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Abstract

This paper presents an overview of a dynamic cursive script

recognition approach that uses no linguistic constraints. This

approach seeks to recognize in cursive script, morphologically

and pragmatically coherent sequences of character hypotheses.

Its performance is compared with the performance of the best

available cursive script recognizers | humans | in a reading

experiment where linguistic knowledge is useless.

The recognition method uses fuzzy-shape grammars to model

the morphological characteristics of conventional letters. These

models, called allographs, can be viewed as basic (a priori)

knowledge for developing a multi-writer recognition system.

Character hypotheses are segmented within a cursive word us-

ing a parser for these grammars. Character sequences are then

constructed from these segmentation hypotheses using local ad-

jacency constraints also modeled by fuzzy-shape grammars.

Two experiments are conducted on a test database contain-

ing a handwritten cursive text 600 characters in length written

by ten di�erent writers. First, a reading experiment with ten

human readers yields an average character recognition rate of

96:0%. Second, a test of the recognition system gives an average

character recognition rate of between 84:4% to 91:6%, depend-

ing on whether only the �rst (best) character sequence output

of the system is considered or if the best of the top ten is ac-

cepted. This result is achieved without any writer dependent

tuning. Moreover, results show that system performances are

highly correlated with human performance.

I Introduction

Cursive script recognition systems can rely essentially
on three types of knowledge: morphological, pragmatic
and linguistic. Morphological knowledge refers to every-
thing that is known about the shapes of cursive letters.
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Figure 1: Trace samples of lower case character a.

Pragmatic1 knowledge refers to what is known about how
to spatially arrange cursive letters into words, phrases and
paragraphs. Linguistic knowledge concerns the language
that is used to convey the message represented in hand-
writing (i.e English, French, etc.).

The recognition system which is compared in this paper
with human readers, is based exclusively on morphological
and pragmatic knowledge. It was developed in an e�ort to
circumvent the usual limited vocabulary constraint that
is common with most reported cursive script recognition
system. The idea is to build writer-independent models
for the principal shapes of conventional cursive letters |
each of these corresponding to a distinct allograph | and
to design an algorithm that can recognize portions of a
cursive word that match these models.

This approach lies on the assumption that there exists a
limited number of ways (models) to write each letter of the
alphabet, even in the context of cursive script. This can
be supported by the fact that cursive script is taught to
schoolchildren and that, although di�erent teaching meth-
ods can be found in di�erent schools or regions [1], literate
humans are generally capable (to some extent) of read-
ing cursive script that they have never encountered before.
This last statement, of course, makes the supplementary
assumption that the human who wrote the script wanted
to be recognized!

Now based on this assumption, a cursive trace of a par-
ticular allograph is an approximation of an ideal model.
Thus, to recognize that a particular trace is an instance
of a particular allograph, we need to model what is char-
acteristic of that allograph, not what is characteristic of
the writer who produced the trace. For example, consider
the trace samples of Figure 1 for the lower case character
a. All these samples can be viewed as traces of a single
allograph model consisting of a c-shape horizontally con-
catenated with a dotless i-shape somewhat like the �rst
(leftmost) trace of the �gure. The other traces of the �g-

1This de�nition of pragmatic knowledge should not be confused

with the de�nition used by linguists, who refer to linguistic knowledge

induced by common sense.
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ure can be \explained" by this principal allograph of letter
a, either by adding a ligature (in front or at the end), by
degenerating the i-shape into an e-shape or by tilting the
c-shape or i-shape to the right.

To de�ne such robust allograph models, powerful tools
are required. They are discussed briey in the next sec-
tion together with a complete system overview. Section III
then presents the main topic of this paper, that is, the per-
formance comparison of that system with human readers
in a linguistic free context. The object of that comparison
being to evaluate to what extent this system is capable
of recognizing cursive script without using any linguistic
knowledge.

II System Overview

The developed system is composed of three principal pro-
cesses as illustrated in Figure 2. The �rst process is a
primitive extraction step that segments the handwriting
components2 of a word into a sequence of attributed cursive
primitives. This segmentation process is based on a hand-
writing model that represents a component by a sequence
of characteristic points linked by segments of constant cur-
vature (circular arcs). For example, Figure 3 illustrates a
cursive trace of two components for word `axe' (French
for `axis'). The small squares in that �gure represent the
digitized points of the components, the + and � marks
correspond to the characteristic points of the model, and
the continuous curve between two successive characteris-
tic points is a circular arc obtained by a �tting procedure.
The model de�nes the characteristic points as the mor-
phologically pertinent points of the components for recog-
nition purpose. Here the characteristic points correspond
to the horizontal and vertical local extrema (+ marks) of
the trace and to the inexion points (� marks).

