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Abstract

This paper presents a new approach for cursive script seg-

mentation and recognition, based on intrinsic models of

cursive letters (allographs). The models are built using

strati�ed context-free shape grammars that permit the def-

inition of both syntactic and semantic attributes. These

attributes synthetize pertinent morphological characteris-

tics of allographs that are then used for recognition. The

main topic of this paper concerns the parsing process devel-

oped for allograph segmentation, which uses fuzzy-logic to

evaluate the likelihood of segmentation hypotheses. This

process is the �rst step of the recognition method and

leeds to the construction of a graph where nodes repre-

sent segmented allographs and arcs link adjacent nodes.

The analysis of this segmentation graph can be carried out

for submitting possible letter sequences to higher linguis-

tic evaluation modules. Preliminary results are given for

multi-writer isolated cursive letters. For a test database

containing cursive samples of 10 di�erent writers, an av-

erage recognition rate of 91:7% is obtained. Recognition

is non personalyzed, that is, cursive samples of all writers

are treated with the same algorithm parameters.
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I Introduction

Cursive script recognition is a di�cult problem for

essentially three reasons. First, because of the in-

herent variability of the handwriting process, which

is emphasized by individual and regional variations in

handwriting styles. Second, cursive letters within cur-

sive words cannot be segmented unambiguously be-

fore recognition and, thus, letter segmentation must

be integrated in the recognition process. Third, lin-

guistic knowledge (higher than lexical) is often essen-

tial for total recognition of cursive script but auto-

matic comprehension of natural langages is an other

very di�cult (unsolved) problem.

To tackle handwriting recognition, three types of

kwowledge can be distinguished : morphological,

pragmatic and linguistic. Morphological knowledge

concerns everything that is known about the shapes

of letters that are to be recognized. This type of

knowledge can take two forms : letter prototypes or

intrinsic letter models. Letter prototypes are samples

of handwriting used as models either directly by tem-

plate matching methods, or indirectly via feature ex-

traction and comparison. The main advantage of this

form of morphological knowledge lies in its ability to

develop systems that can be adapted to writers indi-

viduality. Its disavantage is that common character-

istics of writers are di�cult to generalize. Intrinsic

letter models are theoritical morphological knowledge

in the sense that they are not constructed from the

particular habits of writers. These a priori models ex-

ist | although they can vary from region to region |

because they are taught to school children. The main

advantage of intrinsic models is to provide basic mor-

phological knowledge of handwriting that can be used

as a starting point for a truly multi-writer recognition

system. Its disavantage, obviously, is that some writ-

ers will deviate from these theoretic models and that

adaptation is much more complicated. From a review

of the literature [1, 2, 3], it appears that, except for [4]

where the idea was �rst introduced but with a sim-
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pli�ed model based on a four directions coding, no

one has ever tried to build intrinsic letter models for

cursive script recognition.

Pragmatic knowledge1 corresponds to all informa-

tion not related to the shape of the symbols but

nevertheless usefull for their recognition. Generaly,

it concerns information like spatial arrangement of

allographs2 (for roman alphabets : from left to right

on a common baseline) or temporal order of handwrit-

ing components3 (for dynamic systems). This type of

knowledge is used by all existing systems but usualy

not explicitly.

Linguistic knowledge can be divide into three cat-

egories : lexical, syntactical and semantics. However,

only lexical knowledge is used commonly and, in fact,

most current systems rely on a limited vocabulary and

cannot function correctly without it.

The object of this paper is to present a method for

building intrinsic models of allographs using strati�ed

context-free shape grammars [5, 6] and to describe the

parser for these grammars, that enables allograph seg-

mentation within cursive words. This method is part

of a recognition approach [3] designed to recognize

cursive script using only morphological and pragmatic

knowledge. It is also part of a larger project which

aims toward the proposal of an intelligent electronic

penpad [7].

