
ICDAR ’99, Bangalore, India, 20-22 September 1

Cursive Character Detection using Incremental Learning�

Jean-Franc¸ois Hébert, Marc Parizeau
Computer Vision and Systems Laboratory

Dept. of Electrical and Computer Engineering
Laval Univ., Ste-Foy (Qc), Canada, G1K 7P4

fjfhebert,parizeaug@gel.ulaval.ca

Nadia Ghazzali
Dept. of Mathematics and Statistic

Laval Univ., Ste-Foy (Qc), Canada, G1K 7P4
ghazzali@mat.ulaval.ca

Abstract
This paper describes a new hybrid architecture for an

artificial neural network classifier that enables incremen-
tal learning. The learning algorithm of the proposed archi-
tecture detects the occurrence of unknown data and auto-
matically adapts the structure of the network to learn these
new data, without degrading previous knowledge. The archi-
tecture combines an unsupervised self-organizing map with
a supervised Perceptron network to form the hybrid Self-
Organizing Perceptron (SOP) network. Recognition exper-
iments conducted on isolated characters taken in the context
of cursive words show the promising incremental capabilities
of this SOP network.

1. Introduction

One of the great challenge in on-line handwriting recog-
nition, as in many other pattern recognition problems, is to
design systems that are not only capable of automatic learn-
ing but also capable of learning in an incremental fashion.
This paper presents a new hybrid neural network architecture
that is capable of tackling this problematic, and evaluates its
performances in the context of learning to recognize cursive
characters in cursive words.

Neural network training may be passive, active or incre-
mental. Passive learning is a one shot process where train-
ing is conducted on all available data. In contrast, an active
strategy allows some form of interaction between learner and
teacher. For example, an active process can concentrate on
specific regions of the input domain. Incremental learning
differs from passive and active learning in that it does not
assume that all input data are available a priori. The main
reasons for wanting active and incremental learning in neu-
ral networks are: 1) to allow training by parts on huge data
sets, 2) to enable learning of new knowledge, 3) to adapt to
knowledge evolution, and 4) to reinforce current knowledge.
In order to achieve incremental learning, however, it appears

�This research was supported in part by NSERC grants to M. Parizeau
and N. Ghazzali, and in part by an FCAR grant to M. Parizeau.

necessary that the number of free parameters in the network
be allowed to change over time, which translates to adding
both new neurons and new connections in order to build con-
structive neural networks [1, 2, 3].

The architecture proposed in this paper combines a self-
organizing neural network linked with a multi-layered feed-
forward network. The idea is to take advantage of the model-
ing abilities of the self-organizing network for clustering the
feed-forward network into specialized neurons.

The rest of this paper is organized as follows. First, Sec-
tion 2 gives an overview of the cursive handwriting system
in which the proposed neural architecture simply acts as a
character classifier. The object of the paper is not to describe
this system in full details, but rather to present the context in
which the character classifier is used, and to define the spe-
cific problem that we wish to solve using incremental learn-
ing. Then, the details of our hybrid neural network are given
in Section 3. Finally, Section 4 conducts experiments that
demonstrate on cursive characters segmented in words the
incremental learning abilities of this network.

2. Overview of the recognition system

One of the main problem in on-line cursive script recog-
nition is the so-called segmentation/recognition dilemma
where characters need both to be segmented before they
can be recognized, and recognized before they can be seg-
mented. Many approaches were developed for working
around this dilemma [4]. But most of them are based on over-
segmentation of the scripts in smaller units than characters
(usually graphemes) and on analysis of all possible segmen-
tation paths, using lexical constraints in order to limit combi-
natorial explosion. In contrast, our system uses a somewhat
different strategy where no explicit a priori segmentation is
made, and no lexical constraints are a priori imposed [5].

This system is based on a segmentation process where the
objective is to find all instances of character classes in a cur-
sive word. This search, conducted on a class by class basis,
stems from an iterative positioning process that controls the

ICDAR ’99, Bangalore, India, 20-22 September 2

a) b)

Figure 1. Detection results on word “renie”. The
following enumerates the detected character in each
window with its confidence value. a) ‘r’:1.0, ‘e’:1.0,
‘n’:1.0, ‘i’:1.0, ‘e’:1.0., b) ‘n’:0.4, ‘e’:1.0, ‘n’:0.3,
‘i’:1.0, ‘e’:1.0.

panning and zooming of a spatial window of attention. The
feasibility of this approach has already been demonstrated
experimentally in the context of synthetic words constructed
using randomly selected isolated characters, both concate-
nated and slightly overlapped to produce a cursive effect
[5]. These experiments have shown that when a character
instance is detectable by the character classifier, then our seg-
mentation process is able to adjust a window of attention that
partially encompasses the character, and make it converge to
the bounding box of this character.

