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Abstract

This paper de�nes an operational handwriting model for

on-line syntactic recognition of cursive script. To repre-

sent handwriting, it uses characteristic points linked to-

gether by segments of uniform curvature. The model acts

as a guide for the extraction of attributed primitives, them-

selves used in shape grammars that model allographs and

their adjacency rules. The handwriting model is evaluated

by human readers in a comparative analysis of original

cursive letter sequences versus their reconstructed traces.

Also, its performance is measured in terms of mean recon-

struction error and data compression rate.

I Introduction

Syntactic pattern analysis techniques have been used

extensively to solve planar shape recognition prob-

lems [1]. With these techniques, complex patterns are

assembled from simpler subpatterns which are them-

selves assemblies of even simpler subpatterns (etc...)

up to the simplest of them called pattern primitives

or simply primitives. One of the greatest drawback

of this approach is the usual a priori hypothesis that

primitives can be segmented without error.

For cursive script recognition, most approaches de-

�ne several high level pattern primitives like strokes,

curves, loops and cups (see for example [2, 3]). How-

ever, the problem of correct segmentation and inter-
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pretation of these kind of primitives is not trivial and

is often an important source of recognition error. Re-

cently, a model-based framework has been proposed

to analyse and compare various segmentation schemes

[4]. It is in the context of this framework, that a new

attributed language has been developped for cursive

script recognition [5].

Attributed languages have been proposed as a way

to unify syntactic and statistical pattern recognition

[6]. With attributed (shape) grammars, it is possi-

ble to de�ne patterns with attributes that both de-

scribe syntactic and semantic information about the

pattern. The advantage of these grammars over con-

ventional string grammars is that relations between

primitives are no longer restricted to concatenation.

Any morphologically signi�cant relation can be used

to de�ne patterns.

The object of this paper is to introduce the model

based Attributed Handwriting Primitive (AHP)

used in a fuzzy-syntactic allograph modeling ap-

proach for cursive script recognition [7]. With the

AHP, grammars can be de�ned to model any of the

conventional handwriting primitives without making

any de�nitive commitment to a particular segmenta-

tion scheme. The paper is organized as follows. The

handwriting model is �rst de�ned in section II. Then,

in section III, the Attributed Handwriting Primitive

stems from this model. Section IV proceeds with the

evaluation of the handwriting model from three di�er-

ent criteria : average reconstruction error, data com-

pression rate and human recognition error. Finally,

section V concludes the paper.

II Handwriting Model

Many handwriting models have been proposed for an-

alyzing or generating pieces of handwriting [8]. How-

ever, most of them are concerned mainly with tempo-

ral simulation of handwriting not directly with recog-

nition (although some of them could be used for this

purpose). The model that we propose is an opera-
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tional model in the sense that, while incorporating

some of the features of a general handwriting model

[4, 9, 10, 11], it is aimed directly at the recognition

problem thus making some pragmatic simpli�cations.

A recognition model is a model for which all use-

ful information for recognition purposes is preserved.

We call this informationmorphologically pertinent be-

cause it is an information that is characteristic of the

shape of the symbols that must be recognized.

Model De�nition Let T denote the handwritten

trace of a cursive word composed of l components
1
:

T = fC1(t); : : : ; Ci(t); : : : ; Cl(t)g (1)

where Ci(t) = (xi(t); yi(t)) represents the trace of the

ith component of the word and t 2 IN+
represents the

time expressed in multiples of the sampling period. A

component is made up of a pair of signals representing

respectively the pentip position along axes X and Y

of the writing plane (i.e. axes of the digitizing tablet).

The proposed model represents a cursive compo-

nent as a sequence of characteristic points linked to-

gether by segments of constant curvature. Charac-

teristic points are morphologically pertinent points of

the handwritten trace. The underlying hypothesis is

that changes in curvature are only pertinent for recog-

nition when they coincide with characteristic points.

