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Abstract

This paper presents a vision system for tracking a 3D
articulated human model from the observation of isolated
features from multiple viewpoints. A generic model is in-
stantiated by estimating invariant elements (limb lengths)
during tracking. The model is used as feedback both in
the estimation module for filtering and in the segmenta-
tion module where it predicts the feature’s position and
size. Filtering is carried out with a Kalman filter with
improved numerical stability using Joseph’s implemen-
tation. The robustness of this implementation is com-
pared to the basic formulation on real sequences. Results
demonstrate a rapid convergence of the filtered parame-
ters despite large observation variances.

1 Introduction

In order to monitor, model and recognize the behavior of
a person, it is necessary to extract a temporal represen-
tation of its body parts in motion. This involves a num-
ber of difficulties: image segmentation, occlusions and
tracking due to the multiple degrees of freedom (DOF)
of a moving person. However, the use of a high-level 3D
model for describing motion facilitates both segmenta-
tion and tracking in presence of partial occlusions. This
idea is advantageously exploited when the 3D model is
integrated to segmentation through feedback in the input
images. The high-level 3D model of a person contains
parameters describing both the limbs of the subject and
their relative position; Figure 1 shows such a model pro-
jected in an input image. Passive markers are currently
used to validate this integrated approach using a dynamic
model with as many as 76 DOF.

Various levels of tracking have been proposed to mon-
itor human motion. The W4 system [6] proposes a low-
level 2D tracking where people are tracked with the de-
scription of a single blob. Blob analysis and template
matching are repeated for each frame to identify the parts,

Figure 1: Recovered 3D skeletal model projected in an
input image (lines) where the observations are the dots.

thus avoiding the tracking of high-level information but
limiting the complexity of the describable motion. Other
systems such as [2, 4, 8] track people by their parts; mul-
tiple features are segmented for each person and com-
bined in a 3D high-level description. High-level descrip-
tions are better suited to cope with partial occlusions
since each part is explicitly represented in the model.
These systems differ in the number of DOF they can han-
dle and in the segmentation process.

To better assess the motion, multiple viewpoints are
used in [2] where a 19 rotation parameter model of ellip-
soidal blobs is tracked. The projections of these blobs are
tracked at the pixel level with an EM algorithm. Multi-
ple viewpoints are also used by [4] to estimate a 29 DOF
(rotation parameters and position in a global reference
frame) kinematics model. In this case, an annealed par-
ticle filtering based on edge and silhouette information
is performed. In both systems, the subject’s limbs must
be measured in a separate step. To cope with this limita-
tion, an extended Kalman filter is used to estimate both
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rotation parameters and limb lengths in [8]. Nevertheless
the system only tracks a human arm with 3 DOF from a
single viewpoint.

This paper presents a closed-loop system related to
[8] inasmuch as it uses feature points as input to an ex-
tended Kalman filter and it simultaneously estimates limb
length parameters. In our case, a 76 DOF model is
tracked from its projection in multiple viewpoints. The
increased dimensionality introduces the need for numer-
ically stable methods as well as increased robustness to
occlusions. The extended Kalman filter is revisited to
improve numerical stability when combining the obser-
vation of markers. Feedback from the predicted obser-
vation in each image allows a segmentation procedure to
extract and label feature points on the subject. The pro-
cedure is robust to occlusions and to prolonged absence
of data.

The paper is organized as follows: Section 2 describes
the proposed system, Section 3 introduces the mathemat-
ical models used for tracking and results are given in Sec-
tion 4.

2 System overview
The tracked model is shown in Figure 1; its 76 DOF in-
clude length, angle, position and velocity parameters to
describe the subject and its motion. Four stages of pro-
cessing are needed in order to produce a high-level de-
scription of the actions of a person [7]: initialization,
tracking, pose estimation and recognition. In the initial-
ization stage, it is necessary to instantiate a generic model
or to obtain the first segmentation. Tracking consists in
segmenting the subject and establishing a correspondence
between the images. For a sequence of images, a time
correspondence must be established for the features in a
same viewpoint; with multiple cameras, a space corre-
spondence must also be established between the view-
points. Pose estimation consists in representing the rel-
ative position of the body parts of the subject. Finally,
recognition consists in providing a high-level description
to a sequence of images.