The organization of the paper is as follows. Section

II �rst describes the grammatical formalism adapted

from [5]. Then, Section III elaborates the allograph

modelling methodology and illustrates the formalism

with a model for lower-case letter a. The parsing

mechanism for allograph segmentation is developed in

Section IV. Section V includes experimental recogni-

tion results obtained from a multi-writer database of

isolated lower-case cursive letters. Finally, Section VI

contains conclusions.

II Fuzzy-Shape Grammars

Attributed languages have been proposed as a way

to unify syntactic and statistical pattern recognition

[8]. With attributed (shape) grammars, it is possible

to de�ne patterns with attributes that both describe

1Although linguists might consider this type of knowledge

as linguistic, we make this distinction for pragmatic reasons!
2The term allograph is used to designate a particular style

for writing a given letter.
3The term component is used to designate the portion of the

written trace between a pendown and a penlift (while the pen

is in contact with paper).

syntactic and semantic information4. The syntactic

attributes consist of various attachment points used

for spatial arrangement of subpatterns into a more

complex pattern, and the semantic attributes describe

various geometric or other types of properties of the

pattern. The advantage of these grammars over con-

ventional string grammars is that relations between

primitives are no longer restricted to concatenation.

Any morphologically signi�cant relation can be used

to de�ne patterns.

A programming language named HAD (Hierarchi-

cal Allograph Description language) has been devel-

oped for creating intrinsic allograph models [3]. The

compiler for this langage is written in C and has

been tested on both MS-DOS and UNIX operating

systems.

II.1 Grammatical Formalism

Although the strati�ed context-free shape grammar

formalism described in this section is derived from

[5], it is rewritten here because, �rst, several minor

changes were made to it and, second, to establish the

mathematical notations relevant to the parsing mech-

anism developed in Section IV.

Let F = fS1; : : : ; Si; : : : ; Sng be the set of n per-

tinent symbols associated to a given segmentation

problem (i.e. allographs, sub-allograph patterns and

eventually pattern primitives). Then, to all Si sym-

bols (except for a few primitive symbols) is associated

a grammar Gi(Ti; Ni; Pi; Si) where Ti is the set of ter-

minal symbols, Ni is the set of nonterminals, Pi is the

set of production rules and Si 2 Ni is the start symbol

(i.e. the symbol representing the pattern that is mod-

elled by the grammar). Let Vi = Ni [ Ti denote the

set of all vocabulary symbols for grammar Gi ; and

associate 8v 2 Vi a level number �(v) 2 f0; 1; : : : ; kig

with �(Si) = ki and 8v 2 Ti; �(v) = 0.

The set Ti of terminal symbols contains already

segmented symbols, that is, either pattern primitives

that are obtained by an external segmentation pro-

cess, or start symbols of other grammars. The pos-

sibility of using start symbols as terminal symbols of

other grammars justify the hierarchical epithet of the

HAD langage. However, to avoid circular de�nitions,

if Sj 2 Ti then the constraint j < i is imposed to

4N.B. The words syntactic and semantic used in this con-

text have the same meaning than in the introduction, but do

not refer to the same languages ! In the introduction, we were

referring to syntax and semantics of natural languages like en-

glish or french. . .
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make the grammars strati�ed.

The nonterminal symbols of Ni are intermediate

patterns that permit the passage from the start sym-

bol to terminal symbols. Unlike string grammars, all

symbols v 2 Vi possess a non trivial structure con-

sisting in a name, a syntactic part and a semantic

part :

v = name[syntactic part][semantic part]

where name is a token that identi�es uniquely the

symbol, syntactic part is a set of attachment points

used to specify spatial arrangement of the symbol and

semantic part is a set of properties used to character-

ize the symbol.

The set Pi contains all production rules for sym-

bols of Ni. Every production rule has the form

(v := �;C;G) which indicates that symbol v 2 Ni

can be rewritten as the group of constituent symbols

� = fc1; : : : ; cj ; : : : ; cmg if condition C is veri�ed with

cj 2 Vi and �(cj) � �(v); 8j 2 f1; : : : ;mg. The case

where �(cj) = �(v) is not, however, permitted for

the �rst production rule of v. The applicability con-

dition C can mix both syntactic and semantic parts

(attributes) of any symbol cj 2 � to test for accept-

able spatial arrangement and coherent properties. G

describes the set of generation rules associated to the

syntactic and semantic parts of v. Again, these rules

are functions of both syntactic and semantic parts of

any symbol cj 2 �. No production rules are associ-

ated to terminal symbols.