From this representation of the handwriting compo-
nents, a cursive primitive is extracted for every charac-
teristic point (for the example of �gure 3, there are 22
characteristic points and, thus, 22 primitives). A primitive
spans the portion of the trace that goes from the previous
characteristic point to the next one or, in other words, it is
associated with two successive circular arcs. Each primi-
tive is attributed, that is, it is de�ned by a set of attributes
of two types: attachment points and properties. The at-
tachment points of the primitive are the three characteris-
tic points covered by the primitive (previous, middle and
next). There are seven properties [3]: a measure of dis-
continuity at the middle attachment point, a measure of
tilt at each of the three attachment points, a measure of
curveness3 for each of the two circular arcs associated with
the primitive and a unique index number that identi�es
the primitive within the sequence of primitives.

2The term component [2] is used to designate the portion of the

written trace between a pendown and a penlift (while the pen is in

contact with the paper).
3The term curveness is used to designate a heuristic measure of

curvature.
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Figure 4: Illustration of tilt and discontinuity properties.

The second process of the system is an allograph seg-

mentation step that analyses the set of all cursive prim-
itives extracted by the previous process and determines
which subsets of these primitives respect the conditions
of the allograph models. This second segmentation step
generates recognition hypotheses for morphologically co-
herent allograph traces. The models are hand-generated
using a specially designed programming language called
HAD (Hierarchical Allograph Description) [4] that en-
ables the speci�cation of fuzzy-shape grammars [5], that
is, attributed grammars with production rules governed
by fuzzy logic.

The modeling strategy for building allographs starts
with a basic handwriting element that possesses all the at-
tributes of the cursive primitive. This element serves as a
terminal symbol for all grammars. It represents a perfectly
general piece of a component that spans three character-
istic points. The �rst phase of the strategy is to create
several classes of this element by de�ning more speci�c el-
ementary shapes. This is simply done with a production
rule that applies a fuzzy-membership function on certain
properties of the basic handwriting element. For example,
Figure 4 illustrates the tilt and discontinuity properties
for each characteristic point of a trace: tilt is represented
by the angle of a line segment and discontinuity is repre-
sented by a number in the range [�180; 180] where 0 means

very continuous and �180 or 180 means very discontinu-
ous. Thus, for example, a given cursive primitive could
belong to the class of \continuous" and \horizontal" el-
ements, that is, would represent essentially a continuous
horizontal displacement. It must be emphasized here that
such a class is created by a membership function (fuzzy-
threshold) and thus de�nes a fuzzy-set. This implies that
a given primitive may belong to several classes of elements,
although not necessarily with the same grade of member-
ship.

The second phase of the modeling strategy is to assemble
with other production rules, basic shapes like c-shapes, i-
shapes, loops, dots, t-crossings, etc. . . , using combinations
of pertinent classes of handwriting elements and fuzzy-
thresholds on their attributes. These basic shapes are
nothing less than sub-allograph models and, again, de�ne
fuzzy-sets.

The third and �nal phase of the modeling strategy is
to assemble the allographs themselves using combinations
of pertinent basic shapes, pertinent classes of handwriting
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Figure 2: Block diagram of system.

Figure 3: Illustration of the primitive extraction process for the trace of word /axe/.
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Figure 5: Illustration of an allograph of lower case letter
a.

elements and several morphological characteristics (MC)
of the allographs. For instance, Figure 5 illustrates the
principal allograph model of lower case letter a with its
di�erent attachment points. It consists essentially in two
sub-allographs: a c-shape combined with an i-shape or an
e-shape. Using its attachment points, it is possible to de-
�ne relative measures of height or width that characterize
morphologically this allograph. Indeed, simply by moving
point f (and point e with it) up to approximately point d,
we could get an allograph of the letter o. Similarly, if point
f is moved down su�ciently, we can get an allograph of the
letter q. Thus, a �rst MC is the height of the �nal ligature
relative to the vertical position of the i-shape. Likewise, if
point d is moved up su�ciently relative to point a, then we
get an allograph of the letter d. A second MC thus mea-
sures the height of the i-shape relative to the height of the
c-shape. Finally, if the gap between the c-shape and the
i-shape widens, then the a allograph would become invalid.
Hence, a third MC can take this gap into account.

Using this strategy, some 18 classes of elements, 22 sub-
allograph symbols and 54 allograph models, for lower-case

a

e
l

x

Figure 6: Examples of segmented traces in word axe.

letters of the Roman alphabet, were created [4] (� 2 000
lines of HAD). The corresponding grammars are used by
a parser to recognize morphologically coherent allograph
traces within the set of cursives primitives [5].

