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Abstract

Traditional approaches for surface reconstruction from
range data require that the input data be either range im-
ages or unorganized sets of points. Snce a large number of
range sensors provide data along curvilinear patterns such
as profiles, this paper presents an approach for reconstruct-
ing a surface from a set of unorganized curves. A strategy
for updating the reconstructed surface during data acquisi-
tionisdescribed aswell. Curvesare accumulated in a volu-
metric structurein which a vector field is built and updated.
The information that is needed for efficient curve registra-
tionisalso directly availablein this vector field. Thisleads
to a unified modeling approach combining surface recon-
struction and curve registration. The algorithm implement-
ing the approach is of linear complexity with respect to the
number of input curves and makesit suitable for interactive
modeling. Smulated data based on a set of six curvilinear
patterns as well as data acquired with a range sensor are
used to illustrate the various steps of the algorithm.

1. Introduction

lar scanning path [7, 2, 9, 12]. There are still two problems
with these methods. First, the only type of surface curves
that can be used are surface profiles. Second, although data
acquisition introduces an error on the sensor position, it is
not possible to adjust the pose for a single profile. This re-
sults in a loss of quality. The current alternative for low cost
hand-held sensors is to collect range images [4, 11] at the
expense of losing robustness of laser sensors. In this paper,
an approach is proposed for reconstructing the surface of
free-form objects from arbitrary curves as well as for refin-
ing each individual curve pose.

Surface curves contain more information about the mea-
sured surface than an unorganized set of points, namely sur-
face tangents that can be exploited to improve the quality
of the reconstructed surface. Actually, local estimates of
the surface can be obtained using tangents of intersecting
curves. Furthermore it can be achieved efficiently by using
a volumetric structure where the surface is incrementally
recovered as new surface curves are scanned.

Volumetric structures have been exploited for surface
reconstruction from range images or an unordered set of
points [3, 7, 10, 12] to reduce computational complexity
and provide incremental reconstruction. These volumet-

Most surface reconstruction algorithms from range data ic approaches use an implicit representation of the surface
accept either range images [3, 10, 13] or unorganized sets of.€. a scalar signed distance field computed in a volumet-
points [8, 12] as input. Nevertheless, a very common type fic grid where the reconstructed surface corresponds to the
of range sensors acquire curvilinear measurements on th&€ro crossing of the field. Our first contribution is to show
surface of an object. Based on optical triangulation, thesehow to build such a volumetric representation directly from
sensors use a well-focused laser pattern projected on thé& Set of measured curves without any intermediate surface
surface and can robustly provide dense profiles in a veryrepresentation. Furthermore, the computational complexity
short time frame. Methods for surface reconstruction from With respect to the number of curves is linear and the re-
arbitrary curves have not been deve|0ped yet. Instead, itconstruction is incremental and order independent; thus no
is assumed that the profiles are gathered at regular interconstraints are imposed on sensor displacement. Any light
vals along a well-defined path such as to group neighboringpattern can be used as long as the measured curves intersect.

profiles into a surface. The relative pose of each profile is

Very little work has been reported on the subject of sur-

assumed to be accurate. For hand-held sensors that colledace curves pose refinement (registration) [6]. Although the
profiles, it is not possible to scan a surface along a fully stability of curve registration may have contributed to this,

predefined scanning path. Thus, methods have been prothe main reason is the computational complexity of the reg-
posed to build local surface patches from a rigid series of istration process. The simultaneous registration based on

profiles with known positions but only with a nearly regu-

ICP (lterated Closest Points) algorithm [1] is of complex-



ity O(N?) with respect to the number of range images. If
the same algorithm is applied to register surface curves, the
complexity quickly becomes prohibitive since the number
of curves required for a complete reconstruction of an ob-
ject is at least an order of magnitude larger than the equiv-
alent number of range images. It can easily reach several
thousand curves.

If one not only encodes the signed distance field in the
volumetric structure but also the direction toward the near-
est zero crossing in each voxel, then matching for a con-
trol point can be obtained directly from the nearest voxel.
We have developed this idea to provide near real-time reg-
istration of range images [14]. The second contribution of
this paper is to provide the same linear complexity registra-
tion for surface curves by registering them with the recon-
structed surface. Another important aspect of our approach
is a novel definition of a distance measure that improves ro-
bustness of registration in the presence of noise.

