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Abstract

This paper describes a method for optimizing the cost
matrix of any approximate string matching algorithm
based on the Levenshtein distance. The method,
which uses genetic algorithms, de�nes the problem
formally as a discrimination between a set of classes.
It is tested and evaluated using both synthetically
generated strings of symbols and chain code data ex-
tracted from the international Unipen database of on-
line handwritten scripts. Experimental results show
that this approach can e�ectively discover the hid-
den costs of elementary operations in a set of string
classes.

I Introduction

To represent patterns as strings of symbols is a well
known approach in pattern recognition [1]. To dis-
criminate between two patterns, one then needs to
de�ne a similarity (or dissimilarity) measure between
two strings of symbols. One such measure, known as
the Levenshtein distance [2] (also known as the edit
distance), consists in counting the minimum number
of elementary string operations that one has to ap-
ply to the �rst string in order to obtain the second
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one. These operations are usually de�ned as inser-
tion, deletion and substitution of symbols [3].

Although several algorithms for computing the Lev-
enshtein distance have been proposed to solve spe-
ci�c problems, they all require the de�nition of a
cost matrix that speci�es the costs of individual el-
ementary operations for all combinations of symbols.
For instance, the Wagner-Fischer [4] algorithm com-
putes the Levenshtein distance between two ordinary
strings and the more recent Myers-Miller [5] algorithm
computes this distance between a string and a regu-
lar expression. Other recent contributions have been
made by Bunke and B�uhler [6] in translation/rotation
invariant string matching and by Marzal and Vidal
[7, 8] in normalized edit distance where the weight of
the edit path is normalized by its length.

Thus, in order to use any one of these string match-
ing algorithms, one always has to choose an adequate
cost matrix and this selection may have a consider-
able impact on the recognition performance. Usually,
the cost matrix is determined heuristically during sys-
tem development by trial and error. Sometimes, prior
information may guide this procedure but most of
the time it consists in a blind search which can be
far from optimal. To the authors' knowledge, only
a single e�ort was made at selecting an optimal cost
matrix but using severe constraints [9]. Indeed, in
that approach, the cost matrix is constrained to unit
cost for all insertion/deletion operations and to a sin-
gle substitution cost r for all pairs of symbols. The
Wagner-Fischer algorithm is then modi�ed in order
to compute an editing distance which is expressed in
terms of r. However, this approach is intractable for
more general cost matrices.

Common optimizing techniques (like gradient de-
scent) cannot be used here because the function that
we want to optimize, which depends on the editing
distance, doesn't have an analytic form (it is an al-
gorithm) and thus cannot be di�erentiated. The ap-
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proach that we propose here is based on genetic algo-
rithms [10, 11] in order to circumvent this problem.
The rest of this paper is subdivided as follows. Sec-
tion II reviews briey the concept of edit distances
and de�nes formally the cost matrix of approximate
string matching algorithms. Section III then proceeds
in de�ning a �tness function that will serve for evalu-
ating the �tness of a given cost matrix. This section
also reviews briey the concepts behind genetic algo-
rithms and describes the details of our speci�c imple-
mentation. Finally, Section IV reports some exper-
imental results that were obtained on synthetic and
real data sets.

II Edit distances and cost matrix

Let � be a �nite alphabet, �� be the set of �nite
strings over �, and � denote the null symbol. The
function � : (� [ f�g)2 �! IR+ then de�nes a
cost matrix for elementary edit operations that can
be used to transform a string X 2 �� into a string
Y 2 ��. If a ! b denotes any such edit operation
on X with (a; b) 6= (�; �), then �(�; b) is the cost of
inserting symbol b 2 �, �(a; �) is the cost of deleting
symbol a 2 � and �(a; b) is the cost of substituting
a by b.