Finally, the third process of the system is a sequence

construction that select pragmatically consistent combi-
nations of segmented allograph traces [6]. All allograph
models are designed in such a way that each trace is seg-
mented with four attachment points corresponding to the
lower left and upper right corners of the bounding box that
encloses the main body of the trace, and to the highest and
lowest points of the trace (for ascenders and descenders).
For example, Figure 6 shows the bounding boxes of four
segmented traces including the traces of letters a, x and
e. The forth trace that represents an l, is an example of
a morphologically coherent recognition hypothesis which
is not, however, pragmatically consistent with the other
segmentation hypotheses. This process thus analyses the
spatial adjacency for pairs of allograph traces, using both a
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Figure 7: Samples of cursive random letter sequences.

horizontal constraint that measures the coherence of their
horizontal spacing, and a vertical constraint that measures
the quality of their vertical alignment. With these adja-
cency constraints, an allograph segmentation graph is built
and the best paths in that graph correspond to the best
character sequences recognized by the system.

III Experimental Results

To evaluate and compare the performance of the system
overviewed in the previous section, 100 character sequences
(of length between 5 and 7 characters) were generated ran-
domly while respecting the letter occurrence frequencies of
a 32; 000-word French dictionary. Then, 10 di�erent writ-
ers were selected from a pool of graduate students to write
these sequences using their natural, although clean, hand-
writing style. No constraints were imposed on the writers
except to maintain what they considered good legibility.
Figure 7 shows a few samples taken from this test dataset.
As can be seen from these samples, some of the writers (in
fact 2) naturally detach each letter from the next.

Data acquisition was conducted using a PenPad 300 dig-
itizing tablet from Pencept Inc. with a resolution of 0:00100,

a sampling frequency of 100 Hz and a precision (as speci-
�ed by the manufacturer) of 0:00500.

Because the goal of 100% recognition is probably not
realistic, an experiment was designed to establish a more
suitable reference performance for the constructed dataset.
This reference performance is that of the best known cur-
sive script recognizers: humans. A second group of 10 vol-
unteers (di�erent from the writers) was thus chosen from
a pool of graduate students and research sta�, some of
them experts in pattern recognition and image processing.
All character sequences in the dataset (10 � 100 charac-
ter sequences) were assigned randomly to the volunteers
(100 character sequences each) with the constraint that
each reader would be presented with 10 samples from each
writer. The samples of the dataset were printed on sheets
of paper (25 samples/sheet) and the volunteers were asked
simply to transcribe into an ASCII �le what they could
read for each sample. The only hint that they were given
was that the samples contained only lower case-letters of
the Roman alphabet.

Table 1 summarizes the error rates of the human readers
(| indicates no error). These error rates are computed
using the Wagner-Fischer string-to-string editing distance
[7] with unit cost for insertion, deletion and substitution.
They should be interpreted as distance measures between
the correct character sequence and the response given by
the human reader.

Looking at the rightmost column of that table, we can
immediately observe that average human error rates on
that dataset have varied from a minimum of 2% to a max-
imum of 6:9% for a global average error of 4%. In other
words, we should probably not seek for our system on
this dataset, a performance higher than 96% or even 93%.
Moreover, if we consider the worse reader/writer combi-
nation (for reader #2 and writer #6), we can observe an
error rate as high as 21:7%.

Looking at the bottom line of that table, we also observe
that the handwriting of some writers seem to be much more
di�cult to read than others. Indeed, average error rates
for writers range from 0:8% to 8:9%, that is, a tenfold
di�erence between the most legible and the worst. It is
also interesting to note that writer #1 and #7, who are
the two writers that naturally detach each letter from the
next, are not \the" most legible writers, although they are
more legible than the average one.

For the second experiment, the same dataset was used
to evaluate the performance of the recognition system.
Recognition rates for each writer are given in Table 2
(recognition rates correspond here to the complement of
the error rates de�ned in the �rst experiment). The �rst
line of that table gives the results when considering only
the character sequence output ranked �rst by the system.
The next four lines of this table list the results when the
best of the �rst 2, 3, 5 and 10 sequence outputs are con-
sidered respectively.

The average recognition rate for the system thus varies
from 84:4% to 91:6%, depending on whether only the se-
quence ranked �rst is considered, or if the best of the top
10 sequences is accepted. It should be noted here that the
recognition system is multi-writer, in the sense that system
parameters are the same for all writers, and that writers
#4, #6, #8 and #10 were completely unknown to the sys-
tem since they didn't participate in the construction of any
training datasets (the system was mainly trained using an
independent dataset of isolated cursive letters).