The next section describes the principle of surface recon-
struction from curves, followed by section 2.2 which ex-
plains a modification required to allow incremental recon-
struction. Section 2.3 exposes curve registration. A novel
definition of a distance aimed at improving robustness of
registration is presented in section 2.4. Efficient computa-
tion of the vector field required for reconstruction is detailed
in section 2.5. The results presented in section 3 illustrate
each aspect of the approach from simulated and real data.

Figure 1. Reconstruction from multiple
curves. The normal is obtained as a least-
squares estimate of the "most perpendicular"
vector to the tangents t;, i = 1,2,3,4 at the
closest points p; of the four curves.

As mentioned earlier, the reconstructed surfsigs rep-
resented as a vector fiefd: R* — R3 wheref(p) is the
direction, and the distance from a pojnto the closest point
p. on the surface is:

2. Modeling using Range Curves p+f(p)=p. €S, 1)
As reported in [14], the reconstructed surface is repre- where _

sented implicitly as a vector field. Suchvalumetric rep- p. = argmind(p, q), 2

resentation contains both the reconstructed surface and its aes

corresponding matching information as direction and dis- and whered denotes a distance measure. In practice, the
tance toward the reconstructed surface. While the surfacefield f(p) is computed at points (voxels) on a regular lat-
is represented as the zero-crossing of the norm of the fieldtice (volumetric grid) in the vicinity of a surface usually
the distance and direction are represented by the field it-referred to as its envelope. The envelope encloses lattice
self. In the following section, we describe how an implicit points which are located at a distance to the surface that is
representation of the surface can be created from a set oémaller than a predefined positive vakudn this work the

non-parallel, intersecting surface curves. envelope is defined for each curve that contains the set of
lattice points being closer than a predefined distance to the
2.1 Reconstruction from inter secting curves curve.

The approximation of the surface, i.e. the tangent plane
The main idea behind our approach is to perform recon- at the closest point on the surface to some vgxeln be

struction byapproximating the surface in the neighborhood obtained as a least-squares estimate of the normal using tan-
of the intersection points of the surface curves. The recon-  gents at the closest points of all nearby curves. This is illus-
struction is based on a fundamental property of differential trated in Figure 1. This estimate corresponds to the "most
surfaces stating that all surface curves passing through someerpendicular” vector to a set of tangents.
point have tangents located in a plane tangent to the surface More formally, leta, . . ., an be N surface curves pass-
at this point. The most important consequence of this prop-ing within predefined distance> 0 from a point (voxel)p
erty is that the tangent plane of a surface can be computed aénd lett,, ..., ty be their respective tangents at the clos-
the intersection point of at least two surface curves if their est points to the poins. Then the normal on the surface is
respective tangents are known at this point. obtained as the vecter = [n,, n,, n,]7 that minimizes:



over the edges of the envelope and the reconstructed sur-

N 5 face appears discontinuous as well. The solution to this
§= _ {:,m)”. ©) problem is to weight the tangents using a continuous func-
=t tion of distance ideally dropping to zero at the edge of the
Taking the derivatives of with respect ton,,n, andn, envelope. Any decreasing monotonic function can be used
and setting them equal to zero defines the following systemfor this purpose. In our experiments the following function
of equations: proved to be useful:
N . 7d2/a
%Ztit?n:Cn:[O 001" @ wid) =7, )
i=1 The value ofr is chosen equal td/2e to make sure that the

value ofw is close to zero outside of the envelope.
. . . S The tangen n al weighted in haw re-
with the smallest eigenvalue of matriX which is just a et ge ts can also be €9 ted in such a way to re
. i . duce the influence of less-confident data, for example by
covariance matrix of the tangents. The distance toward the :
. : : ._measuring the angle between the surface (curve) normal and
surface is obtained as the average value of the projected dis; o Co :
. : the measurement direction. The weighting vatuss de-
tance vectors; = p; — p on the estimated normal, i.e

fined as the cosine of the angle between the two directions.