Using a sequence E = e1 � � � ei � � � ek of elementary
edit operations (ei = ai ! bi), one can obviously
transform any X into any Y . For example, one triv-
ial solution is to delete every character in X and in-
sert every character in Y . An edit distance �(X;Y )
between X and Y is de�ned as the minimum cost
sequence over all possible sequences of operations:

�(X;Y ) = min
E
f�(E)g (1)

where �(E) is the sum of costs for the elementary edit
operations of sequence E:

�(E) =
kX

i=1

�(ai; bi) (2)

and ai ! bi corresponds to operation ei of E. Equa-
tion 1 formulates the basic string-to-string editing dis-
tance [4]. Other similar problems have similar formu-
lations [5, 7] in the sense that the edit distance de-
pends on a cost matrix � that de�nes the costs of
elementary operations.

For �(X;Y ) to de�ne a distance in a metric space,
� must respect three of the four fundamental prop-
erties of a distance: 8(a; b) 2 (� [ f�g)2

a b a c

j j j j

a � a c

a b a c

j j j j

a a � c

E1 E2

Figure 1: Example of two di�erent sequences (E1 and

E2) of elementary operations for strings abac and aac.

1. �(a; b) � 0 guarantees that a sum of positive or
null values will always result in a positive or null
distance;

2. �(a; b) = 0() a = b states that a null distance
implies identical symbols;

3. �(a; b) = �(b; a) makes the distance symmetric.

The usual triangular inequality is not required here
since it is implied in Equation 1. Indeed, if we proceed
by contradiction, �(a; b) > �(a; �)+�(�; b) implies
that deleting a and inserting b is always cheaper than
substituting a for b; thus the latter is never part of
the minimum cost sequence of operations. The reader
should note that this situation is equivalent to assign-
ing in�nite cost to �(a; b).

Figure 1 illustrates two di�erent sequences (E1 and
E2) of elementary operations for strings abac and aac.
Clearly, if we assume unit cost for all elementary op-
erations, then the sequence E1 is best since it re-
quires a single operation (i.e. delete b in string abac)
compared with two operations (i.e substitute b for a
and delete the second a) for the sequence E2. Thus
�(E1) = 1 < �(E2) = 2. But is this assumption op-
timal? Unfortunately, there is no universal answer to
this question since it depends on the application. In
pattern recognition, the usual objective is to classify
unknown patterns into coherent classes. So what do
we know about the classes? If for instance symbol b
is an essential part of the class to which string abac

belongs, then the sequence E1 which deletes symbol
b with the same cost as any other operation is prob-
ably not optimal and thus the sequence E2 might be
better if the deletion cost for b is raised to 2:5 (i.e.
�(E1) = 2:5 > �(E2) = 2). This example shows that
structural information about the classes is needed for
selecting the values of the cost matrix. But in general,
this information is not directly available.

Counting relative frequencies of the symbols within
the classes could be an approach, but it has an im-
portant limitation. Indeed, certain symbols may be
present in each string of a particular class but their
positions within the strings may vary considerably.
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Thus they may not be the most stable and character-
istic features of their class, and imposing high dele-
tion costs for high frequency symbols can lead to high
within-class distances. Furthermore, this scheme is of
no help for selecting substitution costs. The alterna-
tive approach proposed in this paper consists in de�n-
ing an objective function that seeks to minimize the
within-class distances and simultaneously maximize
the between-class distances. This objective function
is then incorporated into a genetic algorithm.

III Cost matrix optimization

A genetic algorithm (GA) is essentially an evolution-
ary process that explores the solution space of a prob-
lem by breeding populations of chromosomes using
stochastic reproduction and genetic operations like
mutation and crossover [10, 11]. In this context, a
chromosome is a simple sequence of genes that repre-
sent the parameters of the problem. If this sequence
is interpreted as a vector in space, then the chromo-
some corresponds to a point in the solution space of
the problem.

The basic genetic paradigm may be summarized
in four steps as follows : 1) generate a random ini-
tial population of size N and evaluate the �tness of
each chromosome; 2) generate a new population of
the same size using a stochastic reproduction process
biased towards the �ttest chromosomes (this new pop-
ulation becomes the current one); 3) apply crossover
and mutation operators and evaluate the �tness of
each chromosome in the resulting population; 4) re-
peat step 2 for a speci�ed number of generations or
until some other stopping criterion is veri�ed.