An illustration of this formalism, expressed in the

HAD language, will be presented in Section III.

II.2 Fuzzy-Grammars and Fuzzy-Logic

With the strati�ed context-free grammar formalism, a

symbol is thus transformed in other (simpler) symbols

under a certain syntactic and semantic applicability

condition. Consider, for example, a proximity condi-

tion between two symbols. Obviously, it is possible to

arrange these symbols in such a way that this proxim-

ity condition is absolutly satis�ed. Reciprocally, the

two symbols can be moved away from each other in

such manner that this condition becomes absolutly in-

acceptable. But in between these two arrangements,

there exists a number of other arrangements where it

would be dubious to take an unambiguous decision.

Fuzzy-logic is thus used to managed this ambiguity

[9, 10]. Let X represent a non-fuzzy universe and A a

fuzzy set on X, that is, A � X. Then, the character-

istic function �A(x) de�nes the grade of membership

of element x 2 X with respect to fuzzy set A :

A = f(x; �A(x)) jx 2 Xg ; 0 � �A(x) � 1 (1)

Fuzzy-shape grammars can be de�ned simply by

evaluating with fuzzy-logic the applicability condi-

tions of production rules that become characteristic

functions of fuzzy-sets associated to each symbols. In

practice, interesting elements of set A are those for

which �A(x) is non zero.

III Allograph Modelling

The type of shape grammars described in the previ-

ous section has the advantage of allowing any rele-

vant relation between pattern primitives. However,

it not clear how such grammars can be inferred auto-

matically and, hence, all allograph models were hand-

generated. This process is very time-consuming but

need to be done only once.

Although, grammatical inference is not conceived

at the moment, this does not mean that automatic

learning can't be done. Indeed, it is possible to de�ne

for each allograph model a set of morphological char-

acteristics (properties) imbedded into the grammars

but on which statistical learning could be applied.

This section presents the general methodology fol-

lowed for intrinsic allograph model building and gives

an example for one allograph of letter a.

III.1 Attributed Handwriting Primitive

But �rst, the handwriting primitive on which the

models are built is presented briey. For more de-

tails concerning this primitive, the reader is referred

to [11].

The Attributed Handwriting Primitive (AHP)

used as a starting point for modelling allographs is

based on a pragmatic model of handwriting which

represents handwriting components as a sequence of

characteristic points linked together by constant cur-

vature segments (i.e. circular arcs) [3, 11]. A primi-

tive is associated with every characteristic point and

represents a portion of the component that stretches

from the previous characteristic point to the following

one.

Each primitive, is extracted | by an external seg-

mentation process not described here | with three

attachment points : a starting point (ps), a character-

istic point (pc), and an ending point (pe) ; and seven
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c shape e shape i shape

Figure 1: Examples of basic shapes.

properties : an index number unique to the primi-

tive (n), a discontinuity measure at the characteristic

point (dc), slant measures at the starting point (ss),

characteristic point (sc) and ending point (se), and

curvature measures at the start (cs) and end (ce) of

the primitive.

III.2 Modelling Methodology

The methodology followed for the modelling of allo-

graphs can be divided in three phases :

1. The creation of di�erent classes of primitives :

\continuous", \discontinuous", \horizontal" and

\vertical". The \continuous" class contains

primitives that have a low discontinuity mea-

sure (dc). Reciprocally, the \discontinuous" class

contains primitives with high discontinuity mea-

sure. The \horizontal" class contains primitives

that globally correspond to horizontal displace-

ments (sc). Likewise, the \vertical" class con-

tains primitives corresponding to vertical dis-

placements. These primitive classes and their

combinations are de�ned by grammars that ap-

ply fuzzy-thresholds on the properties of the

AHP. It should be noted that these primitive

classes are fuzzy-sets and that a particular AHP

can belong to several of them, for example to the

\continuous" and \discontinuous" classes if its

discontinuity measure is medium, although not

necessarily with the same grade of membership.

