located at a distance to the surface that is
smaller than a predefined positive valueε. In this work the
envelope is defined for each curve that contains the set of
lattice points being closer than a predefined distance to the
curve.

The approximation of the surface, i.e. the tangent plane
at the closest point on the surface to some voxelp can be
obtained as a least-squares estimate of the normal using tan-
gents at the closest points of all nearby curves. This is illus-
trated in Figure 1. This estimate corresponds to the ”most
perpendicular” vector to a set of tangents.

More formally, letα1, . . . , αN beN surface curves pass-
ing within predefined distanceε > 0 from a point (voxel)p
and lett1, . . . , tN be their respective tangents at the clos-
est points to the pointp. Then the normal on the surface is
obtained as the vectorn = [nx, ny, nz]T that minimizes:
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ξ =
N∑

i=1

〈ti,n〉2. (3)

Taking the derivatives ofξ with respect tonx, ny andnz

and setting them equal to zero defines the following system
of equations:

1
N

N∑

i=1

titT
i n = Cn =

[
0 0 0

]T
. (4)

The estimated value forn is the eigenvector associated
with the smallest eigenvalue of matrixC which is just a
covariance matrix of the tangents. The distance toward the
surface is obtained as the average value of the projected dis-
tance vectorsvi = pi − p on the estimated normal, i.e

d(p, Ŝ) =
N∑

i=1

〈pi − p,n〉 (5)

wherepi is the closest point on the curveαi. Finally the
value of the field at pointp is:

f(p) = d(p, S)n. (6)

In order to estimate the tangent plane to a surface at some
point p, at least two non-parallel tangents are needed to
compute the matrixC at p since a single tangent does not
define a plane. This condition can be verified by analyzing
the eigenvalues of matrixC: if two eigenvalues are zero,
then only one tangent (or two or more parallel tangents) ex-
ists and the normal estimated at that point is not used.

At the intersection points of noiseless curves, all tangents
are coplanar, hence one eigenvalue is always equal to zero
and the tangents span a plane. In practice, all three eigenval-
ues are larger than zero since the surface is approximated in
the neighborhood of the intersection points. Also, when the
tangents are estimated from very noisy data, the three eigen-
values may have similar values in which case the tangents
span an ellipsoid and the estimate of the tangent plane is
meaningless. To make sure that the estimated tangent plane
is valid, an additional verification is made on the eigenval-
ues. Letλ1, λ2 andλ3 be the three eigenvalues such that
λ1 < λ2 < λ3. Since matrixC is normalized, the sum of
eigenvalues is always equal to one i.e.λ1 + λ2 + λ3 = 1.
The eigenvalues have to satisfy the following two condi-
tions: λ2 > 0.05 andλ1 < 0.5λ2. These two thresholds
do not affect the shape of the reconstructed surface. Impos-
ing them simply means that the tangents used to compute
C must be approximately coplanar; otherwise no surface is
locally reconstructed.

A single curve influences the field only at points located
inside its envelope and its influence drops to zero outside
this envelope. The computed field is thus discontinuous

over the edges of the envelope and the reconstructed sur-
face appears discontinuous as well. The solution to this
problem is to weight the tangents using a continuous func-
tion of distance ideally dropping to zero at the edge of the
envelope. Any decreasing monotonic function can be used
for this purpose. In our experiments the following function
proved to be useful:

ω(d) = e−d2/σ. (7)

The value ofσ is chosen equal to1/2ε to make sure that the
value ofω is close to zero outside of the envelope.

The tangents can also be weighted in such a way to re-
duce the influence of less-confident data, for example by
measuring the angle between the surface (curve) normal and
the measurement direction. The weighting valueτ is de-
fined as the cosine of the angle between the two directions.
By taking into accountτ andω, the matrixideally defined
in Eq. 4 becomes

C =
1

∑N
i=1 τiωi

N∑

i=1

τiωititT
i . (8)

The reconstructed surface can be extracted from the vec-
tor fieldf using the Marching Cubes algorithm. The March-
ing Cubes algorithm uses a scalar field that is obtained by
computing the norm off(p). This norm is a scalar field
whose sign is obtained as the sign of the scalar product be-
tweenf(p) and the direction of the sensor.

