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Abstract

This paper presents an efficient procedure for cali-
brating a wide area system of synchronized cameras with
respect to a global coordinate system. The flexibility of
this procedure lies in its use of a hand-held calibration
target that is automatically detected in real-time by the
system, and also in its capability to provide a feedback on
the working volume coverage through a sampling pyra-
mid. In a first stage, the intrinsic parameters are com-
puted separately for each camera, and then the relative
positions of the cameras are evaluated through a bun-
dle adjustment. The 3D reconstruction uncertainty of the
camera system is assessed locally within the working vol-
ume and is verified to be acceptable for monitoring hu-
man activities.

1 Introduction

In order to conduct experiments on automatic descrip-
tion of human activities from a set of multiple cameras,
one needs an appropriate experimental system. The sys-
tem should be transportable and easily reconfigurable to
adapt to the environment where the experiment is held.
Typically, an experiment will be performed in an area the
size of a room. Since the idea is to capture dynamic 3D
features of the scene in real-time, it is necessary to syn-
chronize the video streams [5, 7] and calibrate the cam-
era parameters [3, 9]. While the calibration mathemat-
ical model is chosen from precision requirements (1cm
in a room-sized volume), the calibration procedure must
be rapid and kept simple. Moreover, depending on the
configuration of the cameras, the local uncertainty of the
3D measurements may vary significantly within the ob-
served volume (working volume). It is thus important to
provide an indication of the expected local uncertainty
after calibration. This uncertainty is then available to the
application when 3D reconstruction is performed.

To calibrate a single camera, Zhang [9] proposed a

method using a planar pattern that is easily moved in the
camera’s field of view; the intrinsic parameters as well as
a set of extrinsic parameters for each position of the cam-
eras are estimated. Heikkilä [3] improved the accuracy
of the calibration using a more elaborate model for dis-
tortion. Nevertheless, these approaches do not integrate
a systematic method to calibrate a set of cameras with
large fields of view. For instance, there is no indication on
sampling the working volume (WV) using the calibration
pattern. Surprisingly, very few calibration approaches for
wide area systems have been proposed [1, 8]. Although
these approaches differ in their implementation complex-
ity, they generally decouple the estimation of intrinsic
and extrinsic camera parameters. Intrinsic parameters are
first estimated for each camera independently. Secondly,
the relative position of the cameras is calibrated by using
a fixed or moving calibration target in the WV. For fixed
environments, it is possible to integrate landmarks and
survey them (e.g. using a theodolite) before calibration
[8]. However, this method cannot easily accommodate a
transportable system. Interestingly in [1], a single LED
point is waved in front of the camera network to cali-
brate the extrinsic parameters. In this case, the LED need
not be seen simultaneously by all cameras. Nevertheless,
since the system is not synchronized, assumptions must
be made to decouple spatial and temporal errors. While
segmentation of the LED is simple for indoor environ-
ments, this approach cannot function outdoors. More-
over, the small size of the LED’s image does not allow
the position estimate to be precise. On the other hand, a
calibration pattern formed of circular patches can easily
be segmented within a tenth of pixel precision. In order
to do so, the diameter of a circular patch image should be
approximately 20 to 30 pixels.

This paper presents a flexible calibration procedure
for a wide area system of synchronized cameras. The pre-
sented procedure allows for fast calibration using hand-
held planar targets that can be moved freely throughout
the WV. A method for sampling the WV with the cali-
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bration pattern both for intrinsic and extrinsic parameters
calibration is presented. The configuration of the cam-
eras can thus be changed and calibrated within minutes.
Also, since the calibration targets provide many points, it
is possible to locally assess the quality of the reconstruc-
tion within the WV.

The paper is organized as follows: Section 2 presents
the calibration procedure, Section 3 describes the proce-
dure to assess the quality of the calibration and experi-
mental results are given in Section 4.

2 Calibration procedure
The calibration procedure begins with a separate estima-
tion of the intrinsic camera parameters. For this purpose,
the geometric camera calibration algorithm described by
Heikkilä [3] is used. In the second step, global extrin-
sic parameters are estimated from homography [9] and
a bundle adjustment is performed to optimize all of the
parameters.