Otherwise they are considered an artefact of either

the handwriting process itself or the data acquisition

process.

The chosen characteristic points are local extrema

of signals xi(t) and yi(t), and local in
exion points

of Ci(t). This purely static choice is motivated by

the recognition objectives described previously. Two

other hypotheses are also made with this model : �rst

that the baseline of the word is approximatly oriented

along the X axis of the writing plane and, second,

that the inclination of ascenders and descenders in

letters are approximatly oriented along the Y axis of

the writing plane. If these hypotheses are not met, it

is assumed that preprocessing techniques [12, 13, 14]

can detect and correct these orientations.

Under these hypotheses, the chosen characteris-

tic points correspond to a pragmatic approximation

of the segmentation scheme proposed by Plamondon

[4, 9] where components are made up of strings, that

1A handwriting component is de�ned as a portion of the

written trace between a pendown and a penlift [8] (while the

pen is in contact with paper).

is, portions of components between two angular dis-

continuities ; each string is made up of a combination

of curvilinear and angular strokes, that is, curvilin-

ear or angular displacements resulting from inpulse

functions applied as inputs to the proper generator ;

and strokes are characterized by log-normal curvilin-

ear and angular velocity pro�les. The strings will

always be delimited by local extrema of either xi(t)

or yi(t). The other local extrema and local in
ex-

ion points are rough estimates of stroke boundaries

which, in fact, are hidden in the signal due to a su-

perimposition phenomena [4, 9].

Local extrema Let E(f) = fe1; : : : ; ei; : : : ; emg be

the set of local extrema indexes for signal f(t) be-

fore �ltering, with m being the number of extrema

indexes, ei 2 f1; : : : ; n�2g and n corresponding to the

number of samples in the signal : t 2 f0; : : : ; n� 1g.

Then, E(f) is de�ned by :

E(f) = fei 2 f1;:::;n�2gj deiei�1(f)�deiei+1(f) � 0g (2)

where dij(f) = f(i) � f(j) denotes the di�erence be-

tween sample i and sample j of signal f(t). Now

assume that elements of E(f) are sorted in increasing

order, that is, ei > ei�1 8 i 2 f2; : : : ;mg. Then, the

interesting extrema are those that are su�ciently im-

portant in the sense that they respect the following

two conditions :

jdeiei�1(f)j > max(�f ; � jd
ei
ei�1

(g)j) (3)

jdeiei+1(f)j > max(�f ; � jd
ei
ei+1

(g)j) (4)

where �f is an amplitude constraint, � is an angular

constraint, jdeiej (f)j represents the absolute value of

deiej (f) and g corresponds to the signal orthogonal to

signal f : if f(t) = x(t) then g(t) = y(t), otherwise

g(t) = x(t).

The amplitude constraint is easy to visualize : a

valid extremum of f(t) must possess a relative ampli-

tude with respect to the previous and next extrema

greater than a threshold �f . In practice, �f is �xed

proportional to the precision of the digitizing tablet

to �lter quantization noise. The angular constraint

is introduced to �lter noise in the handwriting pro-

cess. Indeed, for rectilinear trajectories, imprecisions

in motor control of the hand tend to produce windings

all the more important that the displacement is great.

When this displacement is along theX orY axes of the

writing plane, undesirable local extrema are thus pro-

duced. The angular constraint � > tan
�1
(�) places

a lower bound on the angle � between two successive
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Figure 1: Example of a cursive word with its char-

acteristic points and the three signals x(t), y(t) and

�c(t).

extrema. Every extremum that does not respect these

two conditions is eliminated from E(f).

Local in
exion points In
exion points of compo-

nent C(t) are located using the angle of the tangent.

An in
exion point corresponds to a change in the sign

of the curvature and, thus, to a local extremum in the

cumulative angle signal �c(t) of the tangent.

Local extrema of signal �c(t) are obtained and �l-

tered in the same manner as for signal x(t) and y(t)

except that the amplitude constraint �� is expressed in

angle units and the angular constraint is null : � = 0.