The output of the segmentation process is a set of hy-
potheses that begets a valuated segmentation graph whose
best paths represent coherent interpretations of the unknown
cursive word [6, 7]. Ideally, this graph should contain all true
segmentation hypotheses and as few as possible false ones.
Indeed, if a true hypothesis is missing in the graph, then the
corresponding character cannot be part of the final word in-
terpretation (remember that we do not wish at this point to
use any linguistic information that could enable guessing the
missing character). Thus our objective is to train our classi-
fier network in order to maximize the detection of characters.

Up until now, our classifier network has been trained
passively using Section 3 of data set Train-R01/V07 of
the UNIPEN database [8], and tested using Section 3 of
DevTest-R01/V02. These data set contain respectively
40 092 and26 560 isolated lower case alphabetic characters
(‘a’ through ‘z’) taken in the context of words or texts. Be-
fore training and testing, each isolated character of both data
sets is mapped into a fuzzy vector of fixed diemsnion [9].
Recognition rates on the test data set are respectively83:8%,
90:5%, 92:9%, 95:2% depending on whether one considers
the top-1, top-2, top-3 or top-5 best classifier outputs. Even
though the size of the training data set is large and the recog-
nition results are relatively good on this testing data set, we
have found that our classifier network is sometimes unable to
detect some cursive letters within cursive words, especially
for certain specific character classes. For example, Figure
1 shows two samples of the same word, but written by two
different writers using different styles. The rectangles in this
figure represent windows of attention. The first writer uses
script handwriting and the classifier network is able to de-

tect correctly, with a very high confidence, each of the let-
ters. This probably implies that the handwriting style of this
writer is well represented in the training data set (and indeed
it is). For the second writer, however, the classifier did not
succeed as well for letters ‘r’ and ‘n’, and the ‘r’ was even
confused with an ‘n’. There are two possible explanations
for this phenomenon: 1) either the classifier has not learned
these character styles correctly, or 2) these styles are not well
represented in the training data set. In this paper, we assume
the later alternative and wish to retrain the classifier using
some new character instances1 that are currently not well de-
tected by the classifier network.

To do this, one could simply add the new samples to the
training set and retrain the network. But this will be time
consuming and will probably not work when the training
data set is large. Our objective is to continue the training
of the network in an incremental fashion, that is, by using
only these new samples but without forgetting what was pre-
viously learned. In Section 4, experiments will be conducted
to show that such incremental learning is possible.

3. The Self-Organizing Perceptron (SOP)
The Multi-Layer Perceptron (MLP) is certainly the most

commonly used neural networks in the area of pattern recog-
nition, and it has shown impressive results for many simple
applications in recent years. However, it also has many de-
fects that are well known and documented [1]. In particular,
Gori has recently shown that the MLP tends to draw open
separation surfaces in the input data space [10], and thus can-
not reliably reject patterns. Another drawback of the MLP
is the so-called moving target problem: since neurons on a
layer do not communicate with one another, each neuron de-
cides independently which part of the classification problem
it will tackle [1]. To overcome this moving target problem, a
conceivable solution is to specialize each hidden neuron by
restricting them to act only within a localized region (a clus-
ter) of the input space. The main idea behind the new neural
network that is presented in the next sub-sections is to use an
unsupervised self-organized network to clusterize a MLP.

In order to take advantage of the modeling abilities of
an unsupervised self-organizing map, we design an hybrid
Self-Organizing Perceptron (SOP) network in which the role
of the self-organizing map is to cluster a Perceptron net-
work into specialized groups of neurons. The idea is to link
an already trained unsupervised map formed ofq neurons
c1; c2; : : : ; cq to an�q�m multi-layer Perceptron, where
n is the dimensionality of the input data,q is the number
of neurons located on a hidden layer, andm is the num-
ber of output neurons. Clusterization of the SOP is achieved
through the computation for each neuronci, i = 1; 2; : : : ; q,
of the map of a selection factorpi which balances in regard

1These new samples could come from a human teacher that would pin-
point the correct window for the correct character.

ICDAR ’99, Bangalore, India, 20-22 September 3

....

....
....

.... Output
Layer

Hidden
Layer

Input
Layer

....

Outputs

Inputs Inputs

-1

PerceptronSelf-Organizing Map

Figure 2. SOP network architecture.
to an input exemplar� 2 IRn the output of a specific neuron
located on the last hidden layer of the SOP (see Figure 2).
For an input datum�, the selection factorpi of a neuronci,
i = 1; 2; : : : ; q, is computed as:

pi = exp

�
�

jj!i � �jj2

�2
i

�
; (1)

where!i 2 IRn is the position of neuronci in the in-
put space,jj � jj denotes the Euclidean vectorial norm, and
�i 2 IR+ is the mean length of all edges adjacent to neuron
ci. That last parameter�i controls the sphere of influence
for neuronci. The resulting selection factors are used to bal-
ance the activation signalaj , j = 1; 2; : : : ;m, of each output
neuron in the SOP:

aj =

qX
i=1

pi wji si; (2)

wheresi is the output signal provided by theith hidden neu-
ron of the SOP andwji is the weight between that hidden
neuron and thej th output neuron.