In the proposed system,tracking is ensured by the
Segmentationmodule andpose estimationis performed
by theEstimationmodule;initialization is a special case
handled in the two modules. The aspects ofrecognition
are not considered by the system. In steady state mode,
the system operates in a closed loop (Figure 2). TheEs-
timationmodule estimates the parameters of the tracked
dynamic model (description); the model is used to calcu-
late the predicted 3D description of the object for the next
observation (prediction). This prediction is projected in
the images in order to predict the 2D position of the fea-
ture points. TheSegmentationmodule can then validate
its results and match the segmented points to the skele-

tal model (labeled observations); these observations are
then provided to theEstimationmodule to close the loop.
The next paragraphs describe these modules.

Figure 2: Modules for the description of a person.

Segmentation module The tracked subject wears pas-
sive spherical markers at junction points (dots in Figure
1). The segmentation then consists in obtaining the po-
sition of these markers in the input images and matching
them to the skeletal model (assign a label). To segment
the markers from their color, a threshold is first applied
in the HSV color space. The blobs of the resulting binary
image are then isolated and a form constraint is used to
segment the circular markers among these blobs:

Cf =
(Perimeter)2

4π(Area)
≤ ζf

The validated blobs are labeled in each image with the
Hungarian method [9] using the Mahalanobis distance [3]
to the predicted area and 2D position of each marker.
Only the blobs with distance≤ ζm to a prediction are
considered for matching.

Estimation module At every instant, theEstimation
module produces a description of the observed subject. It
estimates the best 3D pose which corresponds to the 2D
observations and is coherent with previous estimations.
For this purpose, the system uses an extended Kalman
filter as described in Section 3. The filter directly inputs
the 2D position of features without prior 3D reconstruc-
tion. Therefore, the model is always constrained by all
available observations even if some parts are segmented
in only one viewpoint.

Initialization Each module of the system is initialized
in a specific way. The initialsegmentationuses the strat-
egy described in the segmentation module with the only
difference that the Mahalanobis distance minimization is
replaced by the minimization ofCf/(Area) to identify
potential markers. Thelabeling procedure is based on
prior knowledge of the initial pose of the subject. For
validation, the labeled 2D points in all of the images are
matched according to the calibration parameters of the
cameras using the epipolar constraint between synchro-
nized viewpoints. The labels of the observations thus
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paired are compared; a voting procedure among the im-
ages where each marker was segmented determines if a
label is to be validated (more than50% of the votes agree)
or if the observations are invalidated (no majority). As
soon as all of the markers are correctly segmented and
matched, their 3D positions are calculated and the initial
parameters of the model areestimated.

3 Model-based tracking
Static model of a person The generic human model to
track is an articulated object formed of 14 segments of
unknown but constant length (Figure 3). The pose is de-
scribed by 25 angles providing the relation between the
limbs (articulations) and the position is described by 6
extrinsic parameters providing the rigid transformation
from a reference coordinate system. The 15 joints and
terminal points of the skeleton are identified as:

{Pp,Pn,Ph,Prs,Pre,Prh,Pls,Ple,Plh,

Prhip,Prk,Prf ,Plhip,Plk,Plf}

with the origin of the body located atPp.

Figure 3: Generic skeletal model of a person.

The 45 static parameters of the model are given by:

M = [L, r,T]T (1)

whereL is the set of 14 limb lengths,r is the set of 25 ro-
tation angles describing the pose of the model andT are
the parameters of the rigid transformation from the body
reference frame to the global coordinate system (3 trans-
lation parameterstm and 3 rotation anglesRm). Know-
ing the parameters of the model, the 3D positions of joints
and terminal points are readily computed.

Dynamic model of a person A dynamic model with
n = 76 parameters is considered:q = 31 pose and posi-
tion parameters,q associated velocities andn−2q length
parameters. Angular velocity is used for rotations and
linear velocity is used for position parameters. At timek,
the dynamic model of a person is represented by:

Mk|k =
[
L, r,T, ṙ, Ṫ

]T

whereẋ is the velocity ofx. At time k + 1 (∆ units of
time later), the constant velocity dynamic model gives the
predicted state of the subject:

Mk+1|k =
[
L, r + ∆ṙ,T + ∆Ṫ, ṙ, Ṫ

]T

(2)

Observation model The subject is observed by a set of
calibrated and synchronized cameras. The image forma-
tion is parameterized in camerac by the pinhole model
with known intrinsic parametersAc and known extrinsic
parametersRc, tc (Figure 3). In the system, the obser-
vations are the images of joints and terminal points. In
camerac, the position ofPj in a 2D image is given by
the static parameters of the model (equation (1)) and the
calibration parameters:

pj = Ac(RcPj + tc)

wherepj is the image position in homogeneous coordi-
nates:pj = [λxj , λyj , λ]T . Normalization provides the
observation for that point:H(M)j,c = [xj , yj ]

T . Since
multiple pointsj and multiple viewpointsc are available,
all the observationsH(M)j,c are stacked in the global
observation vectorH(M).