The estimated value fati is the eigenvector associated

N By taking into account andw, the matrixideally defined
d(p,S) = Z<pi —p,n) (5) in Eq. 4 becomes
=1
N
. . . 1 T
wherep; is the closest point on the curve. Finally the C==—— > rwitit] . (8)
value of the field at poinp is: 2im1 TiWi i
¢ The reconstructed surface can be extracted from the vec-
(p) = d(p, S)n. ©®) tor field f using the Marching Cubes algorithm. The March-

In order to estimate the tangent plane to a surface at somé.ng Cubes algorithm uses a scalar field that is obtained by

point p, at least two non-parallel tangents are needed tocomputlng the norm of (p). Th_|s norm is a scalar field
compute the matrixC at p since a single tangent does not whose sign is obtaln.ed as the sign of the scalar product be-
define a plane. This condition can be verified by analyzing tweenf(p) and the direction of the sensor.
the eigenvalues of matri€C: if two eigenvalues are zero, 55 |ncremental reconstruction
then only one tangent (or two or more parallel tangents) ex-
ists and the normal estimated at that point is not used. For the reconstruction approach described above, it was

Atthe intersection points of noiseless curves, all tangentsassumed that all the data has been collected prior to recon-
are coplanar, hence one eigenvalue is always equal to zergtructing the surface. If the reconstruction has to be per-
and the tangents span a plane. In practice, all three eigenvalformed on-line, then the field needs to be updated incre-
ues are larger than zero since the surface is approximated ifmentally by integrating a single measured curve at a time.
the neighborhood of the intersection points. Also, when the However, the least-squares estimate of the surface normal
tangents are estimated from very noisy data, the three eigenand, consequently the vector field, cannot be computed in-
values may have similar values in which case the tangentscrementally. On the other hand, matéixcomputed at some
span an ellipsoid and the estimate of the tangent plane isyoxel p is obtained as a sum and can therefore be updated
meaningless. To make sure that the estimated tangent plangicrementally. LetC(p) be the matrixC' for the voxelp.
is valid, an additional verification is made on the eigenval- Equation 8 can be rewritten as:
ues. Let\;, Ao and )3 be the three eigenvalues such that
A1 < A2 < A3. Since matrixC is normalized, the sum of 1 N
eigenvalues is always equal to one .+ As + A3 = 1. Clp) = TN i ZTiwiCi(p)’ ©)
The eigenvalues have to satisfy the following two condi- =t
tions: A2 > 0.05 and\; < 0.5)2. These two thresholds where C;(p) = t,t7. During reconstruction, a matrix
do not affect the shape of the reconstructed surface. Impos¢(p) is attached to each voxel and is updated after acquir-
ing them simply means that the tangents used to computeng each curvey; by summing it withC; (p). Matrix C;(p)
C must be approximately coplanar; otherwise no surface isdepends only on the curvg and is computed using tangent
locally reconstructed. t; at the point on the curve that is closestto The value

A single curve influences the field only at points located of the fieldf(p) is computed only during the extraction of
inside its envelope and its influence drops to zero outsidethe surface using the Marching Cubes algorithm or during
this envelope. The computed field is thus discontinuous registration.



2.3 Poserefinement using vector fields

Onthe one side, unlike range images, surface curves can
not be registered with each other one pair at the time. In

general, the number of intersections between two curves is

insufficient to compute the rigid transformation needed to
align the curves. For instance two surface profiles intersect
at a single point. On the other side, registering all curves
simultaneously ha®(N?) complexity, with respect to the

number of curves and quickly becomes limiting due to the

large number of curves that is needed to reconstruct an ob-

ject. An efficient way to circumvent these problems is to
register curves to theeconstructed model instead. Since the
vector field contains all the information needed for match-
ing, the computational complexity remains linear with re-
spect to the number of curves. Matching a single control
point is of O(1) complexity.

Once the vector field is computed, registering a curve
becomes straightforward: for a control pojmbn a curve,
the corresponding poin. on the reconstructed surface is
approximated by the value of the vector field at the clos-
est voxelp, to the pointp. An error introduced by field
discretization can be corrected by linearly interpolating the
value of the field at the voxegd,, (see Figure 2):

f(pv) <f(pv), (Po
I£(p)|*

For registration, the model is first reconstructed from
all available curves. Then, each curve is registered to this
model one at a time. The vector field is then recomputed,
and the whole procedure is repeated until no further im-

p.=p+f(py) + —p)> (10)

pv+F(py)

Figure 2. Matching a point p using the clos-
est voxel centre p,. The closest point p. is
obtained using Eq. 10.