To apply this paradigm to our speci�c problem,
four basic issues must be resolved : i) how to code
a cost matrix as a chromosome; ii) how to implement
reproduction and operate crossovers and mutations;
iii) how to set the GA parameters (population size,
probability of operators, etc.); and iv) how to eval-
uate the �tness of a cost matrix. The �rst three of
these issues are easily addressed using very standard
procedures (see for example [11], chap. 2); the details
are given below. Point iv), which is most critical for
this paper, is examined in the next subsection.

First, a cost matrix is coded by concatenating the
bit representations of individual costs that are quan-
ti�ed on m bits over an interval [0; x]. Thus, for an
alphabet of size j�j = n, we obtain strings of (n+1

2 )�m

bits, where (n+1
2 ) = n(n+1)

2
is the number of combina-

tions for distinct parameters in the cost matrix. With
this coding, generating the initial population simply
consists in generating random sequences of bits. Sec-
ond, reproduction is implemented by a selection pro-
cess based on a roulette wheel constructed with slots
sized proportional to relative �tness: the �tter the
chromosome, the higher the probability of being se-
lected (some chromosomes may be selected more than
once). Then, selected chromosomes may be crossed
with others with probability pc and mutated with
probability pm. The crossover operator works on two
chromosomes. It exchanges bits that lie to the right
of some randomly chosen crossing point. The muta-
tion operator, which is applied independently on each
bit of each chromosome, consists in ipping the bit.
Third, the following GA parameters have been cho-
sen: population size N = 50, number of bits per gene
m = 10 with quantization interval from 0 to x = 5,
crossover probability pc = 0:3, and mutation proba-
bility pm = 0:015.

III.1 Fitness of a cost matrix

Let cost matrix � be used for classi�cation of a set
C of p object classes :

C = fC1; : : : ; Ci; : : : ; Cpg (3)

where each class Ci is represented by a set of qi pro-
totype strings :

Ci = f�i1; : : : ; �ik; : : : ; �iqig (4)

with �ik being the kth prototype of class Ci.

In this context, optimizing � for discriminating be-
tween the classes requires the de�nition of an objec-
tive function F that both minimizes the within-class
distances and maximizes the between-class distances.
The �rst such function that comes to mind, call it F1,
is the ratio of the average between distance ��ij over
the average within distance ��ii :

F1 =

2
pX

i=1

pX
j=i+1

��ij

(p� 1)
pX

i=1

��ii

(5)

where:

��ii =
2

q2i � qi

qiX
k=1

qiX
l=k+1

�(�ik; �il) ; (6)
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density functions

f(�ii) f(�ij)

�ij

�

Figure 2: Density functions of the within and between

distances for classes i and j.

��ij =
1

qiqj

qiX
k=1

qjX
l=1

�(�ik; �jl) : (7)

However, this function has severe limitations because
it makes no distinction between those classes that are
already well separated and those that are overlapping.
Consider for example Figure 2, which illustrates the
density functions f(�ii) and f(�ij), corresponding to
the within distance for class i and the between dis-
tance for classes i and j, respectively. Then, it is the
classi�cation error �ij between classes i and j which
needs to be minimized since if �ij ! 0, classes i and j

need not be separated further. Assuming normal dis-
tributions for f(�ii) and f(�ij), �ij can be estimated
using the Mahalanobis distance in the univariate case
[12]:

�̂ij = �

"
��ii � ��ij
2Sij

#
(8)

where � is the distribution function of a standardized
normal distribution, N(0; 1), ��ii and ��ij are the mean
values for the within and between distances, and Sij

is the pooled standard deviation of the within and
between distances:

Sij =

vuut [qi(qi � 1)� 1]s2ii + [qiqj � 1]s2ij
[qi(qi � 1) + qiqj � 2]

(9)

with s2ii and s2ij standing for the variances of the
within and between distances, respectively. Using this
estimated error, a second �tness function F2 can thus
be proposed:

F2 =

pX
i=1

pX
j=1
j 6=i

(1� �̂ij)

p(p� 1)
: (10)

