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Abstract

This paper presents a vision system for tracking a 3D
articulated human model from the observation of isolated
features from multiple viewpoints. A generic model is in-
stantiated by estimating invariant elements (limb lengths)
during tracking. The model is used as feedback both in
the estimation module for filtering and in the segmenta-
tion module where it predicts the feature’s position and
size. Filtering is carried out with a Kalman filter with . - =T
improved numerical stability using Joseph’s implemen-
tation. The robustness of this implementation is com-
pared to the basic formulation on real sequences. Result
demonstrate a rapid convergence of the filtered parame-
ters despite large observation variances.

) Figure 1: Recovered 3D skeletal model projected in an
1 Introduction input image (lines) where the observations are the dots.

In order to monitor, model and recognize the behavior of
a person, it is necessary to extract a temporal represehus avoiding the tracking of high-level information but
tation of its body parts in motion. This involves a num-limiting the complexity of the describable motion. Other
ber of difficulties: image segmentation, occlusions andystems such as [2, 4, 8] track people by their parts; mul-
tracking due to the multiple degrees of freedom (DORj)iple features are segmented for each person and com-
of a moving person. However, the use of a high-level 3ined in a 3D high-level description. High-level descrip-
model for describing motion facilitates both segmentations are better suited to cope with partial occlusions
tion and tracking in presence of partial occlusions. Thisince each part is explicitly represented in the model.
idea is advantageously exploited when the 3D model iBhese systems differ in the number of DOF they can han-
integrated to segmentation through feedback in the inpdte and in the segmentation process.
images. The high-level 3D model of a person contains To better assess the motion, multiple viewpoints are
parameters describing both the limbs of the subject anged in [2] where a 19 rotation parameter model of ellip-
their relative position; Figure 1 shows such a model prosoidal blobs is tracked. The projections of these blobs are
jected in an input image. Passive markers are currentiyacked at the pixel level with an EM algorithm. Multi-
used to validate this integrated approach using a dynamgte viewpoints are also used by [4] to estimate a 29 DOF
model with as many as 76 DOF. (rotation parameters and position in a global reference
Various levels of tracking have been proposed to morframe) kinematics model. In this case, an annealed par-
itor human motion. The W4 system [6] proposes a lowticle filtering based on edge and silhouette information
level 2D tracking where people are tracked with the des performed. In both systems, the subject’s limbs must
scription of a single blob. Blob analysis and templatédoe measured in a separate step. To cope with this limita-
matching are repeated for each frame to identify the partson, an extended Kalman filter is used to estimate both
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rotation parameters and limb lengths in [8]. Nevertheledsl model (abeled observationsthese observations are
the system only tracks a human arm with 3 DOF from #ghen provided to th&stimationmodule to close the loop.

single viewpoint. The next paragraphs describe these modules.
This paper presents a closed-loop system related to

[8] inasmuch as it uses feature points as input to an ex Sequence | lLabeled obssrvations

tended Kalman filter and it simultaneously estimates limb Segmentation

length parameters. In our case, a 76 DOF model is Description

tracked from its projection in multiple viewpoints. The ‘ Estimation ’—’

increased dimensionality introduces the need for numer |

ically stable methods as well as increased robustness t Prediction

occlusions. The extended Kalman filter is revisited to

improve numerical stability when combining the obser- o

vation of markers. Feedback from the predicted obser- Figure 2: Modules for the description of a person.
vation in each image allows a segmentation procedure to

extract and label feature points on the subject. The pr&egmentation module The tracked subject wears pas-
cedure is robust to occlusions and to prolonged absengge spherical markers at junction points (dots in Figure
of data. 1). The segmentation then consists in obtaining the po-
The paper is organized as follows: Section 2 describegtion of these markers in the input images and matching
the proposed system, Section 3 introduces the mathemg{am to the skeletal model (assign a label). To segment
ical models used for tracking and results are given in Segne markers from their color, a threshold is first applied

tion 4. in the HSV color space. The blobs of the resulting binary
) image are then isolated and a form constraint is used to

2 System overview segment the circular markers among these blobs:

The tracked model is shown in Figure 1; its 76 DOF in- _ (Perimeter}

Cf— ng

clude length, angle, position and velocity parameters to
describe the subject and its motion. Four stages of pro-
cessing are needed in order to produce a high-level de- The validated blobs are labeled in each image with the
scription of the actions of a person [7]: initialization, Hungarian method [9] using the Mahalanobis distance [3]
tracking, pose estimation and recognition. In the initialto the predicted area and 2D position of each marker.
ization stage, it is necessary to instantiate a generic modehly the blobs with distancel ¢,,, to a prediction are

or to obtain the first segmentation. Tracking consists igonsidered for matching.