2.2 Incremental reconstruction

For the reconstruction approach described above, it was
assumed that all the data has been collected prior to recon-
structing the surface. If the reconstruction has to be per-
formed on-line, then the field needs to be updated incre-
mentally by integrating a single measured curve at a time.
However, the least-squares estimate of the surface normal
and, consequently the vector field, cannot be computed in-
crementally. On the other hand, matrixC computed at some
voxel p is obtained as a sum and can therefore be updated
incrementally. LetC(p) be the matrixC for the voxelp.
Equation 8 can be rewritten as:

C(p) =
1

∑N
i=1 τiωi

N∑

i=1

τiωiCi(p), (9)

whereCi(p) = titT
i . During reconstruction, a matrix

C(p) is attached to each voxel and is updated after acquir-
ing each curveαi by summing it withCi(p). Matrix Ci(p)
depends only on the curveαi and is computed using tangent
ti at the point on the curve that is closest top. The value
of the fieldf(p) is computed only during the extraction of
the surface using the Marching Cubes algorithm or during
registration.
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2.3 Pose refinement using vector fields

On the one side, unlike range images, surface curves can-
not be registered with each other one pair at the time. In
general, the number of intersections between two curves is
insufficient to compute the rigid transformation needed to
align the curves. For instance two surface profiles intersect
at a single point. On the other side, registering all curves
simultaneously hasO(N2) complexity, with respect to the
number of curves and quickly becomes limiting due to the
large number of curves that is needed to reconstruct an ob-
ject. An efficient way to circumvent these problems is to
register curves to thereconstructed model instead. Since the
vector field contains all the information needed for match-
ing, the computational complexity remains linear with re-
spect to the number of curves. Matching a single control
point is ofO(1) complexity.

Once the vector field is computed, registering a curve
becomes straightforward: for a control pointp on a curve,
the corresponding pointpc on the reconstructed surface is
approximated by the value of the vector field at the clos-
est voxelpv to the pointp. An error introduced by field
discretization can be corrected by linearly interpolating the
value of the field at the voxelpv (see Figure 2):

pc = p + f(pv) +
f(pv) < f(pv), (pv − p) >

‖f(pv)‖2 . (10)

For registration, the model is first reconstructed from
all available curves. Then, each curve is registered to this
model one at a time. The vector field is then recomputed,
and the whole procedure is repeated until no further im-
provement is possible. Even though the field is represented
indirectly through the matrixC at each voxel, we will refer
to it as the vector fieldf . The registration is described in the
following pseudocode.

repeat
Initialize fieldf to zero;for i = 1:number of curves do

Compute fieldfi for curvei and add it tof ;

end
for i = 1:number of curves do

repeat
Find matching points for control points of
curvei;
Compute and apply transformation on curvei;

until convergence;

end
until convergence;

Algorithm 1: Simultaneous Registration

In this work, all curve points are used as control points.
Convergence is verified by measuring the displacement of

pc

pv

p

pv+F(pv)

f(pv)

∆

∆

Figure 2. Matching a point p using the clos-
est voxel centre pv. The closest point pc is
obtained using Eq. 10.

a) b) c)

S1S1S1

S2S2S2

Figure 3. The effect of noise on the matching
step of registration. a) Matching with noisy
curve (or surface) S2 using Euclidean dis-
tance. b) Matching using the distance defined
in Eq. 14 with unfiltered normals c) Matching
in the direction of filtered normals.

points after applying the computed transformation; when it
falls below a threshold the algorithm stops.

2.4 Defining the distance measure

As illustrated in Figure 3.a, points with high noise level
tend to attract a large number of correspondences. This
slows down the registration process and makes it less ac-
curate. To improve the matching robustness, thedirection
toward the closest point on the line segment has to be cor-
rected while taking into account two important constraints:
i) the distance field has to be continuous ii) the position of
measured 3D points should not be altered. The solution
to this problem is to redefine the distance instead of using
the Euclidean distance. For the sake of clarity, the distance
computation is first illustrated in 2D, the curve being con-
tained in a plane.