3.1 Extended Kalman filter
In the described system, the observations (2D images) are
nonlinear functions of the state. It is possible to estimate
such a system with the extended Kalman filter [5]. The
filtered estimate (̂Mk|k: state at timek with observations
up to timek) and the predictive estimate (M̂k+1|k: state
at timek+1 with observations up to timek) are given by
the dynamic description of the system:

M̂k|k = M̂k|k−1 + Kk(Zk −Hk) (3)

M̂k+1|k = FM̂k|k (4)
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whereF is the dynamic matrix of the system,Hk ,
H(M̂k|k−1) is the (non-linear) prediction of the obser-
vation,Zk is the observation andKk is the Kalman gain.
From (2),

F = In + ∆

 0n−2q,n−q 0n−2q,q

0q,n−q Iq

0q,n−q 0q,q


whereIn is then× n identity matrix and0q,q is aq × q
null matrix.

Kk = Σk|k−1hT
k

(
hkΣk|k−1hT

k + Rk

)−1
(5)

wherehk , δH(M)
δM |M=M̂k|k−1

andRk is the covariance
matrix of the observations (measurement error). The co-
variance matrices of the filtered estimate (Σk|k) and the
predictive estimate (Σk|k−1) are given by:

Σk|k = (I−Kkhk)Σk|k−1 (6)

Σk|k−1 = FΣk−1|k−1FT + Qk−1 (7)

whereQk−1 is the covariance matrix of the system noise
(model error).

Iterated Kalman filter The error caused by the lin-
earization of the filter near the prediction can be de-
creased using the iterated Kalman filter [1, 10]. It consists
in replacing the filtered estimate (3) and the Kalman gain
(5) with their locally iterated versions (i = 0, 1, ..., I−1):

M̂k|k,i+1 = M̂k|k−1+

Kk,i

[
Zk −Hk,i − hk,i(M̂k|k−1 − M̂k|k,i)

]

Kk,i = Σk|k−1hT
k,i

(
hk,iΣk|k−1hT

k,i + Rk

)−1

with the initialization M̂k|k,0 = M̂k|k−1 and where

Hk,i , H(M̂k|k,i) andhk,i , δH(M)
δM |M=M̂k|k,i

. The
filtered estimate and its covariance are then given by:

M̂k|k = M̂k|k,I

Σk|k = (I−Kk,Ihk,I)Σk|k−1

ChoosingI = 1 brings us back to the extended Kalman
filter. An automatic stop criterion can be added: given
ε(M̂) = ‖Zk −H(M̂)‖, iterate as long as the following
conditions are all true:

i < I,

ε(M̂k|k,i+1) ≥ εE ,

ε(M̂k|k,i)− ε(M̂k|k,i+1) ≥ εD,

whereεE andεD are tolerances on observation error and
observation error improvement, respectively.

Joseph’s form equation The direct implementation of
the Kalman equations gives rise to a numerically unstable
filter [5]. The covariance matrix of the filtered estimate
is particularly sensitive to rounding errors since no feed-
back makes it possible to correct the accumulated errors.
Joseph’s form equation for the update of the covariance
matrix has a better numerical stability than the basic im-
plementation; it is given by:

Σk|k = (I−Kkhk)Σk|k−1 (I−Kkhk)T

+ KkRkKT
k

Using (5), it is easily shown that Joseph’s form is equiv-
alent to the basic equation (6) for the update of the co-
variance [5]. Although it involves more computation,
this form has the advantage of preserving the symmetry
and positive definiteness of the covariance matrix despite
rounding errors.

3.2 Initialization of the filter
The system must be initialized by providingM0 andΣ0.
The initial static parameters of the model are calculated
from a first set of the 15 joint 3D positions and all ve-
locities are initialized to 0.Σ0 must be initialized with
realistic values, with respect to the precision of the 3D re-
construction and to modeling error caused by the choice
of initial velocities. For each image, the filter must also
be provided with the value of the observation covariance
Rk and the system noiseQk−1.