We use thepinhole cameramodel for 3D reconstruc-
tion. The pinhole models the projection of a 3D point
w = (x, y, z) into an image pointm = (u, v) by a pro-
jection matrixP = A[R|t] that represents the intrinsic and
extrinsic parameters of the camera. The intrinsic param-
etersA relate the camera coordinates (millimeters) to the
image coordinates (pixels). The extrinsic parameters re-
late the global coordinate system to the camera reference
frame. They are represented by a rigid transformation
(rotation matrixR and translation vectort). Nonlinear
distortions are also added into the model in order to deal
with short focal length lenses that are typically used in
the applications we are interested in. The model includes
both radial and tangential distortion coefficients [3].

Calibration targets These targets are composed of
filled circles arranged on a5 × 7 rectangular grid (see
Figure 1). Similar patterns of different sizes were made
to allow better coverage of the WV. The smaller patterns
are printed using a laser printer while the larger ones are
drawn with a plotter. In both cases they are fixed on
a planar hard surface. The circle centers projected on
the image plane of a camera are automatically detected
and matched with the actual calibration pattern using four
specially colored reference circles detected in HSV space
for more robustness. Using these four matches of the pla-
nar pattern, a homography is estimated to match the re-
maining black circles. It is worth noting that the four
colored reference circles are of different configurations
for scaled versions of the calibration target, allowing au-
tomatic multiple target identification in the same proce-
dure. Typically, two target sizes are used.

Sampling pyramid In order to estimate the intrinsic
camera parameters (including distortion), it is important

Figure 1: Calibration target (30 or 60 cm long).

to adequately sample the whole WV of each camera. In
a fixed environment, the method presented in [8] is used
to sample the WV by moving a calibration bar to known
3D positions with calibrated tripods. This method is not
flexible enough for a transportable setup. Instead, a semi-
automatic procedure has been developed to assure a good
coverage of the WV without having to move the cali-
bration pattern to known 3D positions. First, an initial
estimate is needed for the intrinsic parameters in order
to estimate the extent of the volume. This estimate can
be the result of a previous calibration run, or can be de-
rived from the lens manufacturer’s specifications. The
user then proceeds to manually show the calibration tar-
get to each camera at the near and far limits of its WV.
The system continuously tracks the target and provides an
audible feedback whenever it is correctly detected within
an image frame. From the initial intrinsic parameters and
the homography between the model target and its image,
it is possible to compute the target position with respect
to the camera and thus define an approximate sampling
volume by integrating the nearest and farthest detected
set of points.

Then, knowing the minimum and maximum depths
of the view field, respectivelyzmin andzmax, a sampling
pyramid ofn levels can be constructed, as illustrated in
Figure 2. For each leveli = 0, 1, . . . , n− 1 of this pyra-
mid, (i + 1)2 sampling points are uniformly distributed
on a spherical surface patch that lies within the view field,
and is centered on the camera’s center of projection, with
radiusri = [(n− i− 1)zmin + izmax]/(n− 1).

First step: intrinsic parameters calibration Given
the sampling pyramid, the user again moves the calibra-
tion target within the WV until he covers all sampling
points. A sample point is said to be covered whenever
the distance between this sample point and the center of
the target is sufficiently small. The system provides au-
dible feedback each time the target covers a new sample
point, and records the corresponding 2D positions of all
circle centers in the image. When all points in the pyra-
mid are covered, the system proceeds with the collected
data to estimate both intrinsic and (backward) distortion
parameters using Heikkilä’s algorithm.
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Figure 2: Example of a 3-level sampling pyramid.

Second step: reference frame and optimization In
the second stage of the calibration procedure, the global
reference frame is set to the reference frame of the first
camera. The user simply moves the target around in the
WV while the system tries to simultaneously detect it in
all c images. Data is collected whenever the target is de-
tected in at least two images. The system uses the same
sampling pyramid defined previously as a guide to collect
images. For each sample point of each camera, the sys-
tem keeps a list of references to sets of detected targets.
Therefore, the bookkeeping can be performed indepen-
dently for each camera without duplicating the collected
data. Each time a target is detected in a subset of cam-
eras,{C}, the system computes the closest sample point
in the pyramid, for each camera in{C}. For each of these
cameras, the list associated to the sample point is scanned
and elements for which the set of cameras is included in
{C} are removed. Then, the new observation is either
dismissed if{C} is included in any element already in
the list or it is inserted in the list.

When a new set of images is available, the system
uses homography to compute the rigid transformation
between each of the cameras where the target was de-
tected. This gives an initial estimate of the extrinsic pa-
rameters for each camera. As soon as all camera po-
sitions are known in a common coordinate system, the
user can end the data collection and proceed to the op-
timization. These positions can be estimated directly or
indirectly through intermediate transformations when the
target cannot be seen from all cameras at the same time.