segmenting the subjectand estabhshmgagorresponde_rllgse'timation module At every instant, theEstimation
between the images. For a sequence of images, a time

correspondence must be established for the features | module produces a description of the observed subject. It

. S : 'L &imates the best 3D pose which corresponds to the 2D
same viewpoint; with multiple cameras, a space corre-, . : ; . S

) . observations and is coherent with previous estimations.
spondence must also be established between the view:

oints. Pose estimation consists in representing the r or this purpose, the system uses an extended Kalman
points. o press 9] Silter as described in Section 3. The filter directly inputs
ative position of the body parts of the subject. Flnallyt

o g - . .. “the 2D position of features without prior 3D reconstruc-
recognition consists in providing a high-level de:scrlptlor{ion Therefore, the model is always constrained by all
to a sequence of images. : '

_ available observations even if some parts are segmented
In the proposed systentracking is ensured by the

Segmentatiomodule andpose estimatioms performed in only one viewpoint.

by the Estimationmodaule;initialization is a special case Initialization Each module of the system is initialized
handled in the two modules. The aspectsamfognition in a specific way. The initisdegmentationuses the strat-
are not considered by the system. In steady state modsyy described in the segmentation module with the only
the system operates in a closed loop (Figure 2). Ese difference that the Mahalanobis distance minimization is
timationmodule estimates the parameters of the tracke@placed by the minimization of s /(Area) to identify
dynamic modeldescriptior); the model is used to calcu- potential markers. Th&beling procedure is based on
late the predicted 3D description of the object for the nexrior knowledge of the initial pose of the subject. For
observation fgredictior). This prediction is projected in validation, the labeled 2D points in all of the images are
the images in order to predict the 2D position of the feamatched according to the calibration parameters of the
ture points. TheSegmentatiomodule can then validate cameras using the epipolar constraint between synchro-
its results and match the segmented points to the skel@zed viewpoints. The labels of the observations thus

47r(Area)
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paired are compared; a voting procedure among the imvhereL is the set of 14 limb lengths,is the set of 25 ro-
ages where each marker was segmented determines tfaéion angles describing the pose of the model Erate
label is to be validated (more tha6% of the votes agree) the parameters of the rigid transformation from the body
or if the observations are invalidated (no majority). Ageference frame to the global coordinate system (3 trans-
soon as all of the markers are correctly segmented atation parameters,,, and 3 rotation angleR.,,,). Know-
matched, their 3D positions are calculated and the initiahg the parameters of the model, the 3D positions of joints
parameters of the model a@stimated and terminal points are readily computed.

3 Model-based tracking Dynamic model of a person A dynamic model With
n = 76 parameters is consideregl= 31 pose and posi-

Static model of a person The generic human model to tion parameters; associated velocities amd— 2¢ length
track is an articulated object formed of 14 segments qfarameters. Angular velocity is used for rotations and
unknown but constant length (Figure 3). The pose is déinear velocity is used for position parameters. At tilne
scribed by 25 angles providing the relation between thghe dynamic model of a person is represented by:

limbs (articulations) and the position is described by 6

fextrlnsu: parameters prpwdmg the rigid transf_or_matlon My, = [L7r,T,i~,T}

rom a reference coordinate system. The 15 joints and

terminal points of the skeleton are identified as: wherez is the velocity ofz. At time & + 1 (A units of

P. P. Pr.P.. P P P P P time later), the constant velocity dynamic model gives the
{ prEns L hyrsy Lre, Lrhy, Lis; Tley Llh, predlcted state of the Subject
Prhip, Pri, Prg, Pinip, Pii, Py}

. 4T
with the origin of the body located &,,. Mip1p = [Lor+ AT+ AT 1, T} @

Observation model The subject is observed by a set of
calibrated and synchronized cameras. The image forma-
tion is parameterized in cametaby the pinhole model
with known intrinsic parametera . and known extrinsic
parameterR., t. (Figure 3). In the system, the obser-
vations are the images of joints and terminal points. In
camerac, the position ofP; in a 2D image is given by
the static parameters of the model (equation (1)) and the
calibration parameters:

p; = A(R.P; +t,)

wherep; is the image position in homogeneous coordi-
nates:p; = [\z;, \y;, A]”. Normalization provides the
observation for that pointH(M); . = [z;,y,]". Since
multiple pointsj and multiple viewpointg are available,
all the observation¥I(M); . are stacked in the global
observation vectoH (M).