While the observation and initial state covariances can
be estimated experimentally, the system noise is difficult
to evaluate. It must account for modeling error such as
non-constant velocity motion and non-rigid body parts.
The values of the covariance matrices are manually set in
the experiments; they are given in Section 4.

4 Results
A set of calibrated and synchronized sequences are used
for the experiments. Thearm sequence (Figure 4) was
acquired with a system of 4 cameras and contains 162
images/camera. Three sequences of the whole body (Fig-
ures 5 to 7) were acquired with a system of 3 cameras
and are composed of 317, 311 and 170 images, respec-
tively. In these results, the large ellipses are the search
regions for each marker defined by a Mahalanobis dis-
tance of 9.21 to the predicted position. The circle at the
center of each ellipse is the maximum predicted size for
each marker.

Tracking of an arm For this experiment, 4 cameras are
placed in an half-circle arrangement and observe the arm
of a person. Orange balls are placed on the shoulder, the
elbow and the hand; they are segmented in the four im-
ages to produce the observations of the system. The pa-
rameters of the Kalman filter are as follows:R = 25I
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Figure 4: Selected tracking result in thearm sequence.
Top: predicted position and size for all markers. Bottom:
recovered 3D skeletal model projected in the input image.

(variance of 25 pixel2 in x and y for all of the observa-
tions), Q andΣ0 are diagonal matrices with variances
ε2l , ε2θ, ε2t for lengths, angles and positions andε2

θ̇
, ε2

ṫ
for

angular and linear velocities. ForQ, εl = 0, εθ = 5◦,
εt = 20 mm, εθ̇ = 20◦s−1 andεṫ = 50 mm/s. ForΣ0,
εl = 14 mm, εθ = 10◦, εt = 10 mm, εθ̇ = 20◦s−1 and
εṫ = 50 mm/s.

Figures 8(a) and 8(b) show both the unfiltered lengths
(computed with direct 3D reconstruction) and the filtered
lengths of the two parts of the arm at each instant. For
the filtered lengths, the illustrated uncertainty is±3 times
the square root of the variance of the filtered estimate
given by the Kalman filter. The gaps in these plots are ac-
tual gaps in the available data when synchronization was
lost. As can be seen in Figure 8, there were three cuts of
more than 100 ms caused by periods of lost synchroniza-
tion (due to system limitations) during which no data was
available. The system is able to cope with gaps because
the Mahalanobis distance dynamically defines the search
region for each marker. This result demonstrates the ro-
bustness of the method to prolonged absence of data, up
to 600 ms in this case.

The unfiltered arm length varies from 275 to 324 mm
while the filtered arm length does not leave the interval
304 to 318 mm for the whole sequence. For the fore-

Figure 5: Selected tracking result in thebody-1sequence.
Top: predicted position and size for all markers. Bottom:
recovered 3D skeletal model projected in the input image.

arm, the unfiltered length varies from 275 to 359 mm
whereas the filtered length remains within the interval
278 to 315 mm. The filtered estimates converge rapidly
and both stay within a 5 mm interval after 40 images. The
large variations of the unfiltered lengths are partly caused
by a combination of 3D reconstruction errors (limited
by the calibration quality) and segmentation errors (in
the thresholding step). Moreover, a large contribution to
these variations may come from the markers that move on
the clothes of the subject. As can be seen in Figures 8(a)
and 8(b), the unfiltered lengths have periodic variations
somewhat similar to the angle value (Figure 8(c)).

Tracking of a body For this experiment, 3 cameras are
aligned as to form an inversed T to observe a person. The
parameters of the Kalman filter are the same as for the
tracking of an arm with the exception that forQ, εθ = 1◦

andεt = 10 mm. Table 1 summarizes the estimated limb
lengths frombody-1, body-2andbody-3. For both the fil-
tered and unfiltered values, the mean and standard devi-
ation of the 14 lengths were estimated over all images of
the three independent sequences. In all cases, the filtered
values have a smaller standard deviation; on average it is
3 times smaller than for the unfiltered values.



Drouin & al., Vision Interface 2003 6

Figure 6: Selected tracking result in thebody-2sequence.
Top: predicted position and size for all markers. Bottom:
recovered 3D skeletal model projected in the input image.