The intrinsic parameters of all cameras and the6(c−
1) free extrinsic parameters are then optimized using the
Levenberg-Marquardt Algorithm [6] to minimize either
the registration error or the registered pattern projection
error of all detected circle centers. The algorithm is ini-
tialized with the intrinsic parameters obtained from the
first step and the extrinsic parameters estimated from ho-
mography.

3D reconstruction Matched image points in two or
more images are used to estimate 3D points by simple
triangulation. To make these estimates from multiple im-
ages, there are several possibilities [2]. We implemented
the classical method that consists in first eliminating dis-
tortion on the observed matched image points, and com-
puting a least-square estimate of the intersecting rays in
3D space.

3 Assessing the calibration quality
In this section, procedures for locally assessing the un-
certainty of a 3D measurement are described.

Reconstruction error After having completed the cali-
bration procedure, the local uncertainty of the system can
be assessed by once again moving the calibration target
throughout the WV. For each detected target, the circle
centers are matched between cameras and their 3D posi-
tion is computed. The recovered 3D structure of the set
of target points is then matched to the actual target rigid
structure by registration [4] to yieldT, the rigid transfor-
mation from an observed object{ŵ} to its model{w}.
The mean reconstruction error forq control points on the
model is then given by:

εr =

√√√√1
q

q∑
i=1

||wi − Tŵi||2 (1)

This error provides a quantitative estimation of the local
coherence (rigidity) of the measurements.

Epipolar error From a pair of matched pointsml and
mr observed in camerasl andr and the fundamental ma-
trix F = A−1

r [tlr]× RlrA−1
l , the epipolar error in image

r is given by:

εe =
|m̃T

l Fm̃r|√(
m̃T

l f1
)2

+
(

m̃T
l f2

)2
(2)

wherem̃ is the vectorm augmented by adding1 as the
last element andfi is the ith column ofF. This error
for camerar and the corresponding 3D position are com-
puted and memorized for each point of the pattern and
for each cameral. Moving the target throughout the vol-
ume provides a quantitative estimation of the calibration
quality for camerar.

4 Experiments
4.1 Hardware and synchronization
The current experimental system encompassesc = 4 pro-
gressive scan digital color cameras (Pulnix TMC-6700-
CL, 60 frames/s) mounted on tripods, typically posi-
tioned in the corners of the working area or on a circular
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arc layout. Each camera is connected to a distinct stan-
dard PC through a CameraLink interface board (Matrox
Meteor II / CameraLink). This distributed architecture
was devised in order to maximize throughput for real-
time processing, by conducting basic 2D image process-
ing operations independently on each image stream. Ex-
tracted information and features are then routed to a Be-
owulf cluster of computers for high-level processing and
fusion of information between image streams. This ap-
proach benefits from both the low cost and high perfor-
mance of current PC hardware.

But distributing the image streams on different com-
puters creates synchronization problems that must be
dealt with adequately. First, the cameras are genlocked
to ensure that all frames are generated simultaneously. A
master synchronization board was also designed to dis-
patch avsyncsignal to all cameras, and to provide basic
handshake between the PCs. Before starting the process-
ing of a new image, each PC waits for a ready signal from
the others. In case of heavy computational burden on one
or more of the PCs, the others stay synchronized simply
by skipping frames until everyone is ready to go on with
the next acquisition. In order to integrate local results,
each host computes a globally consistent time stamp us-
ing its internal hardware timer combined with a network-
based time barrier that is enforced periodically. This bar-
rier is necessary because the operating system that we use
(Windows 2000) provides no real-time guarantees, and
sometimes causes the images to get out of sync when it
decides unexpectedly to do house cleaning chores during
critical timing operations.

To validate this synchronization method, we have
placed avsynctriggered electronic digital counter in front
of the four cameras, so that the counter value corresponds
to a frame number. Then, using OCR software, we were
able to compare the recognized frame numbers for equal
time stamps in order to verify the effective synchroniza-
tion of the computers. The time barrier was enforced ev-
ery 1000 frames, and the experiment lasted over 15 con-
secutive hours. During that time,99.83% of the frames
matched perfectly,0.15% were rejected because of OCR
errors, and only0.014% were definitely wrong because
of a single machine that lost synchronization. These out-
of-sync frames, however, were all within the same frame
bloc and synchronization was automatically restored by
the subsequent network time barrier.