2. The modelling of basic shapes like the c shape,

e shape and i shape of Fig. 1. These shapes

are modelled by grammars that assemble the dif-

ferent possible combinations of primitive classes

that make up the shape. For example, the

c shape is constituted by at least one \contin-

uous vertical" primitive possibly preceded and

followed by one \continuous horizontal" primi-

tive. Of course, not all combinations are allowed.

Slant and curvature Constraints are imposed. All

basic shapes are de�ned with a starting point

f(�)

1

0
�� �� � � � + �� �

Figure 2: Characteristic function for fuzzy-thresholds.

(ps), an ending point (pe) and several other at-

tachment points that generally correspond to the

characteristic points of the constituent primitives

(points a, b and c of Fig. 1). However, all at-

tachment points are not necessarily disjoint. For

example in the c shape, points ps and a may be

confounded if no preceding \continuous horizon-

tal" primitive exist. Also, all basic shapes are

de�ned with properties representing their start-

ing and ending index number (ns and ne), their

starting and ending slant (ss and se) and their

starting and ending curvature (cs and ce) so that

further constraints may be imposed if needed for

a particular allograph model.

Again, it should be noted that, contrary to

most other structural cursive script recognition

method that have used these types of basic

shapes, the existence of an e shape (a loop), for

example, does not override the existence of the

c shape that is part of it. Both shapes can coexist

and be used in di�erent allograph models.

3. The �nal phase is the modelling of the allograph

themselves. Each of them is assembled from ba-

sic shapes and morphological characteristics are

de�ned and tested to take the �nal decision. Sec-

tion III.3 gives an example of an allograph model.

Fuzzy-thresholds in the HAD language are de�ned

by a characteristic function f(�) illustrated by Fig.

2. The syntax is : � [�; �; ��; �� ], where � is an inte-

ger expression, � and � are respectivly the lower and

upper bound for a true result (f(�) = 1), and �� and

�� are the lower and upper range for a fuzzy result

(0 < f(t) < 1). Other types of characteristic func-

tions can be found in the literature but, however, we

have not tried them so far. This one was chosen for

its simplicity.

Slant and Curvature Constraints can be speci�ed in

the HAD language by using macro-de�nitions that
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d
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Figure 3: An allograph of letter a.

de�ne fuzzy-thresholds. For slant constraints, the

macro slant(�1; �2) can be used to limit slant from �1
to �2 with two equal fuzzy-ranges �xed by a constant.

For curvature constraints, three macros were de-

�ned for three types of curvature corresponding to

three di�erent fuzzy-thresholds : cpos for positive

curvature5, cneg for negative curvature and crect for

rectilinear curvature (null curvature). No additional

precision was deemed necessary.

Morphological Characteristics are relative measures

of size, that characterize each allograph model. Con-

sider, for example, the principal allograph of lower

case letter a illustrated in Fig. 3. If one would move

point f (and point e with it) up to approximatly point

d, then one would get an allograph of letter o. Like-

wise, if point d is moved up su�ciently relative to

point a, then we get an allograph of letter d or, if

point f is moved down su�ciently we get an allo-

graph of letter q. Hence, for a same combination of

basic shapes, it is possible to form di�erent allographs

of di�erent letters. Morphological characteristics are

thus de�ned to discriminate between them.