Furthermore, f(t) = g(t) = �c(t).

Figure 1 gives an example for the cursive word

\formes" (french for \patterns"). Local extrema of

position signals are marked with + and local in
ex-

ion points with �. The amplitude constraints are

�x = �y = 0:25 mm (i.e. twice the speci�ed precision

of the digitizing tablet), �� = 30
�
and the angular con-

straint is � =
1

10
. On the right side of the word, the

three signals x(t), y(t) and �c(t) are displayed. No-

tice that several in
exion points were �ltered because

they coincided with extrema of x(t) or y(t).

III Handwriting Primitive

The Attributed Handwriting Primitive (AHP) is de-

�ned by the portion of handwriting around a char-

acteristic point. Then, to each characteristic point

corresponds a primitive to which a set of attributes

is assigned. These attribute constitute the morpho-

logically pertinent information of the corresponding

handwriting segment.

Two types of attributes are considered : attach-

ment points used for syntactic arrangement of the

primitives ; and properties for their semantic coher-

ence.

Attachment points Three attachment points are

used : a starting point, a characteristic point and

an ending point. Because only characteristic points

of the handwriting model are considered morpholog-

ically pertinent, the starting and ending points are

respectively chosen as the previous and next charac-

teristic points.

This choice of attachment points imply that two

successive primitives of the same component will al-

ways have two common attachment points and a com-

mon segment of the cursive trace. This is consistent

with the proposition that all non characteristic points

are only a consequence of the relation that unite to-

gether characteristic points. It is also consistent with

the handwriting model of Plamondon where strokes

usually overlap [4, 9, 11].

Properties Properties associated to primitives

stem directly from the handwriting model. A primi-

tive is represented in the x�y plane as two circular arcs

linking three attachment points. In the t � �c plane it

corresponds to two line segments since the curvature

of a circle is constant.

Let ts, tc and te be the time indexes for samples

of the component corresponding respectively to the

starting, characteristic and ending points of a prim-

itive. Then, let !s = ast + bs and !e = aet + be be

the two regression lines corresponding to the line seg-

ments preceding and following the primitive's charac-

teristic point in the t � �c plane, with as and ae being

the slopes of the lines, and bs and be the origin's or-

dinates.

From these two lines, three types of properties

are inferred : measures of discontinuity, tilt and

curvness2.

The �rst property is a measure of angular discon-

tinuity at the characteristic point of the primitive.

Figure 2 gives three typical examples of primitives in

the x � y and t � �c planes. Two variables of angular

variation are used for the discontinuity property : a

local di�erence �l =<!e(tc) � !s(tc)> and a global

di�erence �g =< !e(te) � !s(ts) >. In the case of

Figure 2a, we have perceptibly, a typically continu-

ous primitive where the local variation is small and

the global variation large. Figure 2b, shows an inter-

mediate case with to straight line segments where the

local variation is important but equal to the global

variation. Finally, in Figure 2c, the primitive is typ-

ically discontinuous with a large local variation and

2The term curvness is used as a heuristic curvature measure.
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Figure 2: Discontinuity model : a) typically continu-

ous primitive, b) intermediate case, c) typically dis-

continuous primitive.

small global variation.

Hence, the local variation corresponds well to the

discontinuity measure when it is equal to the global

variation. However, a global variation that exceeds

the local variation tends to reduce the importance of

the latter and, reciprocally, a smaller global variation

reinforces it. The proposed discontinuity measure �c

thus weights the local angular variation by the square

root of the ratio of local and global variations to pro-

duce a more robust measure : �c = �l

q
j�l=�gj.

Three properties of tilt are de�ned : the average

tilt 
c =
1

2
(!s(tc) + !e(tc)) of the primitive around

the characteristic point, the tilt 
s = !s(ts) at the

start of the primitive and the tilt 
e = !e(te) at the

end of the primitive.