4.2 Results
Examples of calibration results are provided for three dif-
ferent camera configurations. For the first configuration
(Figure 3), the cameras are arranged roughly in the four
corners of a5 × 5 m rectangle. In the second configura-
tion (Figure 4), the cameras are positioned more or less
along a circular arc. In the third configuration, (Figure 5),

the cameras are placed on the corners of a vertical cross.
To estimate the intrinsic parameters, we typically use

a sampling pyramid constructed withn = 3 levels (14
sample points), which allows for good coverage of the
WV. Using the four cameras, a residual error of less than
0.13 pixels is obtained after back projection of the de-
tected circle centers. For the extrinsic parameters, using
respectively 37 and 46 target positions, the first two con-
figurations were calibrated by minimizing the registration
error for all detected circle centers. The residual 3D reg-
istration errors were on average 3.3 mm and 2.7 mm. The
third configuration was calibrated by minimizing the reg-
istered pattern projection error of all detected circle cen-
ters using 21 target positions. The average residual pro-
jection error was 3.4 pixels.

Reconstruction error Errors can be visualized by pro-
jecting on the floor the average errors for the correspond-
ing vertical columns. Figures 3 to 5 illustrate the recon-
struction error (εr) distribution within the observed area
for the three configurations. The bullet diameters1 repre-
sent the relative error amplitudes. In the first configura-
tion (Figure 3), errors range from 1.3 mm to 10 mm with
an average of 3.8 mm. These statistics stem from 3949
detected targets. For the second configuration (Figure 4),
they range from 1.8 mm to 17 mm (1983 targets) with an
average of 5.9 mm. For the third configuration (Figure
5), errors range from 1.6 mm to 14 mm (809 targets) with
an average of 6 mm. The12.7 mm CCD cameras were
mounted with 6 mm lenses. The sizes of the calibration
targets were 30 and 60 cm (Figure 1). The depth of the
WV is approximately 3 m for the first configuration, ver-
sus 4 m for the second and the third. The larger observed
errors for the arc and cross configurations are explained
by the depth increase as well as the configuration where,
in these cases, the cameras are positioned on one side of
the WV.

Epipolar error Again, errors are visualized by project-
ing on the floor the average errors for the corresponding
vertical columns. The third column of Figure 6 illustrates
the epipolar error (εe) distribution within the WV for the
cross configuration. The gray circle in each field of view
is the approximate position of an observed human; it is
discussed in theTracking peopleparagraph. The mean er-
ror is 5.0, 3.4, 2.9 and 2.3 pixels for cameras 0, 1, 2 and 3,
respectively. These statistics stem from 615, 525, 448 and
387 detected targets for each camera. The largest shown
errors are 50, 25, 24 and 9.9 pixels, respectively. Com-
paring these results with Figure 5 suggests that the recon-
struction error provides incomplete information about the
calibration quality. For instance, the epipolar error near
cameras 0, 1 and 2 is much larger than the reconstruction

1Please note that error bullets are much enlarged.
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Figure 3: Working volume and field of view of the cam-
eras for the square configuration. The bullet diameters
represent the reconstruction error amplitudes vs. posi-
tion.

Figure 4: Working volume and field of view of the cam-
eras for the arc configuration. The bullet diameters rep-
resent the reconstruction error amplitudes vs. position.

Figure 5: Working volume and field of view of the cam-
eras for the cross configuration. The bullet diameters rep-
resent the reconstruction error amplitudes vs. position.

error would lead to believe. Nevertheless, the average er-
ror is larger for camera 0 than for the other three, which
indicates that the measurements obtained from this cam-
era are less accurate.

Sampling pyramid To demonstrate the need of ade-
quate sampling of the WV, the cross configuration (Fig-
ure 5) was calibrated with partial sampling pyramids.
The estimatedzmin andzmax were used to cover only
parts of the original WV’s depth usingz′min = zmin +
dmin(zmax − zmin) andz′max = zmin + dmax(zmax −
zmin) where0 ≤ dmin ≤ dmax ≤ 1. Three sampling
pyramids were defined to cover the near, center and far
WV: near with dmin = 0 anddmax = 0.2, centerwith
dmin = 0.4 anddmax = 0.6 and far with dmin = 0.8
anddmax = 1. In all cases, the configuration was cal-
ibrated by minimizing the registered pattern projection
error of all detected circle centers. Fornear, the residual
error of 17 target positions was 3.9 pixels, forcenter, the
residual error was 2.4 pixels (41 targets) and forfar, the
residual error was 3.0 pixels (62 targets).