III.3 An Allograph of Letter a

The allograph of Fig. 3 is simply de�ned as a c shape

followed by either an i shape or an e shape. The list-

ing in HAD of the grammar associated to this allo-

graph follows :

symbol a[p1,p2][m] {

symbaux ca1[a,b,c,d,e,f][] :=

(c_shape,i_shape)

if(sequ(@1.ne,@2.ns) & (crect(@2.ce) |

cpos(@2.ce)) & slant(@2.se,-135,45))

{a = xypnt(@1.ps,@1.a); b = @1.b; c = @1.c;

d = @2.b; e = @2.c; f = @2.pe;},

(c_shape,e_shape)

if(sequ(@1.ne,@2.ns) & (crect(@2.ce) |

cpos(@2.ce)) & slant(@2.se,-135,45))

{a = xypnt(@1.ps,@1.a); b = @1.b; c = @1.c;

d = @2.b; e = @2.c; f = @2.pe;};

} := (ca1) if(yratio(@1.a,@1.d,@1.a,@1.c)[-30,30,20] &

yratio(@1.c,@1.f,@1.d,@1.c)[-30,30,20] &

5Positive curvature correspond, by de�nition, to counter-

clockwise curves.

xratio(@1.e,@1.a,@1.e,@1.b)[-50,30,20])

{p1 = xypnt(@1.b,@1.c); p2 = xypnt(@1.d,@1.a);

m = 1;};

The reserved token symbol starts a grammar de�ni-

tion for the symbol that follows. Likewise, the to-

ken symbaux starts the de�nition of an auxiliary (non

terminal) symbol. All auxiliary symbols are de�ned

within the scope of two brackets before the produc-

tion rules of the symbol. Here, symbol a is de�ned

with two attachment points p1 and p2 which are used

to identify the bounding box of the main body of the

letter (letters with ascenders or descenders have an

additional attachment point) and are employed for

constructing the allograph segmentation graph (not

described in this paper) that represents possible allo-

graph adjacency ; and one propertym used to identify

the allograph model (in this case m = 1).

Auxiliary symbol ca1 de�nes candidates for allo-

graph model m = 1 (see Fig. 3). Two production

rules are speci�ed for ca1 : one for the combination

c shape with i shape and one for c shape with e shape.

Predicate sequ tests for two shapes in sequence rel-

ative to their ending and starting indexes. In an

expression, to specify an attribute of a constituent,

the @ operator is used. The notation @1.ne mean

\attribute ne of the �rst constituent". The applica-

bility condition of the rule follows the token if and

is delimited by parentheses. Operators & and j cor-

respond respectivelly to fuzzy and and or operators

implemented with the usual min and max functions.

Generation rules for the attributes are enumerated

after the applicability condition and are delimited by

two brackets. Macro-de�nitions crect, cpos and slant

have already been discussed. As for macro xypnt, it is

used to extract the x and y coordinates from its �rst

and second arguments to form a new point.

Finally, macro-de�nitions xratio and yratio com-

pute in percent, the ratio of the di�erence of the �rst

two arguments over the di�erence of the last two in

order to extract the morphological characteristics for

the model, namelly :
ay�dy

ay�cy
;

cy�fy

dy�cy
; ex�ax

ex�bx
; where �x

and �y denote respectivelly the x and y coordinates

of point �. When the fourth parameter of a fuzzy-

threshold is not speci�ed, it takes automaticaly the

value of the third.

This example illustrates one particular allograph of

the letter a. In general, several di�erent models ex-

ist for each letter but nevertheless their number is

limited. In practice, their is usualy two main mod-

els : the cursive type that is taught in primary schools



6 Parizeau & al.: Fuzzy-Shape Grammars for Cursive Script Recognition

(for which variants can be modeled) and the printed

character type that is frequently used to write more

clearly.

IV Allograph Segmentation

Allograph segmentation is conducted by a parsing

process described in this section. The objective is to

determine if, from an initial set of primitive objets,

there exist subsets of these that could be generated

by any of the de�ned grammars. First, a few de�-

nitions are made and then the parsing mechanism is

developed.

IV.1 De�nitions

We use the term object to designate an instance of

a particular symbol which itself can represent either

an allograph (i.e. a particular model of a letter), any

pertinent sub-allograph (i.e. a part of an allograph)

or a primitive (in this later case we might use the

expression primitive object).