Two properties of curvness are de�ned : the aver-

age curvness �s = as(tc� ts) before the characteristic

point and the average curvness �e = ae(te � tc) after

the characteristic point.

IV Model Evaluation

A special cursive handwriting data base was con-

structed to validate the handwriting model. This data

base consists of 100 handwritten letter sequences writ-

ten by 4 di�erent writers. The letter sequences were

generated at random while respecting the letter fre-

quencies of a 32 000 words french dictionary and word

length was varied from 5 to 7 letters. The letter se-

quences were assigned at random to the 4 writers (25

each) and they were asked to write them with their

normal, although clean, handwriting.

The �rst writer naturally detaches every letter in

his words. The fourth writer has a tendency to de-

tach most letters but not all. And the two others write

normal cursive script, that is, have a tendency to at-

a) b)

Figure 3: Examples of cursive letter sequences. a)

original traces, b) reconstructed traces.

Table 1: Average reconstruction error (in %).

writer average

# 1 # 2 # 3 #4 error

1.6 1.8 1.8 1.8 1.7

tach letters but not all. These subjects were chosen

because they had di�erent handwriting styles.

Data acquisition was conducted using a Penpad 300

digitizing tablet with a sampling frequency of 100 Hz

and resolution of 0.001 inch.

Reconstruction Error Handwriting reconstruc-

tion is carried out by interpolating between succes-

sive characteristic points with circular arcs of angle �

corresponding to the curvness property of the prim-

itive. Figure 3 gives one example of a cursive letter

sequence for each of the 4 writers. On the left side of

the �gure, original digitized points are linked together

with lines. On the right side, characteristic points are

linked with circular arcs.

Table 1 gives average reconstruction errors for each

writer. The reconstruction error for a given cursive

word is evaluated by an objective spatial measure-

ment de�ned by Maarse [15]. It computes the average

reconstruction error for each stroke (in this case, the

segments between characteristic points) by measur-

ing the area between the original and reconstructed

strokes and dividing it with the square of its length (in

this case, the distance between the two characteristic

points) so has to make it independent of handwriting

size.

The average result of 1.7% shows that reconstruc-

tion is very good, in fact better than the results re-

ported in [8] for all surveyed models. However, con-

trary to most other models, one must remember that

this model is not concerned with temporal simulation
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Table 2: Average compression rates (in %).

writer average

# 1 # 2 # 3 # 4 rate

40.4 37.4 37.1 37.7 38.2

(which is a more di�cult task), only with spatial re-

construction.

Data Compression Rate Table 2 gives data com-

pression rates for the 4 writers. These rates are com-

puted by assigning 2 storage units for each point dig-

itized by the tablet and 3 storage units for each char-

acteristic point (2 for the point itself and 1 for the

\curvness" information) of the model. The rates are

obtained by computing the ratio of storage units used

for the model over the storage units needed for the

digitized handwriting (at 100 Hz).

The average compression result of 38.2% is good

considering that to obtain an equivalent performance

by reduction of the sampling frequency, one would

need to sample at 38 Hz which is approximatly 2 to

2.5 times the highest frequency found in handwrit-

ing signals (assuming the generally accepted higher

bound in the area of 15 to 20 Hz). Futhermore, com-

pression rates are quite stable across writers although

the higher number of components for writer #1 could

explain its somewhat lower performance.

Human Recognition Experiment For the recog-

nition experiment, 4 readers were selected and each

was assigned at random 25 of the 100 letter sequences

in the data base. These readers were chosen with no

formal pattern recognition knowledge (just their nat-

ural intuitive reading experience) and did not have

any known link with the four writers. For each of

them, the 25 letter sequences were printed at a scale

of 1:1 in both original and reconstructed form. Each

letter sequence was always printed on one sheet of

paper in its original form and the corresponding re-

construction on another sheet of paper, but they were

assigned randomly either to the �rst sheet or the sec-

ond one. These two sheets of paper were presented to

each reader in two di�erent sessions, and they were

asked simply to translate in carefully written block

letters what they could read for each letter sequence.