The SOP network can be passively trained with an hybrid
learning process. First, an unsupervised learning algorithm is
used to construct the self-organizing map. Basically, the role
of the unsupervised map for the SOP network is to generate a
mapping from an original high-dimensional input space to a
lower-dimensional topological structure which preserves the
neighborhood relations contained in the input data. In prac-
tice, we use Fritzke’s Growing Neural Gas (GNG) [11] net-
work because we have found that, most of the time, it achives
a better mapping than other networks like the Kohonen’s
Self-Organizing Map (SOM) [12] or the Fritzke’s Growing
Cell Structures (GCS) [2]. Once this network is trained in an
unsupervised fashion, a supervised learning algorithm such
as the classic backpropagation algorithm then serves to adapt
the synaptic weights of the MLP network. Note also that the
backpropagation equations are slightly modified to take into
account the influence of the selection factors.

Figure 3. Word “ntecr” written by the 10 writers.

Both equations (1) and (2) ensure that input data located
near each other in the input vector space will tend to activate
the same group of neurons in the MLP during the supervised
training of the SOP network. In contrast with standard back-
propagation training, the use of selection factors to control
network outputs allows to freeze the weight adjustments for
inactive parts of the MLP. It is that feature that makes it pos-
sible to train a SOP network in an incremental fashion by
adding new neurons into the structure. For full details, the
reader is referred to H´ebert et al. [13]

4. Experiments and results

In this section, experiments will show that a SOP network
first trained passively on an isolated character data set can be
retrained using only new samples of badly detected charac-
ters while preserving most of its previous knowledge. Fur-
thermore, this retraining is conducted on only 2 out of 26
character classes in order to show that knowledge preserva-
tion is stable both within and between character classes. As
stated in Section 2, passive training of a SOP network on the
lower case characters (‘a’ through ‘z’) of Section 3 of data
set Train-R01/V07 of the UNIPEN database [8] produces
somewhat good recognition rates on the DevTest-R01/V02
test set. Indeed, these rates vary from83:8% to 95:2% for
the top-1 to top-5 hypotheses. The structure of the SOP net-
work consists of 200 hidden neurons and 26 output neurons.

This trained SOP was thus integrated into our segmen-
tation process [5] as the detector network, and was used to
detect cursive letters in a custom cursive word data set that
was manually segmented by a human operator. This data
set contains 25 words written by 10 different writers (total
of 250 words and1 540 characters). Figure 3 illustrates the
various styles of the ten writers. Next, two character classes
were chosen, namely the ‘n’ and ‘r’ classes, because they
contained many badly detected characters in this word data
set. From a total of respectively 140 ‘n’ and 120 ‘r’ instances,
67 and 65 badly detected characters were extracted in order
to retrain the SOP using the incremental learning mode as
described in [13]. These new characters were randomly pre-
sented one by one to the SOP, and at the end, the final SOP
network contained a total of 216 neurons, that is, 16 new
neurons were added to the original SOP.

Now, in order to compare the performances of the detec-
tor network before and after incremental learning, a second

ICDAR ’99, Bangalore, India, 20-22 September 4

Table 1. Detection results on the testing word data set,
before and after incremental learning.

Before After
Writer alla ‘n’ ‘r’ all ‘n’ ‘r’

#1 0.92 0.99 0.99 0.87 0.99 1.00
#2 0.78 0.43 0.35 0.78 0.70 0.59
#3 0.81 0.73 0.65 0.79 0.73 0.71
#4 0.72 0.74 0.52 0.72 0.85 0.77
#5 0.76 0.90 0.44 0.73 1.00 0.53
#6 0.56 0.31 0.54 0.53 0.53 0.72
#7 0.79 0.98 0.88 0.77 1.00 0.98
#8 0.73 0.89 0.17 0.73 0.99 0.64
#9 0.70 0.71 0.63 0.72 0.82 0.90
#10 0.71 0.91 0.42 0.74 0.93 0.82
Avg. 0.75 0.76 0.56 0.74 0.85 0.77

a“all” means all character classes except classes ‘n’ and ’r’.

word data set consisting of a different set of 25 words written
by the same 10 writers was again segmented manually by a
human operator. This time, the data set contains a total of
1 520 characters including 150 ‘n’ and 110 ‘r’ letters. Table
1 gives the average detection results on this new testing word
data set on a per writer basis.