R

Figure 3. The effect of noise on the matching
step of registration. a) Matching with noisy
curve (or surface) S, using Euclidean dis-
tance. b) Matching using the distance defined
in Eq. 14 with unfiltered normals c) Matching
in the direction of filtered normals.

points after applying the computed transformation; when it
falls below a threshold the algorithm stops.

2.4 Defining the distance measure

provement is possible. Even though the field is represented  As illustrated in Figure 3.a, points with high noise level

indirectly through the matrixC at each voxel, we will refer
to it as the vector field. The registration is described in the
following pseudocode.

repeat
Initialize field f to zero;for i = 1:number of curvesdo
Compute field; for curve: and add it tof;

end
for i = 1:number of curves do
repeat
Find matching points for control points of
curves;

Compute and apply transformation on cuiye
until convergence;

end
until convergence;

Algorithm 1: Simultaneous Registration

In this work, all curve points are used as control points.

tend to attract a large number of correspondences. This
slows down the registration process and makes it less ac-
curate. To improve the matching robustness,dinection
toward the closest point on the line segment has to be cor-
rected while taking into account two important constraints:
i) the distance field has to be continuous ii) the position of
measured 3D points should not be altered. The solution
to this problem is to redefine the distance instead of using
the Euclidean distance. For the sake of clarity, the distance
computation is first illustrated in 2D, the curve being con-
tained in a plane.

A curve a is represented as a set of line segments
{li,...,In—_1} between the measured poidts; ...pn},
with I; = p;p;+1. The tangent; at each measured poipt
is computed and filtered by averaging it with its neighbors.

The distance between a pojmaind the curvex is always
computed with respect to the closest line segnigntt is
therefore sulfficient to provide the distance from a point to a
line segment. The set of all points for which a line segment
l. is the closest is calledfandamental cell associated with

Convergence is verified by measuring the displacement ofthe generator line segment .. For the purpose of surface



Figure 4. Distance in the direction of interpo-
lated normals. Distance e between point p
to the line segment p;p;11 is defined as the
distance between p and the point p. whose

normal n. passes through p. The distance Figure 5. Computing the distance in direction
e is computed by finding iso-segment §;q; 1 of interpolated normals. Before computing
that contains the point p. the distance, the tangents t; and t; are pro-

jected on the plane pip2p.

modeling, the field needs to be calculated only within a rel-

atively small distance > 0 from the measured curve, thus a distancel from the generator line segmepyp, ;1. The
limiting the size of the cell to the set of points which are distance is computed by making the area of the triangle
closer thare. If d is the Euclidean distance then the funda- q;q;,p equal to zero, i.e. the cross-productgf— p and
mental cells correspond to the cells of the Voronoi diagram ¢, ; — p is zero. This leads to a system of three quadratic

for a set of line segments. equations with a single unknown Any of these equations
To compute the distance, a line segmgpi; 1 is param-  can be used to solve ferafter making sure that the chosen
eterized as: parameters do not vanish altogether.

For the 3D case, itis sufficient to project the tangents and
l(u) =pi +u(Pit1 —pi), 0<u<l.  (11) normals on the plane containifg, p» andp as illustrated
The tangents at the two end points are then interpolated as'" Flg_ure S _Prolected tangent} andt; are then used in
equation 12 instead af andt..

The effect of choosing the distance defined in Eq. 14 is
illustrated in Figure 3.b and c. Filtering the tangents, and
The normam(u) at each point of a line segment is defined consequently the normals, affects the direction toward the
as the vector being perpendicular to the tangent and can belosest point, and therefore the matching directions. This
also interpolated: makes the matched points more evenly distributed over the

reconstructed surface. It is important to note that only tan-
n(u) =n; +u(mip1 —n;), 0<u<l. (13) gents on the curves are filtered, the measured 3D data re-
maining unchanged.