The reader should note that F2 takes its values in the
interval [0; 1]. Now the problem with F2 (as with F1)

is that evaluating this function requires many string
comparisons, especially when the number of classes
and the average number of prototypes per class are
great. Indeed, assuming that the number of proto-
types per class is a constant equal to q, then a sin-

gle evaluation of F2 requires exactly (pq2 ) = p2q2�pq
2

string comparisons (i.e. for p = 2 and q = 100,
(2002 ) = 19 900). A solution to this problem is to
concentrate the evaluation process on a subset of the
worst comparisons, that is, those within distances
that are large and those between distances that are
small. In other words, one may wish to try to separate
only those prototypes that are the most overlapping.

Let F3 be yet another �tness function de�ned in
a similar fashion as F2 but in which at most r

string comparisons are made in order to estimate
any of the distance density functions. Then, only

(p+1
2 )� r = p2r+pr

2
string comparisons will be needed

for each evaluation of F3 (for p = 2 and r = 30,
p2r+pr

2
= 90 << 19 900) and this number is indepen-

dent of the number of prototypes per class. Of course,
all (pq2 ) comparisons will sometimes have to be made
in order to determine, for each ordered couple (i; j) of
classes, those r within prototype pairs for which the
distances are maximum and those r between proto-
type pairs for which the distances are minimum. The
main idea, however, is that this selection process can
be made infrequently, in fact only when at the end of
a generation, a new individual (cost matrix) achieves
a maximum �tness. In this way, the GA always uses
the most overlapping prototypes throughout the op-
timization process.

IV Experimental results

In order to evaluate the performance of the proposed
�tness functions and GA for optimizing a cost matrix,
experiments with both synthetic and real data will be
described in this section.

IV.1 Synthetic data

The following procedure was used to generate syn-
thetic strings of symbols:

1. Given an alphabet �, generate randomly a uni-
versal source string of length �;

2. Make a copy of the source string;

3. Scan this copy and replace each character with
the result of a roulette wheel spin where slots are
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sized proportional to some given between-class
substitution-deletion probabilities for this char-
acter; this string becomes the source string for
the current class;

(a) Make a copy of the source string for the cur-
rent class;

(b) Scan this copy and replace each charac-
ter with the result of a roulette wheel
spin where slots are sized proportional
to some given within-class substitution-
deletion probabilities for this character; this
string becomes a prototype for the current
class;

(c) repeat steps 3a and 3b to generate q proto-
types per class;

4. Repeat step 2 and 3 to generate p classes.

Using this procedure, �ve di�erent data sets (DS1
to DS5) were generated. Their characteristics are
summarized in Table 1 with p, q and � represent-
ing respectively the number of classes, the number
of prototypes per class and the length of the source
string, � being the alphabet, and Pbetween and Pwithin

corresponding to the substitution-deletion probability
matrices used for generating the class source strings
and class prototypes.

DS1 is a data set that uses an alphabet of 4 symbols
for which a uniform cost matrix should be optimal
(i.e. equal cost for all operations except �(a; a) =
0;8a 2 �). Indeed, its prototypes were generated
from essentially independent source strings for the
two classes (i.e. between-class substitution probabil-
ities are equiprobable: 8a; b 2 �; Pbetween(a ! b) =
1=j�j = 0:25) and uniform within-class substitutions
(i.e 8a; b 2 �; a 6= b; Pwithin(a ! b) = 0:08). DS2
is another data set similar to DS1, but for which
only three within-class operations are allowed with
equal probability: deletion of symbols 1 and 2 (i.e.
Pwithin(1 ! �) = Pwithin(2 ! �) = 0:35) and substitu-
tion of symbols 3 and 4 (i.e. Pwithin(3 ! 4) = 0:35).
All other operations have zero probability. This data
set should thus lead to a cost matrix were possible
within-class operations have low cost and other op-
erations have high cost. DS3 is a more di�cult data
set that uses an alphabet of 6 symbols and for which
prototype strings are both longer and more numerous.
For this data set, unlike for DS2, all substitution and
deletion operations are possible although the follow-
ing within-class operations are more probable than

others: substitution of symbols 2 and 3, substitution
of symbols 4 and 5 and substitution of symbols 1 and
6. DS3 should thus lead to a cost matrix where these
three operations have the lowest cost. Finally, DS4
and DS5 are similar to DS3 except that they respec-
tively contain three and six classes instead of only two
(they also have shorter and less numerous strings).