A curveα is represented as a set of line segmentsα =
{l1, . . . , lN−1} between the measured points{p1 . . .pN},
with li = pipi+1. The tangentti at each measured pointpi

is computed and filtered by averaging it with its neighbors.
The distance between a pointp and the curveα is always

computed with respect to the closest line segmentlc. It is
therefore sufficient to provide the distance from a point to a
line segment. The set of all points for which a line segment
lc is the closest is called afundamental cell associated with
the generator line segment lc. For the purpose of surface
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Figure 4. Distance in the direction of interpo-
lated normals. Distance e between point p
to the line segment pipi+1 is defined as the
distance between p and the point pc whose
normal nc passes through p. The distance
e is computed by finding iso-segment qiqi+1

that contains the point p.

modeling, the field needs to be calculated only within a rel-
atively small distanceε > 0 from the measured curve, thus
limiting the size of the cell to the set of points which are
closer thanε. If d is the Euclidean distance then the funda-
mental cells correspond to the cells of the Voronoi diagram
for a set of line segments.

To compute the distance, a line segmentpipi+1 is param-
eterized as:

l(u) = pi + u(pi+1 − pi), 0 ≤ u ≤ 1. (11)

The tangents at the two end points are then interpolated as:

t(u) = ti + u(ti+1 − ti), 0 ≤ u ≤ 1. (12)

The normaln(u) at each point of a line segment is defined
as the vector being perpendicular to the tangent and can be
also interpolated:

n(u) = ni + u(ni+1 − ni), 0 ≤ u ≤ 1. (13)

Finally, the distanced between pointp and the line seg-
mentpipi+1 is defined as the distance betweenp and the
point pc whose normalnc passes throughp. This is illus-
trated in Figure 4. More formally:

d(p, pipi+1) = d(p, l(uc)) = e, 0 ≤ uc ≤ 1, (14)

such that

p = l(uc) + e · n(uc). (15)

To obtain a closed-form solution for the distance between a
point p and a line segmentpipi+1 according to the above
definition, we note that, if the distance isd, then the point
lies on the line segment whose end points areqi = pi+e·ni

andqi+1 = p2 + e · n2, as illustrated in Figure 4. This line
segment is aniso-segment whose points are all located at
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Figure 5. Computing the distance in direction
of interpolated normals. Before computing
the distance, the tangents t1 and t2 are pro-
jected on the plane p1p2p.

a distanced from the generator line segmentpipi+1. The
distance is computed by making the area of the triangle
qiqi+1p equal to zero, i.e. the cross-product ofqi − p and
qi+1 − p is zero. This leads to a system of three quadratic
equations with a single unknowne. Any of these equations
can be used to solve fore after making sure that the chosen
parameters do not vanish altogether.

For the 3D case, it is sufficient to project the tangents and
normals on the plane containingp1,p2 andp as illustrated
in Figure 5. Projected tangentst′1 andt′2 are then used in
equation 12 instead oft1 andt2.

The effect of choosing the distance defined in Eq. 14 is
illustrated in Figure 3.b and c. Filtering the tangents, and
consequently the normals, affects the direction toward the
closest point, and therefore the matching directions. This
makes the matched points more evenly distributed over the
reconstructed surface. It is important to note that only tan-
gents on the curves are filtered, the measured 3D data re-
maining unchanged.

2.5 Efficient computation of the vector field

Equation 14 is valid only inside the fundamental cell of a
line segment. Prior to computing the distance to the curve at
some pointp, one has find to which cell the pointp belongs.
This is a tedious task that can be avoided by inverting the
process and by rather finding all voxels falling inside each
cell separately. By doing so, the complexity of field compu-
tation is linear with respect to the number of line segments
(measured points). Computing the field for a cell is there-
fore a two-step process. First, the bounding box of a cell is
computed. The two defining corners of the bounding box
can be obtained as the minimum and maximum values of
p1 + ε,p1 − ε,p2 + ε,p2 − ε. Then, for all grid points lo-
cated inside the bounding box it is verified whether they are
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between the two delimiting planes of the cell. Finally, the
distance is computed and accepted when it is smaller than
the maximum allowed distanceε.