In the second session, the readers did not have access

to their �rst sheet and they were never told about

the handwriting model. They were told that the ex-

periment was to compare human and machine perfor-

Table 3: Human recognition results by reader for letter

sequences and their reconstructed trace (in %).

reader average

# 1 # 2 # 3 #4 error

�o �r �o �r �o �r �o �r �o �r

9.3 9.3 4.0 4.0 10.4 13.6 1.9 2.6 6.4 7.3

Table 4: Human recognition results by writer for letter

sequences and their reconstructed trace (in %).

writer average

# 1 # 2 # 3 #4 error

�o �r �o �r �o �r �o �r �o �r

2.0 3.3 7.9 8.6 5.2 6.5 10.5 11.1 6.4 7.3

mance.

The motivation behind this experiment is that hu-

mans are, by far, the best cursive script recogniz-

ers and, in the current state of the art, we can only

hope to acheive comparable results. The proposed

handwriting model is used to extract the AHP of

our recognition system. Hence, we seek to demon-

strate that, if the model based reconstruction of hand-

writing is just as good for human readers, then the

AHP contains all morphologically pertinent informa-

tion needed for recognition.

Table 3 summarizes the results for the readers and

table 4 for the writers. The error rates are computed

using the Wagner-Fischer algorithm [16] for string to

string editing distance with equal cost functions for

insertion, deletion and substitution. The results are

expressed in percentage of the ratio of number of er-

rors over the number of characters. �o and �r repre-

sent respectivelly the error rates for the original and

reconstructed letter sequences.

Average results give a 0.9% di�erence in error be-

tween reconstructed and original letter sequences. Us-

ing a Student reference distribution with 3 degrees of

freedom, this di�erence is signi�cant at the 15% level

for reader average performances and at the 1% level

for writer average performances. Furthermore, com-

pared to the 6.4% average error for original letter se-

quences, this di�erence is relatively small. Here are

some other miscealeneous statistics :

1. number of errors per letter sequence vary from 0

to 3 ;

2. worst error is not always for reconstructed let-

ters : in 7 cases, it was for the original letter

sequence compared with 11 cases for the recon-
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struted one ;

3. in 5 cases, the original letter sequence was read

erroneously while the reconstructed one was read

correctly compared with 10 cases for the recipro-

cal ;

4. 26% of original letter sequences were read er-

roneously compared with 31% for reconstructed

ones.

Looking at individual observed reader perfor-

mances, considerable 
uctuations can be seen. The

best reader outperforms the worst by a factor greather

than 5. Also, the observed di�erence of error rates

between original and reconstructed letter sequences

vary from 0% to 3.2%. Similarly, observed writer per-

formances, that is readability, have shown important


uctuations.

V Conclusion

The main purpose of this paper was to present and

support our model based Attributed Handwriting

Primitive used in a fuzzy-syntactic allograph mod-

eling approach to cursive script recognition [7]. With

this primitive, allographs can be modeled using fuzzy-

attributed shape grammars and segmented by an ad-

equate parser [5]. The proposed handwriting model

was found to give good data compression (38% of

digitized data) and very good reconstruction quality

(1.7% error). On average, human readers have made

1% more errors with the model based reconstructed

letter sequences, although this di�erence is not very

signi�cant (at the 15% level). Also, it was found that

readers have made between 1.9% to 10.4% of errors

while reading cursive script with no available lexical

context.

Another purpose of this paper was to propose a

protocol for evaluating the quality of the primitive ex-

traction phase of any structural cursive script recog-

nition method. By using human readers and recon-

structing handwriting only from the information of

the primitives | the information available to the

recognition algorithm | it is possible to approxi-

matly estimate the maximum percentage of errors

that can be directly attributed to the primitive ex-

traction phase, assuming that linguistic knowledge

can only reduced or maintain this percentage.
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