Unfiltered Filtered
Limb mean stddev mean stddev
Trunk 353 9.7 352 4.5
Head 305 18.7 315 3.8

R shoul. 307 8.0 302 4.4
R arm 239 20.0 243 4.5

R foream 216 20.8 232 5.5
L shoul. 296 9.9 291 5.3

L arm 261 14.6 266 2.6
L forearm 203 13.6 207 7.7

R hip 177 18.1 180 5.6
R thigh 359 18.9 359 7.4

R leg 356 14.4 362 5.9
L hip 175 21.3 177 4.0

L thigh 362 10.9 363 3.2
L leg 350 17.5 354 4.8

Average 15.6 5.0

Table 1: Estimated length of the 14 parts of the body
model over 3 independent sequences. Unfiltered values
are obtained from 3D reconstruction and filtered values
are obtained from the proposed system. All units are mm.

Coping with occlusions Figure 9 shows some features
of model-based tracking that allow it to cope with occlu-

Figure 7: Selected tracking result in thebody-3sequence.
Top: predicted position and size for all markers. Bottom:
recovered 3D skeletal model projected in the input image.

sions. In this example, the motion of the subject causes
the markers on the right arm and on the torso to be oc-
cluded by the left arm. Since the model is tracked as a
whole, these occluded markers do not noticeably affect
the tracker. The tracker uses the available observations
to estimate a 3D configuration coherent with previous es-
timations. When the markers reappear, feedback of the
description to the segmentation module defines search re-
gions which are used to label all observed markers.

Comparison of the Kalman filter implementations
Two examples demonstrate typical results obtained with
3 implementations of the Kalman filter: basic extended
filter without iterations (KB), basic iterated filter (KIB)
and iterated filter with Joseph’s form equation (KIJ). Fig-
ure 10 illustrates a situation where the iterated filter can-
not converge to the observations within a single iteration
(Figure 10(c)). In this case, KIB and KIJ take 7 itera-
tions to converge withεE = εD = 0.1 (Figure 10(d)). In
all cases, the previous estimates were computed using the
KIJ (Figure 10(a)) and the segmentation was based on the
same prediction (Figure 10(b)).

Figure 11 shows the effect of rounding errors on the
system. With KIB, the accumulated error on the covari-
ance results in a negative matrix which cannot be used
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(a) Arm length (b) Forearm length (c) Angle

Figure 8: Tracking of an arm: filtered (error bars) and unfiltered (diamonds) parameters.

(a) Frame 149 (b) Frame 154 (c) Frame 161 (d) Frame 167 (e) Frame 170

Figure 9: Tracking result in 3 viewpoints for selected frames of thebody-1sequence. The top line is from camera 1,
the middle line is from camera 2 and the bottom line is from camera 3.

to compute the Mahalanobis distance for the left leg be-
cause it defines an hyperbola rather than an ellipse (Fig-
ure 11(a)). The covariance estimated with KIJ remains
positive for all of the test sequences.

5 Conclusion

A closed-loop vision system for simultaneously tracking
and estimating a skeletal model of human motion was
presented. The skeletal model is instantiated with the es-
timation of the subject’s limb lengths by re-observation,
while pose parameters are tracked. The high level de-
scription is estimated with an extended Kalman filter and
is projected in the images for segmentation. Joseph’s
form equation is used to improve the numerical stability
of the filter.

The system has been tested on real sequences of hu-

man motion. The estimated lengths were shown to con-
verge rapidly despite large observation variances. Feed-
back of the description in the images allows the system to
cope with occlusion of the markers in some or all view-
points. Joseph’s implementation was shown to have bet-
ter numerical stability than the basic implementation; it
remained stable for all tested sequences while estimating
a dynamic model with 76 parameters.

As future work, we intend to remove the markers by
observing the actual limbs of the subject. The challenge
lies in selecting texture and geometric information to seg-
ment the limbs. The presented approach will facilitate
tracking and segmentation of the limbs once identified.

Acknowledgements:This work is supported by NSERC
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grants to P. H́ebert and M. Parizeau.
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(a) Estimation for frame 74 (b) Prediction for frame 75 (c) KB update (d) KIB & KIJ update

Figure 10: Comparison of the basic extended Kalman filter (KB) and the iterated Kalman filter (KIB & KIJ).

(a) KIB predicted covariance (accumulated rounding errors) (b) KIJ predicted covariance

Figure 11: Search regions for frame 31 ofbody-1defined from the covariance of the predictive estimate (Maha-
lanobis distance of 9.21) computed by the iterated Kalman filter with basic implementation (KIB) and Joseph form
implementation (KIJ). Note the hyperbolas defined by the negative covariance matrices of KIB.
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