Looking at the system's performance for these \un-
known" writers, we can observe that it is somewhat inferior
(except for writer #10) to what was achieved for the other
writers. However, it should also be noted that three of
these four writers collected the worst human performances.
The two bottom lines of Table 2 compare the performance
of the system with the performance of the humans. They
�rst show that human and system performances are highly
correlated (by a factor of 0.92) and, second, that if average
human performance (next to last line) is considered the
new goal and that the best of the top ten sequence out-
puts is acceptable, then the residual error of the system,
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Table 1: Error rates of human readers (in %).

Writer
Reader 1 2 3 4 5 6 7 8 9 10 Average

1 1.6 | 5.5 11.5 6.0 4.8 3.2 9.8 | | 4.2

2 4.9 1.6 16.4 4.8 3.2 21.7 4.8 1.7 6.8 3.1 6.9

3 3.2 | 1.6 5.3 | 9.8 1.5 9.4 5.3 1.6 3.8

4 | 3.4 6.2 6.5 1.7 15.3 | 4.6 1.7 8.3 4.7

5 | | 5.0 | 3.1 1.5 3.6 8.2 1.6 | 2.3

6 1.6 | 9.1 3.2 4.9 10.0 3.1 12.1 | 3.2 4.7

7 | 1.7 3.3 3.4 3.4 10.6 3.1 6.6 3.2 1.7 3.8

8 6.3 1.6 1.6 3.2 5.2 6.6 1.7 4.9 3.2 8.1 4.2

9 | | 1.8 4.8 | 4.9 1.6 3.5 1.7 1.6 2.0

10 1.6 | 3.2 6.7 1.6 5.0 3.2 12.5 1.6 | 3.4

Average 1.9 0.8 5.4 4.9 2.9 8.9 2.6 7.3 2.5 2.8 4.0

Table 2: Recognition rates of the system (in %).

accepted writer average
ranks #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 rate

1 91.0 91.7 84.5 78.5 92.2 68.2 82.7 75.5 89.6 89.9 84.4

1-2 93.1 95.8 88.9 81.9 94.8 73.4 85.5 80.1 94.1 93.8 88.1

1-3 93.1 96.7 90.5 83.4 95.8 75.2 85.8 83.0 95.3 94.6 89.3

1-5 93.5 97.7 93.1 85.3 95.9 77.5 86.9 85.5 96.1 95.4 90.7

1-10 93.5 98.2 93.8 87.1 96.2 78.6 87.3 88.4 96.7 96.1 91.6

humans 98.1 99.2 94.6 95.1 97.1 91.1 97.4 92.7 97.5 97.2 96.0

residues 4.6 1.0 0.8 8.0 0.9 12.5 10.1 4.3 0.8 1.1 4.4

given on the last line of Table 2, varies from 0:8% to 12:5%
for an average of 4:4%. Furthermore, they also show that
for writers #2, 3, 5, 9 and 10, this residual error is less
than 1:1%.

The choice of selecting the top ten results is of course
arbitrary. However, the important thing is that most of
the correct characters be contained in these �rst few out-
puts so that a list of morphologically and pragmatically
coherent alternatives of limited length can always be pro-
duced. Then, any available linguistic knowledge can be
used by higher decision processes. For instance, in a typical
limited vocabulary application, e�cient and well-known
search techniques can be used to scan a dictionary to �nd
words that approximately match the list of character se-
quences produced by the system [8, 9].

IV Conclusion

The idea behind the recognition approach presented in this
paper is to separate two distinct, though complementary,
problems: the recognition of a set of graphics symbols (i.e.
a given alphabet), and the reading of a message coded with
these symbols (i.e. a text written in a given language). The
advantage of such a separation is that solutions to these
two fundamental and di�cult problems can be optimized
independently and, eventually, be integrated into a global,
multiple approach, handwriting reading system.

Of course, this is not to say that linguistic knowledge
cannot or should not be integrated into recognition pro-
cesses, but rather that recognition should not be restricted
to the linguistic knowledge. In that sense, systems that
restrict recognition to a limited and �xed vocabulary are
useful only for special applications. The use of letter n-
grams is less restrictive and could obviously bene�t the
sequence construction process. But the object of this work

was to demonstrate the feasibility of recognizing cursive
script, at least partially, without using any linguistic con-
text.

The allograph models developed for testing the proposed
approach have demonstrated this feasibility even though
they are far from perfect. Indeed, for half the writers,
when considering the best of the top ten sequence outputs
of the system, the results obtained were almost as good as
those of very pro�cient human readers, while for the other
half they were somewhat inferior. After examining some of
the recognition errors, and without changing the modeling
strategy, it is clear that some allographs could be recoded
to make them more robust and that some new allographs
should be added. This is, however, a time-consuming pro-
cess even though it has to be done only once.
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