GAs were run on all �ve data sets and for the three
proposed �tness functions. Table 2 summarizes the
results (in percentage of F2) obtained after a maxi-
mum of 300 generations (the runs were stopped when
the average population �tness was non-increasing for
more then 50 generations). Each opt column is the
�tness of the optimal matrix found over all simulated
generations. Column unit represents the �tness of
the unit cost matrix (i.e. unit cost for every operation
except �(a; a) = 0;8a 2 �) and serves as a reference
value. Function F3 was optimized for three values of
r (i.e. r = 10, r = 20 and r = 30). The reader should
note that the �tness values in this table have all been
computed using F2, although the GA runs were made
using the function identi�ed by the column heading.
F2 was preferred for comparing cost matrix perfor-
mances because this function is bounded between 0
and 1, and can easily be interpreted as an average
separation rate of the classes.

The results in Table 2 show that F1 can lead to an
optimal cost matrix for which, when compared with
the result obtained using F2, the average separation
rate between the classes ranges from very poor for
DS2 to pretty good for DS3, DS4 and DS5. For the
very poor case (DS2), the optimal cost matrix found
is the following (the � marks denote prohibited op-
erations; values have been expressed in %; the lower
half of the matrix is symmetric) :

opt � 1 2 3 4

� � 0:06 0:06 45:8 52:3
1 0 � � 1:59
2 0 � 0:06
3 0 0:06
4 0

Although it can be seen that the three allowed op-
erations for the generation of DS2, that is, 1 ! �,
2 ! � and 3 ! 4, all have very low costs (in fact
minimum cost), two other unallowed operations also
have very low cost: 1! 4 and 2! 4. To understand
why F1 converged to this particular matrix, we looked
at the distance matrices and found that, for the �rst
prototype class, there is one string that, when com-
pared with all others, requires the destruction of a
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Table 1: Data sets summary.

p q � � Pbetween(a! b) Pwithin(a! b)

DS1 2 10 30 f1; 2; 3; 4g
n

0 if b = �

0:25 otherwise

n
0:68 if a = b

0:08 otherwise

DS2 2 10 30 f1; 2; 3; 4g same as DS1

8<
:

0:65 if a = b

0:35 if a 2 f1; 2g ^ b = �

0:35 if a; b 2 f3; 4g ^ a 6= b

0 otherwise

DS3 2 30 50 f1; : : : ; 6g

8>><
>>:

0:90 if a = b

0:05 if a; b 2 f1; 2g ^ a 6= b

0:05 if a; b 2 f3; 4g ^ a 6= b

0:05 if a; b 2 f5; 6g ^ a 6= b

0:01 otherwise

8>><
>>:

0:75 if a = b

0:20 if a; b 2 f2; 3g ^ a 6= b

0:20 if a; b 2 f4; 5g ^ a 6= b

0:20 if a; b 2 f1; 6g ^ a 6= b

0:01 otherwise

DS4 3 10 30 f1; : : : ; 6g same as DS3 same as DS3

DS5 6 10 30 f1; : : : ; 6g same as DS3 same as DS3

^ is logical and

Table 2: F2 values of the optimal (opt) cost matrix obtained by GA when using �tness functions F1, F2, and

F3 (results are in percentage and relative to F2).