The only role of the parser process is to assemble

objects, initially starting with primitives objects, ac-

cording to the set of production rules Pi of a grammar

Gi. An object o is a structure that contains several

informations :

1. a set of constituent objects C(o) = fc1; : : : ; cmg

2. a set of attachment points A(o) = fa1; : : : ; aug

3. a set of properties P(o) = fp1; : : : ; pvg

4. and a grade of membership to its class �(o)

The constituents are the objects that were assembled

to form the new object. The attachment points and

properties are computed from the attributes of the

constituent objects using the generation rules of the

production rule that created the object.

Each object is associated to a particular symbol,

that is, belongs to a particular class of objects which

corresponds to a fuzzy-set. Let C denote the appli-

cability condition of the rule that created an object

o. Then, the grade of membership � of that object is

de�ned by :

�(o) = min

�
C(o);min

i

�(ci)

�
; 1 � i � m (2)

where �(ci) is the grade of membership (to its own

class) of the ith constituent of o.

The domain D of an object o is de�ned by the set

of primitive objects that are either direct constituents

of o or, recursively, constituents of its constituents :

D(o) =
mX
i=1

D(ci) (3)

An object o is said to be redundant relative to an

other object o0 of the same class if and only if its

domain is completly included in the domain of o0 and

its grade of membership is lower or equal :

9 o0 6= o :

8><
>:
D(o) � D(o0)

and

�(o0) � �(o)

() redundant(o) (4)

Two objects o and o0 are said to be consistent if and

only if the intersection of their domains is empty :

D(o) \ D(o0) = ; () consistent(o; o0) (5)

Two objects o and o0 are said to be adjacent if and

only if the distance between their respective bounding

box along the X axis6 is smaller than a certain thresh-

old. The bounding box of an object corresponds to

the smallest imaginary rectangle that completly en-

closes its attachment points.

IV.2 Parsing Process

We now consider the problem of parsing grammar

Gi(Ti; Ni; Pi; Si) associated to symbol Si. Let Ti =

fT 1
i
; : : : ; T

j

i
; : : : ; T

p

i
g be the set of p terminal symbols.

For each symbol T
j

i
, a set of objects Dj is knowned

and constitutes the starting data :

Dj = fd
j

1
; d

j

2
; : : : ; dj

pj
g; 1 � j � p (6)

It is subsets of these objects that can, depending on

the set of production rules Pi, correspond to con-

stituent objects of symbol Si. In fact, the objective of

the parsing process is to identify these subsets that,

possibly, at step i + 1 will serve to construct objects

of Si+1.

Let Ni = fN1
i
; : : : ; N

j

i
; : : : ; N

q

i
g be the set of q non-

terminals. Without any loss of generality | because

of the strati�ed formalism | we can consider the

problem of parsing symbol N
j

i
. Then we seek to �nd

6This de�nition is used to limit combinatory explosion. Ob-

viously, it is relevant to the parsing of the roman alphabet for

which letters are aligned on a common baseline. For other types

of script, it might not be justi�ed.
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the set Oj of objects that respect the production rules

of N
j

i
:

Oj = fo
j

1
; o

j

2
; : : : ; oj

qj
g; 1 � j � q (7)

Ultimatly, it is the set Oq | the objects associated

to N
q

i
= Si | that we seek.

Let � = fc
j:1

i
; : : : ; c

j:l

i
; : : : ; c

j:m

i
g be the set of m

constituents of N
j

i
for a particular production rule,

where c
j:l

i
represent the symbol of the lth constituent

of symbol N
j

i
for which its associated object set Oj:l

is knowned ( i.e. either c
j:l

i
corresponds to a termi-

nal symbol, say T k

i
, and thus Oj:l = Dk, or c

j:l

i
is a

nonterminal that can and must be parsed before N
j

i
).

Then the set O of possible assemblies for objects of

N
j

i
is constructed in the following manner :

O = Oj:1 
Oj:2 
 � � � 
Oj:m (8)

with the product A
B de�ned as follows :

A
B = fx [ yj x 2 A; y 2 B ^ x ./ yg (9)

and where the notation x ./ y should be interpreted

as x is consistent (xIV.1) with and adjacent (xIV.1)

to y.