— 3.1 Extended Kalman filter

In the described system, the observations (2D images) are
y nonlinear functions of the state. It is possible to estimate
o such a system with the extended Kalman filter [5]. The

filtered estimatelf/lk‘ . State at time: with observations

up to timek) and the predictive estimatMH”k: state
at timek + 1 with observations up to time) are given by

Figure 3: Generic skeletal model of a person. the dynamic description of the system:

The 45 static parameters of the model are given by: Mk|k _ Mk|k |+ K(Zy — Hy) 3)

M = [L,r,T]" 1) M = FMNy, (4)
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whereF is the dynamic matrix of the systent; £ Joseph's form equation The direct implementation of
H(My,—1) is the (non-linear) prediction of the obser-the Kalman equations gives rise to a numerically unstable
vation,Z, is the observation anl;, is the Kalman gain. filter [5]. The covariance matrix of the filtered estimate

From (2), is particularly sensitive to rounding errors since no feed-
back makes it possible to correct the accumulated errors.
0n—2¢n—q On-2q4 Joseph’s form equation for the update of the covariance
F = Li+A| Ognyg I, matrix has a better numerical stability than the basic im-
0gn—q 0,4 plementation; it is given by:

wherel,, is then x n identity matrix andd, , is ag x ¢ Sie = (I — Kphy) Syt (I— Kyhy)”
null matrix. l b r
+ KkRkKk

_ T T -1
Ky = Bgjp-1hy (heZgp-1hi + Re) ®) Using (5), it is easily shown that Joseph’s form is equiv-

A SH(M) X . . alent to the basic equation (6) for the update of the co-
wherlehk. oM |M:,Mmk71 andRy, is the covariance variance [5]. Although it involves more computation,
matrix of the observations (measurement error). The C@ris form has the advantage of preserving the symmetry

variance matrices of the filtered estimale,(;) and the 54 hositive definiteness of the covariance matrix despite
predictive estimateX,, ;) are given by: rounding errors.

S = (T—Kihy) Sy (6) 3.2 Initialization of the filter
Spk-1 = szfl‘,%lFT + Qs (7) The system must be initialized by provididd, andX,.

_ _ _ ~ The initial static parameters of the model are calculated
whereQ;,_; is the covariance matrix of the system nois&rom a first set of the 15 joint 3D positions and all ve-
(model error). locities are initialized to 0.3, must be initialized with
lterated Kalman filter The error caused by the lin- realistic v_alues, with respef:t to the precision of the 3D re-

construction and to modeling error caused by the choice

earization of the filter near the prediction can be de=; > - , )
f initial velocities. For each image, the filter must also

creased using the iterated Kalman filter [1, 10]. It consist% ided with th |  the ob . :
in replacing the filtered estimate (3) and the Kalman gaiR€ Provided with the value of the observation covariance
Ry, and the system noidQ;_1.

(®) with their locally iterated versions & 0, 1, ... I~ 1) While the observation and initial state covariances can

be estimated experimentally, the system noise is difficult

to evaluate. It must account for modeling error such as

K [Zk —H;, — hk,i(Mk‘k_l — I\A/Ik‘kyi)} non-constant velocity motion and non-rigid body parts.
The values of the covariance matrices are manually setin
the experiments; they are given in Section 4.

4 Results

R N A SH(M) A set of calibrated and synchronized sequences are used
Hyi = H(Mg,i) andhyi = = [v-n1,,, .- The  for the experiments. Tharm sequence (Figure 4) was
filtered estimate and its covariance are then given by: acquired with a system of 4 cameras and contains 162

Myk,iv1 = M1+

—1
K = Ek\kflhg,i (hk,izk\kflhg,i +Ry)

with the initialization My, o = My, and where

. - images/camera. Three sequences of the whole body (Fig-
M = Mpjk,rs ures 5 to 7) were acquired with a system of 3 cameras
S = (I—=Kgrhy ) B and are composed of 317, 311 and 170 images, respec-

tively. In these results, the large ellipses are the search
Choosingl = 1 brings us back to the extended Kalmaryegions for each marker defined by a Mahalanobis dis-
filter. An automatic stop criterion can be added: giveRance of 9.21 to the predicted position. The circle at the
e(M) = [|Z;, — H(M)||, iterate as long as the following center of each ellipse is the maximum predicted size for

i < I, Tracking of anarm  For this experiment, 4 cameras are
E(Mk|k,i+1) > &g, placed in an half-circle arrangement and observe the arm
. . of a person. Orange balls are placed on the shoulder, the
e(Myjk,i) — €(Mpr,iv1) = €b, elbow and the hand; they are segmented in the four im-