3 Results

The quality of the modeling algorithm has been assessed
by experimenting under varying levels of noise, registration
errors, and different laser patterns using both synthetic and
real range data. In the following the results obtained in these
experiments are presented.

Figure 7a illustrates the most simple case where a sur-
face is reconstructed in the neighborhood of two intersect-
ing curves. Since the surface is approximated, the error of
the reconstructed surface increases with distance from the
intersection. However, it should be noted that the recon-
structed surface still follows the shape of the original sur-
face faithfully. This cannot be accomplished by considering
curves as unorganized sets of points, i.e. by fitting a plane
in the neighborhood of a point.

An example of reconstruction from multiple curves, us-
ing real range data is shown in Figure 7b. The data for this
model has been acquired using the 3D sensor described in
[5] which acquires surface curves by measuring distances to
a projected cross-hair laser pattern (Fig. 6a).

Figure 8 depicts an example of incremental reconstruc-
tion using a set of circular light patterns. The figure also il-
lustrates another important aspect of reconstruction: surface
filtering by integrating redundant data. When the curves are
well registered, adding more curves reduces the variance of
noise while preserving fine details.

The most important parameter for the reconstruction is
the size of the envelope (ε). On the one hand, since the re-
construction performs averaging in a neighborhood whose
size is equal toε, the envelope should be as small as possi-
ble to prevent a loss of fine details. Furthermore, increasing
the size of the envelope slows down the algorithm since the
number of points for which the field is computed grows as
a power of two with the size of the envelope. On the other
hand, too small an envelope results in poor performance in
presence of noise and registration errors. In particular, if
the envelope is smaller than the level of noise (especially
outliers), small isolated patches appear around the recon-
structed surface, as illustrated in Figure 9b. A solution to
this problem is to increase the size of the envelope (Figure
9c), but with the aforementioned performance penalty and
loss of details. Preferably, the small patches can be removed
since they are not connected to the main surface.

As shown in Figure 10, the registration part of the al-
gorithm converges quickly and remains stable over a large
number of iterations. Convergence has been tested by mea-
suring the average displacement of circular curves (6c) as
a function of the number of iterations. Other patterns be-
have similarly. The inner loop converges on average in less

(a) (b) (c) (d) (e) (f)

Figure 6. Light patterns used in experiments.

(a) (b)

Figure 7. Reconstruction examples. a) Re-
construction from two intersecting curves. b)
Reconstruction from real data.

than 30 iterations. To visualize the effect of the field update
in the outer loop, the convergence curves in a) are drawn
for three iterations of the outer loop. One may observe the
decrease in the initial state (Figure 10b).

The quality of registration has been assessed by register-
ing synthetic curves with varying levels of noise, outliers
and registration errors. For that purpose, six noisy synthetic
data sets have been generated using the model of a head
and for six curvilinear patterns. Registration errors were in-
troduced by perturbing the pose rotation angles randomly
within [−δr, δr] and the translation within[−δt, δt]. Noise
was simulated by translating each point in the direction of
laser projector for random distance chosen within[−δn, δn]
while the outliers were generated by randomly choosing 1%
of the total number of points and displacing them for a ran-
dom distance chosen within[−δo, δo]. Random variables
follow uniform distributions. Values for the curve displace-
ment and noise levels were chosen smaller than the size of
the envelope. Otherwise, some curves are outside of the en-
velope and cannot be registered. The size of the model is
approximately20cm while the size of a voxel is1mm.

The results summarized in Figure 11 show the perfor-
mance of the registration algorithm as a function of the ini-
tial registration errors and the level of noise. Residual regis-
tration error has been obtained as the distance between the
registered points and their corresponding closest points on
the reference model. Prior to computing residual errors, all
curves as a whole were registered to the reference model
using an ICP algorithm.