F3 ! opt
data set unit F1 ! opt F2 ! opt (r = 10) (r = 20) (r = 30)

DS1 91.9 88.4 94.4 85.5 91.9 94.7

DS2 92.8 69.3 99.5 99.7 99.5 99.3

DS3 91.8 96.8 98.6 96.7 97.4 98.4

DS4 91.1 95.6 98.8 99.1 98.8 99.3

DS5 88.5 96.0 97.1 97.3 96.7 96.7

symbol 3 even though this operation was not allowed
in the within class probability matrix (the origin of
this phenomenon stems from the limited precision of
a oat variable). Thus, although lowering the cost of
operation 3 ! 1 and 3 ! 2 lowered both the within
and between class distances, the e�ect on the average
within distance was relatively more important. This
shows that F1 can be very sensitive to noisy data
because it will tend to draw further (closer) those be-
tween (within) prototype pairs that are easy to sepa-
rate (bring closer), even when the underlying classes
are already completely separated. By comparison, the
optimal matrix found by F2 for DS2 is much less po-
larized:

opt � 1 2 3 4

� � 2:3 11:0 15:1 23:9
1 0 � 3:6 23:3
2 0 � 19:4
3 0 1:4
4 0

Except for two cases, as expected, the allowed op-
erations for DS2 have low costs, but not minimum

cost, and other operations have relatively high, but
not very high, costs. The two exceptions are (2 !
�) = 11 and (1! 3) = 3:6. In order to test whether
these values are speci�c to the DS2 data set or if, more
generally, they model the intrinsic characteristics of
DS2, 20 other data sets were generated using the same
probability matrices that were used for DS2. Figure
3 shows the average separation rates for these data
sets when using unit (for reference), opt found by
F1 on DS2 and opt found by F2 on DS2. This �gure
shows that, in this case, F2 produced a very robust
cost matrix that separates almost perfectly (99:8%)
the two classes even though the performance of the
unit cost matrix varied greatly. As for the optimal
matrix found by F1, its performance is always below
that of the unit cost matrix and quite variable.

Table 2 also shows that the results of the F3 �t-
ness function are not signi�cantly di�erent than those
obtained with F2, even for a small subset of proto-

type pairs, while requiring approximately q2

r

�
p

p+1

�
times less string comparisons (where p is the number
of classes, q is the number of prototypes per class and
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Figure 3: Validation of the optimal matrices found by F1 and F2 on 20 repetitions of DS2.

r is the number of comparisons per density function;
we assume pq >> 1). For the case of DS3 and r = 30,
this yields a �tness evaluation that is 20 times faster.
In the case of DS5 and r = 10, it is 8:6 times faster.

For the case of DS3 optimized by F2, Figure 4 gives
the plot of the maximum and average �tness of each
of the �rst 150 generations of the GA. This �gure
shows that convergence is rapid: after approximately
50 generations, the average �tness does not increase
anymore, although the maximum �tness is reached at
the 111th generation. Convergence is similar for all
data sets.

IV.2 Real data

A recognition experiment was also conducted on real
data extracted from the international Unipen on-line
handwriting data sets [13] (release 1, version 5). Sec-
tion 1A of this data set was chosen because it contains
only isolated digits (a total of 6519 digits; � 650 per
digit). This data comes from many di�erent sources
(� 17), was written by many di�erent writers from
di�erent countries, using di�erent writing styles, and
was sampled using many di�erent digitizers. By any
standard, the authors feel that this data set is a very
di�cult one. The digits were converted into chain
codes using 8 directions. The alphabet has 9 symbols:
8 symbols for the 8 directions (symbols 1 through 8)
and 1 special symbol for penlifts (symbol 0). The
recognition algorithm is a very straightforward fuzzy
K-nearest neighbor [14] with 10 prototypes per digit
(see Figure 5). The distance metric is the well-known

string-to-string editing distance [4]. The 10 proto-
types per digit used for training the cost matrix were
chosen randomly from samples of the data set. All
other samples were used for testing.