t(u) =ti +u(tiya—t;), 0<u<l. (12

Finally, the distance between poinp and the line seg-
mentp;p; 11 is defined as the distance betwgerand the 2.5 Efficient computation of the vector field
point p. whose normah,. passes througp. This is illus-
trated in Figure 4. More formally: Equation 14 is valid only inside the fundamental cell of a
line segment. Prior to computing the distance to the curve at
d(p, Pipit1) = d(p, 1(uc)) = e, O0<u.<1, (14) some poinp, one has find to which cell the poiptbelongs.
This is a tedious task that can be avoided by inverting the
process and by rather finding all voxels falling inside each
p=1(u.) +e-n(u.). (15) cell separately. By doing so, the complexity of field compu-
tation is linear with respect to the number of line segments
To obtain a closed-form solution for the distance between a(measured points). Computing the field for a cell is there-
point p and a line segmeni;p;;1 according to the above fore a two-step process. First, the bounding box of a cell is
definition, we note that, if the distancedsthen the point  computed. The two defining corners of the bounding box
lies on the line segment whose end pointsaare- p;+e-n; can be obtained as the minimum and maximum values of
andq;t+1 = p2 + € - ny, as illustrated in Figure 4. Thisline  p; +¢,p1 — €, p2 + €, p2 — €. Then, for all grid points lo-
segment is amso-segment whose points are all located at cated inside the bounding box it is verified whether they are

such that



between the two delimiting planes of the cell. Finally, the
distance is computed and accepted when it is smaller than>< Q
the maximum allowed distanee

@) (b) (€) (d)

3 Results

()

()

The quality of the modeling algorithm has been assessed Figure 6. Light patterns used in experiments.

by experimenting under varying levels of noise, registration
errors, and different laser patterns using both synthetic and
real range data. In the following the results obtained in these
experiments are presented.

Figure 7a illustrates the most simple case where a sur-
face is reconstructed in the neighborhood of two intersect-
ing curves. Since the surface is approximated, the error of
the reconstructed surface increases with distance from the
intersection. However, it should be noted that the recon-

w

£

structed surface still follows the shape of the original sur- {'
face faithfully. This cannot be accomplished by considering
curves as unorganized sets of points, i.e. by fitting a plane @) (b)

in the neighborhood of a point.

An example of reconstruction from multiple curves, us-
ing real range data is shown in Figure 7b. The data for this
model has been acquired using the 3D sensor described in
[5] which acquires surface curves by measuring distances to
a projected cross-hair laser pattern (Fig. 6a). than 30 iterations. To visualize the effect of the field update

Figure 8 depicts an example of incremental reconstruc-in the outer loop, the convergence curves in a) are drawn
tion using a set of circular light patterns. The figure also il- for three iterations of the outer loop. One may observe the
lustrates another important aspect of reconstruction: surfacglecrease in the initial state (Figure 10b).
filtering by integrating redundant data. When the curves are  The quality of registration has been assessed by register-
well registered, adding more curves reduces the variance ofng synthetic curves with varying levels of noise, outliers
noise while preserving fine details. and registration errors. For that purpose, six noisy synthetic

The most important parameter for the reconstruction is data sets have been generated using the model of a head
the size of the envelope)( On the one hand, since the re- and for six curvilinear patterns. Registration errors were in-
construction performs averaging in a neighborhood whosetroduced by perturbing the pose rotation angles randomly
size is equal te, the envelope should be as small as possi- Within [—d,., .] and the translation withifi-d;, §;]. Noise
ble to prevent a loss of fine details. Furthermore, increasingwas simulated by translating each point in the direction of
the size of the envelope slows down the algorithm since thelaser projector for random distance chosen within,,, 4,
number of points for which the field is computed grows as While the outliers were generated by randomly choosing 1%
a power of two with the size of the envelope. On the other Of the total number of points and displacing them for a ran-
hand, too small an envelope results in poor performance indom distance chosen withip-d,,d,]. Random variables
presence of noise and registration errors. In particular, if follow uniform distributions. Values for the curve displace-
the envelope is smaller than the level of noise (especiallyment and noise levels were chosen smaller than the size of
outliers), small isolated patches appear around the reconthe envelope. Otherwise, some curves are outside of the en-
structed surface, as illustrated in Figure 9b. A solution to velope and cannot be registered. The size of the model is
this problem is to increase the size of the envelope (Figureapproximately20cmn while the size of a voxel igmm.
9c), but with the aforementioned performance penalty and The results summarized in Figure 11 show the perfor-
loss of details. Preferably, the small patches can be removednance of the registration algorithm as a function of the ini-
since they are not connected to the main surface. tial registration errors and the level of noise. Residual regis-