The quality of the calibration parameters was then
evaluated by estimating the reconstruction error of 809
detected targets in the complete WV. The distribution of
the reconstruction error in the WV is shown in Figure 7.
The reconstruction error fornear ranges from 3.9 mm to
53 mm with an average of 32 mm. Forcenter, it ranges
from 1.9 mm to 26 mm (average of 13 mm) and forfar,
it ranges from 2.0 mm to 43 mm (average of 7.6 mm).
As can be seen from Figure 7, the spatial error distri-
bution is strongly correlated with the sampling pyramid
location. The parameters obtained with thenear pyra-
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mid can be used to compute adequate reconstructions in
the near WV but are completely useless in the far WV
(Figure 7(a)). The same observation holds for thecen-
ter pyramid (Figure 7(b)) and, to a lesser extent, for the
far pyramid (Figure 7(c)). In all cases, the parameters
obtained with the full pyramid (Figure 5) give a globally
better 3D reconstruction. However, the local reconstruc-
tion error is smaller with the partial pyramids. For exam-
ple, thefar pyramid gives a better reconstruction in the
far WV than the full pyramid. It is thus advantageous to
adequately sample theintendedWV for a specific appli-
cation. The proposed sampling pyramid allows this sam-
pling to be performed in a flexible manner without the
need for known landmarks in the environment.

Tracking people Figures 6 and 8 show snapshots of
a walking human in each of the three configurations, as
seen by the four cameras at a given instant.

Markers were automatically detected in Figure 6 and
corresponding 3D coordinates were computed and back
projected into each image. The position of the subject in
the WV of the cameras is represented by gray circles in
the third column of Figure 6. As can be seen from this
figure, the subject’s position in the WV of cameras 0 and
1 (Figures 6(c) and 6(f)) overlaps a zone of larger epipo-
lar error than in the WV of the other two cameras. This
large epipolar error is observed on the projected features;
in cameras 0 and 1 (Figures 6(b) and 6(e)), the projected
3D model lies about 10 pixels away from the segmented
markers while it lies less than 3 pixels away in the other
cameras (Figures 6(h) and 6(k)). The estimated epipolar
error is thus a useful information for weighting the con-
tributions of multiple images in order to measure objects.
In this case, cameras 0 and 1 would contribute less than
the other in this portion of the WV.

Matching feature points in Figure 8 were hand picked
and corresponding 3D coordinates were computed and
then back projected into each view to illustrate the qual-
ity of the calibration (one point is on the nose tip). The
calibration results obtained in theReconstruction error
paragraph (Figures 3 and 4) indicate that the maximum
deformation for an object of the size of a human torso is
about 1 cm anywhere within the volume.

5 Conclusion
A procedure for calibrating a reconfigurable network of
cameras coupled to a real-time acquisition and process-
ing network of computers was described. The calibration
procedure begins with a separate estimation of the intrin-
sic camera parameters. Next, the relative positions of the
cameras are estimated, and then all parameters are glob-
ally optimized. The procedure is interactive both for in-
trinsic and extrinsic calibration as the system assists the
sampling of the working volume. Once the calibration is

complete, new images are gathered to provide indepen-
dent observations in order to assess the local uncertainty
of the camera system. The epipolar error is available to
weight the measure of each camera. It is also possible to
review the system configuration when the 3D reconstruc-
tion error requirements are not met.

In the future, non planar portable targets will be ex-
ploited to facilitate the acquisition of images across mul-
tiple, possibly orthogonal, viewpoints. Due to strong in-
cident angle, such a configuration cannot be easility cali-
brated with standard pairwise calibration techniques.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Left: reconstructed 3D features of a human projected into the input images for the cross configuration.
Center: segmented (circle) and reconstructed (crosses) features. Right: epipolar error vs position where the camera of
interest is highlighted. The gray circle is the position of the subject. From top to bottom: camera 0 to camera 3.
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(a) Near working volume (b) Center working volume (c) Far working volume

Figure 7: Reconstruction error distribution for the cross configuration when the sampling pyramid is limited to the
near, center or far working volume. The calibrated working volume of camera 0 is shown (arcs).

(a) Square configuration

(b) Arc configuration

Figure 8: Reconstructed 3D features of a human projected into the input images.