These detection results correspond to the network outputs
for the window of attention selected by the human operator.
An output can vary in the interval[0; 1], 0 meaning no detec-
tion, and 1 meaning perfect detection. The columns labelled
“all” in this table correspond to averages over all character
classes, except classes ‘n’ and ‘r’. The other columns la-
belled ‘n’ and ‘r’ represent averages only for the correspond-
ing character class. Relative to what could be gained to
achieve perfect detection, these results correspond on aver-
age to a45:8% increase for the ‘n’ character class and47:2%
for the ‘r’ character class. In contrast, the relative loss of de-
tection over all other character classes is only1:3%. Thus
Table 1 shows that incremental learning is possible in order
to increase detection of badly detected characters in the con-
text of cursive words.

5. Conclusion
This paper has presented incremental learning experi-

ments using a Self-Organizing Perceptron (SOP) network.
The SOP network is an hybrid architecture combining a self-
organizing map with a multi-layer Perceptron to form the
Self-Organizing Perceptron (SOP) network. The unsuper-
vised map is used to model the input data space and to parti-
tion the supervised Perceptron into clusters of neurons. This
hybrid neural network was initially trained only on isolated
characters taken from the UNIPEN database. Then, it was
used in the context of cursive words in order to learn new
instances of ‘n’ and ‘r’ characters that were not well repre-

sented in the initial training set. Results have shown that the
proposed neural architecture could learn in an incremental
fashion, that is by retraining the network using only the new
pattern samples. This approach is currently being integrated
into an interactive cursive handwriting recognition system
where basic knowledge stems from large isolated character
data sets that enable initial multi-writer capabilities. In this
system, interaction with the user, who becomes a teacher,
enables both knowledge evolution and reinforcement.

References
[1] S.E. Fahlman, C. Lebiere, “The Cascade-Correlation Learn-

ing Architecture”, in D.S. Touretzky (ed.),Advances in neural
information processing systems, 2 (pp. 524-532). San Mateo,
CA: Morgan Kaufmann Publishers, 1990.

[2] B. Fritzke, “Growing Cell Structures - A Self-Organizing Net-
work for Unsupervised and Supervised Learning”,Neural Net-
works, 7(9):1441-1460, 1994.

[3] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, D.
Rosen, “Fuzzy ARTMAP: A Neural Network Architecture for
Incremental Supervised Learning of Analog Multidimensional
Maps”, IEEE Trans. on Neural Networks, 3(5):698-713, 1992.

[4] C.C. Tappert, C.Y. Suen, T. Wakahara, “The State of the Art in
On-Line Handwriting Recognition”,IEEE Trans. on Pattern
and Machine Intelligence, 12(8):787-808, 1990.

[5] J.-F. Hébert, M. Parizeau, N. Ghazzali, “Learning to Segment
Cursive Words using Isolated Characters”,Proc. of the Vision
Interface Conference, pp. 33–40, 1999.

[6] Parizeau M., Plamondon R., ”Allograph Adjacency Con-
straints for Cursive Script Recognition”,Int. Workshop on
Frontiers in Handwriting Recognition, pp. 252-261, 1993.

[7] M. Parizeau, R. Plamondon, “A Fuzzy-Syntactic Approach
to Allograph Modeling for Cursive Script Recognition”,
IEEE Trans. on Pattern Analysis and Machine Intelligence,
17(7):702-712, 1995.

[8] I. Guyon,L. Schomaker,R. Plamondon,M. Liberman,S. Janet,
“UNIPEN Project of On-Line Data Exchange and Recognizer
Benchmarks”, Int. Conf. on Pattern Recognition, 2:29-33,
1994.

[9] J.-F. Hébert,M. Parizeau,N. Ghazzali, “A New Fuzzy Geomet-
ric Representation for On-Line Isolated Character Recogni-
tion”, Int. Conf. on Pattern Recognition, 2:1121-1123, 1998.

[10] M. Gori,F. Scarselli,“Are Multilayer Perceptrons Adequate
for Pattern Recognition and Verification?”,IEEE Trans. on
Pattern Analysis and Machine Intelligence,20(11):1121-1132,
1998.

[11] B. Fritzke, “A Growing Neural Gas Network Learns Topolo-
gies”, In D.S. Touretzky, and T.K. Leen (eds),Advances in
Neural Information Processing Systems 7, MIT Press, pp.
625–632, 1995.

[12] T. Kohonen, “The Self-Organizing Map”,Proc. of the IEEE,
78(9):1464-1480, 1990.

[13] J.-F. Hébert, M. Parizeau, N. Ghazzali, “A New Hybrid ANN
Architecture for Active and Incremental Learning: the Self-
Organizing Perceptron (SOP) Network”, accepted inInt. Joint
Conf. on Artificial Neural Networks, 1999.