As shown in Figure 10, the registration part of the al- tration error has been obtained as the distance between the
gorithm converges quickly and remains stable over a largeregistered points and their corresponding closest points on
number of iterations. Convergence has been tested by meathe reference model. Prior to computing residual errors, all
suring the average displacement of circular curves (6c) ascurves as a whole were registered to the reference model
a function of the number of iterations. Other patterns be- using an ICP algorithm.
have similarly. The inner loop converges on average in less The average residual error as well as the variance slowly

Figure 7. Reconstruction examples. a) Re-
construction from two intersecting curves. b)
Reconstruction from real data.
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Figure 11. Residual registration errors for noiseless curves as a function of initial displacements of
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Figure 8. Filtering by averaging redundant
data. From left to right: reconstruction from
10, 120 and 240 curves. Bottom row: left eye
detail of the reconstructed model.

(b) ©

Figure 9. Influence of high level of noise and
outliers on the reconstructed surface (simu-
lation). a) Noisy range data with 1% outliers.
b) If the level of noise is larger than the size of
the envelope, small isolated patches appear
around the surface. c) Increasing the size of
the envelope removes the isolated patches.
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Figure 10. Average displacement of points as
afunction of the number of iterations. a) Inner
loop of the registration algorithm. b) Evolu-
tion of the inner loop convergence during 5
iterations of the outer loop.
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Figure 12. Color encoded distribution of
residual registration errors (mm). a) Curves
on the border of the scanned area are only
partially matched and therefore unreliably
registered. b) Zoom in the upper-left region
of the forehead. Only three curves have a
registration error larger than 1mm.




increase with noise and initial registration errors. An aver- der independent. No intermediate surface representation is
age error of).25mm or below is sufficiently small to yield  required: an implicit volumetric representation of the sur-
a reconstructed surface without visible artifacts. More im- face is created directly from the curves. Any curvilinear
portantly the diagrams show that for errors smaller than thelight pattern can be used for this purpose as long as the re-
envelope size, the performance of the algorithm degradessulting curves intersect to provide redundant data for regis-
gracefully as the level of noise increases rather than to col-tration and reconstruction.
lapse after a certain level of noise. Finally, it should be  The major drawback of the volumetric approaches is a
noted that all laser patterns gave similar results. As shownvery inefficient use of computer memory. Even though pro-
in Figures 11b and c, patterns having the most uniform andposed compression schemes such as run length encoding
dense distribution of points perform slightly better. [3] can be used to reduce memory requirements, it is still
The high maximum residual error in Figure 11aindicates not as efficient as surface based representations since these
that some curves were not well registered. On the othermethods encode only occupancy of voxels regardless of the
hand, small variance and small average error indicate thatobject geometry. We do believe that compression of volu-
the number of curves having this large error is small. As metric data based on the geometry of the object is possible

illustrated in Figure 12 the curves with large errors are lo- and it will be the subject of our future work.
cated on the boundary of the scanned area where the de”SitFQeferences

of curves is low. In these regions the field could not be com-
puted so that curves are only partially matched against the
reconstructed surface, thus giving rise to an unreliable reg-
istration. Among 450 curves, there were only three curves
with an error larger thatmm. This problem can be solved
by rejecting curves that are partially matched.

Registering real range data of the head model obtained
with the sensor described in [5] leads to similar results.
Initial average registration errors wede35mm and with
a variance of0.09mm?. After registration, these errors
were reduced t@.26mm (average) and).07mm? (vari-
ance), which is in conformity with results obtained with
synthetic data. The residual registration error was evalu-
ated using a highly accurate model of the head (the same
model used to generate synthetic range data) measured with
a range sensors whose precisiofigm.

The last experiment shows the performance of the im-
plemented algorithm. The incremental reconstruction from
curves having 250 points each is performed in real-time at
the frame rate of the sensor (30fps). Thereafter, the regis-
tration algorithm is run. Execution time of the inner loop
of the registration algorithm for 450 curves is on average
less than 2 seconds. Field recomputation takes more time
depending on the size of the envelope: 9 secafer 3mm
and 23 sec for = 5mm. Total registration and reconstruc-
tion time is 55 sec fot = 3mm and 140 sec fot = 5mm.

It should also be noted that software implementation was
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