Then, the set Oj is given by :

Oj =
n
o 2 O

��� C �XfA(c) [ P(c)j c 2 C(o)g
�
> 0

o
(10)

where C is the applicability condition of the pro-

duction rule which is a function of the sum of the

attributes (A and P) of the set of constituent objects

C(o) of o.

The attributes of each object oj
w
of set Oj are then

computed using the set of generation rules G of the

production rule :

8ak 2 A(o
j

w
) ; 1 � w � qj ;

ak = Gak

�P
fA(c) [ P(c)j c 2 C(oj

w
)g
� (11)

8pk 2 P(o
j

w
) ; 1 � w � qj ;

pk = Gpk

�P
fA(c) [ P(c)j c 2 C(oj

w
)g
�
;

(12)

where Gak
and Gpk

represent respectively the gener-

ation rules for attachment point ak and property pk
of the production rule.

When symbol N
j

i
possesses multiple production

rules, they are applied sequentially. Non-redundant

(xIV.1) objects are appended to set Oj :

Oj =

(
o 2

X
r

Oj

r

����� :redondant(o)

)
(13)

where Oj

r
denotes the parse result for the rth produc-

tion rule.

V Preliminary Results

Intrinsic letter models for all 26 lower case letters

of the alphabet have been developed and optimized

with a multi-writer isolated cursive letter database

containing 10 samples of each letter written by 13

di�erent writers (total : 3380 cursive letters). These

writers were instructed to reect on their own writ-

ing styles or on any other style that they knew of, and

write 10 samples of each letter representing possible

variants, including ligatures that can precede or fol-

low the letter. A similar test database has also been

built but with 10 di�erent writers.

Two informations are available for recognition : the

grade of membership of parsed allograph objects and

the proportion of AHP primitives contained in their

respective domains, relative to the total number of

primitives in the cursive trace. Let O�

i;j
be the set of

objects parsed in sample i of letter � for writer j of

the database. Then 8o� 2 O�

i;j
parsed in a particular

letter sample of the database, the letter recognized is

the one associated with the object which maximises

the following ranking coe�cient :

�(o�) = �(o�)
card[D(o�)]

�
(14)

where card[D(o�)] is the number of AHP in o�'s do-

main and � is the total number of AHP in the letter

sample.

Then, the recognition ratesR(�; �) for model � and
letter �, given in table 1 for the test database, are
computed by :

R(�; �) =

card

�
maxf�(o�)j o�2 O�

i;jg
�� i 2 f1;:::;nwg

j 2 f1;:::;nsg
; � = �

�
nwns

(15)

where nw is the number of writers in the database

(13), ns is the number of samples per writer (10) and

where, as before, cardf g is the number of elements in

set f g.

Table 1 shows average rates for correct recognition,

that is when � = � (the diagonal), but also confu-

sion rates, that is when � 6= �. The average correct

recognition rate over all letters is 91:7% with the low-

est being 76% (for letter v) and the highest 100% (for

letter n). Their are two explanations for confusion er-

rors. Either the right model was not segmented in the

cursive trace, or another model was segmented with a

higher �. In the former case, either the cursive trace

was too degenerated to be segmented by model � (and

thus the model is not to blame), or model � is not ade-

quate and needs to be tuned. Then again, in the latter
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Table 1: Recognition rates for models (columns) and letter samples (rows), in percent.
letter allograph models by letter
samples a b c d e f g h i j k l m n o p q r s t u v w x y z