élges to produce the observations of the system. The pa-

wheres g andep are tolerances on observation error an .
B D fameters of the Kalman filter are as followB = 251

observation error improvement, respectively.
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Figure 4: Selected tracking result in them sequence. Figure 5: Selected tracking result in thedy-1sequence.
Top: predicted position and size for all markers. BottomTop: predicted position and size for all markers. Bottom:
recovered 3D skeletal model projected in the inputimageecovered 3D skeletal model projected in the inputimage.

(variance of 25 pixélin x and y for all of the observa- 4y the unfiltered length varies from 275 to 359 mm
t|20n32), C} and i, are diagonal matrices with vananceSwhereas the filtered length remains within the interval
€t €, ; for lengths, angles and positions affde; for - 57g 5 315 mm. The filtered estimates converge rapidly
angular and linear velo?mes. F&, e = 0,¢9 = 5%, and both stay within a 5 mm interval after 40 images. The
€ = 20mm, e = 20°s™" ande; = 50 mm/s. FoerJO, large variations of the unfiltered lengths are partly caused
e =14mm, e =10° ¢ = 10mm, ¢y = 20°s™" and  py"5 combination of 3D reconstruction errors (limited
¢ =50 mm/s. _ by the calibration quality) and segmentation errors (in
Figures 8(a) and 8(b) show both the unfiltered lengthge thresholding step). Moreover, a large contribution to
(computed with direct 3D reconstruction) and the filtereghese variations may come from the markers that move on
lengths of the two parts of the arm at each instant. Fahe clothes of the subject. As can be seen in Figures 8(a)
the filtered lengths, the illustrated uncertaintyistimes  anq g(b), the unfiltered lengths have periodic variations

the square root of the variance of the filtered estimatgomewhat similar to the angle value (Figure 8(c)).
given by the Kalman filter. The gaps in these plots are ac-

tual gaps in the available data when synchronization was
lost. As can be seen in Figure 8, there were three cuts Bfacking of a body For this experiment, 3 cameras are
more than 100 ms caused by periods of lost synchronizaligned as to form an inversed T to observe a person. The
tion (due to system limitations) during which no data waparameters of the Kalman filter are the same as for the
available. The system is able to cope with gaps becaug@cking of an arm with the exception that i@, e5 = 1°
the Mahalanobis distance dynamically defines the searainde, = 10 mm. Table 1 summarizes the estimated limb
region for each marker. This result demonstrates the réengths frombody-1, body-2andbody-3 For both the fil-
bustness of the method to prolonged absence of data, tped and unfiltered values, the mean and standard devi-
to 600 ms in this case. ation of the 14 lengths were estimated over all images of
The unfiltered arm length varies from 275 to 324 mnthe three independent sequences. In all cases, the filtered
while the filtered arm length does not leave the intervalalues have a smaller standard deviation; on average it is
304 to 318 mm for the whole sequence. For the fore3 times smaller than for the unfiltered values.
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1

Figure 6: Selected tracking result in thedy-2sequence. Figure 7: Selected tracking result in thedy-3sequence.
Top: predicted position and size for all markers. BottomTop: predicted position and size for all markers. Bottom:
recovered 3D skeletal model projected in the input imageecovered 3D skeletal model projected in the inputimage.

Unfiltered Filtered
Limb | mean stddey mean stddev sions. In this example, the motion of the subject causes
Trunk | 353 9.7 352 4.5 the markers on the right arm and on the torso to be oc-
Head| 305 18.7 | 315 3.8 cluded by the left arm. Since the model is tracked as a
R shoul.| 307 8.0 302 4.4 whole, these occluded markers do not noticeably affect
Rarm| 239 20.0 | 243 4.5 the tracker. The tracker uses the available observations
R foream| 216 20.8 | 232 55 to estimate a 3D configuration coherent with previous es-
L shoul. | 296 9.9 201 53 timations. When the markers reappear, feedback of the
Larm | 261 146 | 266 2.6 description to the segmentation module defines search re-
L forearm | 203 13.6 | 207 7.7 gions which are used to label all observed markers.
Rhip | 177 18.1 | 180 5.6
R thigh | 359 18.9 | 359 7.4 Comparison of the Kalman filter implementations
Rleg| 356 14.4 | 362 5.9 Two examples demonstrate typical results obtained with
L hip | 175 21.3 | 177 4.0 3 implementations of the Kalman filter: basic extended
L thigh | 362 10.9 | 363 3.2 filter without iterations (KB), basic iterated filter (KIB)
Lleg | 350 175 | 354 4.8 and iterated filter with Joseph'’s form equation (K1J). Fig-
Average 15.6 5.0 ure 10 illustrates a situation where the iterated filter can-