The cost matrix was de�ned with a total of 13 pa-
rameters: 9 di�erent insertion/deletion costs for the
9 symbols, and 4 di�erent substitution costs, one for
each possible change of direction (45�, 90�, 135� and
180�). No substitution was permitted for symbol 0
(penlifts). The GA for optimizing that cost matrix
used �tness function F3 with r = 30 comparisons. All
other GA parameters were the same as in the previ-
ous experiments. The GA was run for 150 generations
and the following opt matrix was found after the �fth
generation (again the � represents prohibited opera-
tions; parameter values are expressed in percentage;
the matrix is symmetric):

opt � 0 1 2 3 4 5 6 7 8

� � 6:7 8:8 10:3 10:0 12:6 9:0 1:9 8:5 3:1
0 0 � � � � � � � �

1 0 0:1 11:0 9:7 8:3 9:7 11:0 0:1
2 0 0:1 11:0 9:7 8:3 9:7 11:0
3 0 0:1 11:0 9:7 8:3 9:7
4 0 0:1 11:0 9:7 8:3
5 0 0:1 11:0 9:7
6 0 0:1 �

7 0 0:1
8 0

From this matrix, we can see on the one hand that
the costs for inserting or deleting most symbols are
similar except maybe for directions 6 and 8 that have
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Figure 5: Random prototypes used by the fuzzy k-nearest neighbor classi�er.
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Figure 6: Digit recognition rates when using 4 neighbors.

somewhat lower costs (this di�erence might not be
very signi�cant). On the other hand, there is a very
clear penalty for substituting non-adjacent directions
(those that have an angle di�erence of 90�, 135� or
180�) compared with adjacent ones (those that have
angle di�erences of 45�). For instance, opt(1 ! 3)
is a hundred times higher than opt(1 ! 2). Thus,
one may expect that this matrix should yield di�er-
ent (better?) recognition rates than those obtained
using the unit matrix. But this is not the case. In
fact, these two matrices yield almost identical average
recognition rates (opt = 87:5% and unit = 87:2%) al-
though individual rates for each digit (see Figure 6 for
results with 4 neighbors) do show considerable uctu-
ations. In particular, the 1 digits are not well recog-
nized by opt and the 5 digits are not well recognized
by unit. This suggests that it may not be possible
to �nd a single cost matrix for optimal discrimination
of all digits in a di�cult multi-writer context like the
one of the Unipen database. And indeed, several very
di�erent matrices with equivalent �tness values and
recognition rates were produced by the GA. In par-
ticular, one of these matrices was much better than
opt for recognizing the 1 digits but also much worse
on the 2 and 5 digits (its average recognition rate was
87:4% compared with 87:5% for opt). The most no-
ticeable di�erence between that matrix and opt is a
higher substitution cost for adjacent directions.

When analyzing the overall results obtained with
this digit recognition system, the reader should not
forget that the objective was only to test the opti-

mization method, not to design the best possible sys-
tem. Nevertheless, the obtained performance (87:5%)
is quite respectable considering the simplicity of the
approach, and the fact that the prototypes were cho-
sen randomly. Moreover, the authors estimate that
approximately 5% of the digits in the testing data set
are either mislabeled or very badly written. Thus,
although the present experiment did not lead to an
improved average recognition rate over what could be
obtained with a unit matrix, it has still demonstrated
the feasibility of the approach on a very di�cult real
data set were classes are mostly incoherent (i.e. they
contain sub-classes where many within-class sample
pairs may be just as dissimilar as between-class sam-
ple pairs). Furthermore, it has revealed an interest-
ing property illustrated in Figure 7. This �gure shows
that the recognition rates for opt seem more indepen-
dent of the number of neighbors in the fuzzy nearest
neighbor classi�er than those of unit. This probably
stems from the de�nition of our evaluation function
F3 whose associated optimization process takes into
account both the within and between-class distance
distributions, leading to a more robust discrimina-
tion.

V Conclusion

This paper has described an original approach for op-
timizing the cost matrix of any approximate string
matching algorithm based on the Levenshtein dis-
tance. This approach uses a genetic algorithm to
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e�ciently explore the solution space using an objec-
tive evaluation function that measures the �tness or
quality of a cost matrix. The problem is posed in the
context of discriminating between a set classes. Three
functions are proposed: the �rst computes the average
between-class distance over the average within-class
distance, the second estimates the average separation
rate of classes using all within and between-class dis-
tances, while the third also estimates the average sep-
aration rate of classes but using only a small subset
of the worst distances.