The average residual error as well as the variance slowly
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Figure 11. Residual registration errors for noiseless curves as a function of initial displacements of
curves and the level of noise. The values δr, δt, δn and δo (see the text for their meaning) are related
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Figure 8. Filtering by averaging redundant
data. From left to right: reconstruction from
10, 120 and 240 curves. Bottom row: left eye
detail of the reconstructed model.

(a) (b) (c)

Figure 9. Influence of high level of noise and
outliers on the reconstructed surface (simu-
lation). a) Noisy range data with 1% outliers.
b) If the level of noise is larger than the size of
the envelope, small isolated patches appear
around the surface. c) Increasing the size of
the envelope removes the isolated patches.
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Figure 10. Average displacement of points as
a function of the number of iterations. a) Inner
loop of the registration algorithm. b) Evolu-
tion of the inner loop convergence during 5
iterations of the outer loop.

0.00 0.36 0.72 1.08 1.44

(a) (b)

Figure 12. Color encoded distribution of
residual registration errors (mm). a) Curves
on the border of the scanned area are only
partially matched and therefore unreliably
registered. b) Zoom in the upper-left region
of the forehead. Only three curves have a
registration error larger than 1mm.
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increase with noise and initial registration errors. An aver-
age error of0.25mm or below is sufficiently small to yield
a reconstructed surface without visible artifacts. More im-
portantly the diagrams show that for errors smaller than the
envelope size, the performance of the algorithm degrades
gracefully as the level of noise increases rather than to col-
lapse after a certain level of noise. Finally, it should be
noted that all laser patterns gave similar results. As shown
in Figures 11b and c, patterns having the most uniform and
dense distribution of points perform slightly better.

The high maximum residual error in Figure 11a indicates
that some curves were not well registered. On the other
hand, small variance and small average error indicate that
the number of curves having this large error is small. As
illustrated in Figure 12 the curves with large errors are lo-
cated on the boundary of the scanned area where the density
of curves is low. In these regions the field could not be com-
puted so that curves are only partially matched against the
reconstructed surface, thus giving rise to an unreliable reg-
istration. Among 450 curves, there were only three curves
with an error larger than1mm. This problem can be solved
by rejecting curves that are partially matched.

Registering real range data of the head model obtained
with the sensor described in [5] leads to similar results.
Initial average registration errors were0.35mm and with
a variance of0.09mm2. After registration, these errors
were reduced to0.26mm (average) and0.07mm2 (vari-
ance), which is in conformity with results obtained with
synthetic data. The residual registration error was evalu-
ated using a highly accurate model of the head (the same
model used to generate synthetic range data) measured with
a range sensors whose precision is25µm.

The last experiment shows the performance of the im-
plemented algorithm. The incremental reconstruction from
curves having 250 points each is performed in real-time at
the frame rate of the sensor (30fps). Thereafter, the regis-
tration algorithm is run. Execution time of the inner loop
of the registration algorithm for 450 curves is on average
less than 2 seconds. Field recomputation takes more time
depending on the size of the envelope: 9 sec forε = 3mm
and 23 sec forε = 5mm. Total registration and reconstruc-
tion time is 55 sec forε = 3mm and 140 sec forε = 5mm.
It should also be noted that software implementation was
not optimized. The execution times were obtained using a
PC with 1.2GHz AMD Athlon processor.

4 Conclusion

A volumetric approach for modeling from curves mea-
sured on the surface of a free-form object is proposed. Al-
gorithms for both registration and reconstruction are of lin-
ear complexity with respect to the number of curves. The
reconstruction is incremental thus allowing integration of a
single curve at a time. In addition, the reconstruction is or-

der independent. No intermediate surface representation is
required: an implicit volumetric representation of the sur-
face is created directly from the curves. Any curvilinear
light pattern can be used for this purpose as long as the re-
sulting curves intersect to provide redundant data for regis-
tration and reconstruction.

The major drawback of the volumetric approaches is a
very inefficient use of computer memory. Even though pro-
posed compression schemes such as run length encoding
[3] can be used to reduce memory requirements, it is still
not as efficient as surface based representations since these
methods encode only occupancy of voxels regardless of the
object geometry. We do believe that compression of volu-
metric data based on the geometry of the object is possible
and it will be the subject of our future work.
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