not converge to the observations within a single iteration
Table 1: Estimated length of the 14 parts of the bodyrigure 10(c)). In this case, KIB and KIJ take 7 itera-
model over 3 independent sequences. Unfiltered valuggns to converge with; = e, = 0.1 (Figure 10(d)). In
are obtained from 3D reconstruction and filtered valueg)| cases, the previous estimates were computed using the
are obtained from the proposed system. All units are mnk|J (Figure 10(a)) and the segmentation was based on the

same prediction (Figure 10(b)).

Figure 11 shows the effect of rounding errors on the

Coping with occlusions Figure 9 shows some featuressystem. With KIB, the accumulated error on the covari-
of model-based tracking that allow it to cope with occlu-ance results in a negative matrix which cannot be used
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Length of the arm vs time Length of the forearm vs time Angle between arm and forearm vs time
i i i i i ° " i i i " " i i . " i
: 2 k L1
340| ES
o - I I II
20T § 1.5 X k3 1
o . O ﬁ
% 1 II % ]
280 @
05 ﬁo y E%
)
260
4

280 S 240

r3
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000_ 4000 5000 6000 7000 8000
Time (ms) Time (ms) Time (ms)

350

@
=

Length of the arm (mm)
Angle (rad)

Length of the forearm (mm)

(a) Arm length (b) Forearm length (c) Angle

Figure 8: Tracking of an arm: filtered (error bars) and unfiltered (diamonds) parameters.

o]

(a) Frame 149 (b) Frame 154 (c) Frame 161 (d) Frame 167 (e) Frame 170

Figure 9: Tracking result in 3 viewpoints for selected frames otibey-1sequence. The top line is from camera 1,
the middle line is from camera 2 and the bottom line is from camera 3.

to compute the Mahalanobis distance for the left leg benan motion. The estimated lengths were shown to con-
cause it defines an hyperbola rather than an ellipse (Figerge rapidly despite large observation variances. Feed-
ure 11(a)). The covariance estimated with KIJ remainBack of the description in the images allows the system to
positive for all of the test sequences. cope with occlusion of the markers in some or all view-

points. Joseph’s implementation was shown to have bet-
ter numerical stability than the basic implementation; it

remained stable for all tested sequences while estimating

A closed-loop vision system for simultaneously tracking® dynamic model with 76 parameters.
and estimating a skeletal model of human motion was .
L . . As future work, we intend to remove the markers by
presented. The skeletal model is instantiated with the es: . : .
L S . ~Observing the actual limbs of the subject. The challenge
timation of the subject’s limb lengths by re-observation,. . : 0 .
. . lies in selecting texture and geometric information to seg-
while pose parameters are tracked. The high level de-

Lo . : ) ent the limbs. The presented approach will facilitate
scription is estimated with an extended Kalman filter an{P . . . . .
racking and segmentation of the limbs once identified.

is projected in the images for segmentation. Joseph's

form equation is used to improve the numerical stability\cknowledgements:This work is supported by NSERC
of the filter. Canada through a scholarship to S. Drouin and research
The system has been tested on real sequences of lgiants to P. lbert and M. Parizeau.

5 Conclusion
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(a) Estimation for frame 74 (b) Prediction for frame 75 (c) KB update (d) KIB & KIJ update

Figure 10: Comparison of the basic extended Kalman filter (KB) and the iterated Kalman filter (KIB & KlJ).

(a) KIB predicted covariance (accumulated rounding errors) (b) KIJ predicted covariance

Figure 11: Search regions for frame 31 hmdy-1defined from the covariance of the predictive estimate (Maha-
lanobis distance of 9.21) computed by the iterated Kalman filter with basic implementation (KIB) and Joseph form
implementation (KI1J). Note the hyperbolas defined by the negative covariance matrices of KIB.
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