Experiments were conducted on both synthetically
generated strings of symbols and on chain codes ex-
tracted from handwritten digits found in the inter-
national Unipen data sets. The synthetic strings
were generated using variable within and between-
class deletion/substitution probability matrices. Re-
sults have demonstrated that the proposed approach
is both e�cient and robust for discovering the hidden
costs in those synthetic strings.

For the real chain code data, a simple recognition
system was designed using a K-nearest neighbor clas-
si�er. With only 10 prototypes per class, an optimal
matrix was obtained that correctly classi�ed 87:5%
(with K=4 neighbors) of the digits found in section
1A of the Unipen training data set. This system led
to the observation that many di�erent cost matrices
can have almost identical discrimination power, espe-
cially if classes are non-homogeneous. This was the
case for the Unipen digits. For instance, the optimal
matrix found and the unit matrix gave almost equal

average recognition rates for K=4 neighbors (87:5%
versus 87:4%) although their individual digit recogni-
tion rates varied a lot. This suggests that if a single
cost matrix cannot optimize simultaneously the recog-
nition of each class, then maybe several distinct cost
matrices should be looked for.

VI Acknowledgements

The authors would like to thank Christian Gen-
est and the anonymous reviewers whose suggestions
have greatly improved the presentation of this paper.
This work was supported in part by NSERC grant
OGP0155389 to M. Parizeau and in part by NSERC
grant OGP0155639 to N. Ghazzali.

References

[1] R.C. Gonzales, M.G. Thomason, Syntactic Pat-

tern Recognition: An Introduction, Addison-
Wesley, 1978.

[2] A. Levenshtein, \Binary codes capable of cor-
recting deletions, insertions and reversals", Sov.
Phy. Dohl., Vol. 10, pp. 707-710, 1966.

[3] D. Sanko�, J.B. Kruskal, Time Warps, String

Edits, and Macromolecules: The Theory and

Practice of Sequence Comparison, Addison-
Wesley, 1983.



To be published in Pattern Recognition, 1997 11

[4] R.A. Wagner, M.J. Fischer, \The String-to-
String Correction Problem", Journal of the

ACM, Vol. 21, No. 1, pp. 168-173, 1974.

[5] E.W. Myers, W. Miller, \Approximate Matching
of Regular Expressions", Bulletin of Mathemati-

cal Biology, Vol. 51, No. 1, pp. 5-37, 1989.

[6] H. Bunke, U. B�uhler, \Applications of Approxi-
mate String Matching to 2D Shape Recognition",
Pattern Recognition, Vol. 26, No. 12, pp. 1797-
1812, 1993.

[7] A. Marzal, E. Vidal, \Computation of Nor-
malized Edit Distance and Applications", IEEE
Trans. on Pattern Recognition and Machine In-

telligence, Vol. 15, No. 9, pp. 926-932, 1993.

[8] E. Vidal, A. Marzal, P. Aibar, \Fast Computa-
tion of Normalized Edit Distances", IEEE Trans.

on Pattern Analysis and Machine Intelligence,
Vol. PAMI-17, No. 9, pp. 899-902, 1995.

[9] H. Bunke, J. Csirik, \Inference of Edit Costs us-
ing Parametric String Matching", Proc. of the
11th International Conference on Pattern Recog-

nition, The Hague, Vol. II, pp. 549-552, 1992.

[10] D. E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-
Wesley, 1989.

[11] Z. Michalewicz, Genetic Algorithms + Data

Structures = Evolution Programs, Springer-
Verlag, 1992.

[12] K. Fukunaga, Introduction to Statistical Pattern

Recognition, Academic Press, 1990.

[13] I. Guyon, L. Schomaker, R. Plamondon, M.
Liberman, S. Janet, \UNIPEN Project of On-
Line Data Exchange and Recognizer Benchmark-
s", Proc. of the 12th International Conference on

Pattern Recognition, Jerusalem, Vol. II, pp. 29-
33, 1994.

[14] J.M. Keller, M.R. Gray, J.A. Givens, \A Fuzzy
K-Nearest Neighbor Algorithm", IEEE Trans.

on System, Man and Cybernetics, Vol. SMC-15,
No. 4, pp. 580-585, 1985.