a 96 { 4 { { { { { { { { { { { { { { { { { { { { { { {
b { 90 { { 4 1 { { { { { 1 { { 1 { { { 1 1 1 { { { { {
c { { 95 { 2 { { { 2 { { 1 { { { { { { { { { { { { { {
d 2 { { 97 { { { { { { { { { { { { { { { { 1 { { { { {
e { { 1 { 99 { { { { { { { { { { { { { { { { { { { { {
f { 4 { { 2 84 { { 1 { { 4 { { { { { { { 5 { { { { { {
g { { { { { { 95 { { { { { { { { { { { { { { { { { 5 {
h { { { { { 1 { 88 { { 1 8 { 1 { { { { { { { { 1 { { {
i { { { { { { { { 94 4 { 1 { { { { { 1 { { { { { { { {
j { { { { { { { { 2 98 { { { { { { { { { { { { { { { {
k { { 1 { { { { 1 1 1 88 4 { { { { { 3 1 { { { { { { {
l { { { { 1 { { { 1 { { 97 { { 1 { { { { { { { { { { {
m { { { { { { { { { { { { 94 6 { { { { { { { { { { { {
n { { { { { { { { { { { { { 100 { { { { { { { { { { { {
o { { 1 { 1 { { { { { { { { { 92 { { { { { { 6 { { { {
p { { { { { { { { { { { 2 { { 1 97 { { { { { { { { { {
q { { 2 { 2 { { { { { { { { { 1 { 95 { { { { { { { { {
r { { 2 { { { { { 3 { { { { { { { { 87 2 3 { 1 { 1 { 1
s { { { { { { { { 1 { { { { { { { { { 97 2 { { { { { {
t { { { { { { { { 3 { { 4 { { { { { 3 { 89 { { { { { 1
u 1 { { { 2 { { 2 4 { { 1 { { { { { 3 { { 87 { { { { {
v { { 1 { { { { { 2 1 { 9 { { 1 { { 4 { { 6 76 { { { {
w { { { { { { { { 1 { { 1 { 1 { { { { { { 11 { 86 { { {
x { { { { { { { { 1 { { { { 1 { { { 3 { { 1 { { 93 1 {
y { { { { { 3 2 { { 9 { { { { { { { { { { { { { { 86 {
z { { 3 { { { { { { 1 { { { { { { { 7 6 { { { { { { 83

case, either model � is not adequate (presumably for

not generating a high enough grade of membership),

or model � is too permissive and should be tuned.

Obviously, this \tuning" is time consuming and must

be carried out very carefully.

Table 2 gives average recognition results for each in-

dividual writer. These results show that the segmen-

tation method is quite robust over di�erent handwrit-

ing styles. Especially considering the fact that writers

#4, 6, 8 and 10 did not participate in the construction

of the learning database.

VI Conclusion

This paper has presented a new approach for segment-

ing intrinsic allograph models in samples of cursive

script. Although results are given only on isolated

cursive letters, the presence of other letters in no way

a�ects the segmentation process onless the shape of

the letters is altered. Moreover, many di�erent styles

of handwriting have been considered in building the

models, but without trying, at all cost, to �t the mod-

els to the data when this would leed to a non general

solution.

This new approach uses a strati�ed shape grammar

formalism for which a parsing algorithm has been de-

scribed. The usual combinatory explosion associated

with this type of parser was adressed by imposing

consistency and adjacency constraints which proved

to be e�cient for the considered application.

Intrinsic letter models were built for all 26 lower-

case letters of the roman alphabet. Average results

over all allograph models yield a recognition rate of

91:7% which is very encouraging considering the di�-

culty of the database and the fact that the segmenta-

tion method is truly multi-writer (parameters are the

same for all writers).

The method presented in this paper for modelling

and segmenting allographs in cursive script, is part

of a recognition method based on morphological and

pragmatic knowledge only. The advantage of not us-

ing linguistic knowledge is to be able to recognize
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Table 2: Recognition rates for each writer, in percent.

Writer average

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 rate

89.2 96.2 89.6 91.9 92.3 95.4 95.0 92.3 84.2 90.4 91.7

cleanly written script (as humans can do), without

being dependant on linguistic context. However, this

is not to say that the proposed method can work well

in all situations and, in fact, the authors believe that

the ultimate cursive script recognizer will make use of

many di�erent approaches.
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