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Abstract

Hidden Markov models (HMMs) are stochastic models capable of statistical learning and
classification. They have been applied in speech recognition and handwriting recognition be-
cause of their great adaptability and versatility in handling sequential signals. On the other
hand, as these models have a complex structure, and also because the involved data sets usually
contain uncertainty, it is difficult to analyze the multiple observation training problem without
certain assumptions. For many years researchers have used Levinson’s training equations in
speech and handwriting applications simply assuming that all observations are independent of
each other. This paper present a formal treatment of HMM multiple observation training with-
out imposing the above assumption. In this treatment, the multiple observation probability
is expressed as a combination of individual observation probabilities without losing gener-
ality. This combinatorial method gives one more freedom in making different dependence-
independence assumptions. By generalizing Baum’s auxiliary function into this framework
and building up an associated objective function using Lagrange multiplier method, it is proved
that the derived training equations guarantee the maximization of the objective function. Fur-
thermore, we show that Levinson’s training equations can be easily derived as a special case
in this treatment.

Index Terms — Hidden Markov model, forward-backward procedure, Baum-Welch algo-
rithm, multiple observation training
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1 Introduction

Hidden Markov models (HMMs) are stochastic models which were introduced and studied in the
late 1960s and early 1970s [1, 2, 3, 4, 5]. As the parameter space of these models is usually
super-dimensional, the model training problem seems very difficult at the first glance. In 1970
Baum and his colleagues published their maximization method which gave a solution to the model
training problem with a single observation [4]. In 1977 Dempster, Laird and Rubin introduced the
Expectation-Maximization (EM) method for maximum likelihood estimates from incomplete data
and later Wu proved some convergence properties of the EM algorithm [6], which made the EM al-
gorithm a solid framework in statistical analysis. In 1983 Levinson, Rabiner and Sondhi presented
a maximum likelihood estimation method for HMM multiple observation training, assuming that
all observations are independent of each other [7]. Since then, HMMs have been widely used in
speech recognition [7, 8, 9, 10, 11, 12]. More recently they have also been applied to handwriting
recognition [18, 19, 20, 21, 22] as they are adaptive to random sequential signals and capable of
statistical learning and classification.

Although the independence assumption of observations is helpful for problem simplification,
it may not hold in some cases. For example, the observations of a syllable pronounced by a person
are possibly highly correlated. Similar examples can also be found in handwriting: given a set
of samples of a letter written by a person, it is difficult to assume or deny their independence
properties when viewed from different perspectives. Based on these phenomena, it is better not to
just rely on the independence assumption.

This paper presents a formal treatment for HMM multiple observation training without im-
posing the independence assumption. In this treatment, the multiple observation probability is
expressed as a combination of individual observation probabilities rather than their product. The
dependence-independence property of the observations is characterized by combinatorial weights.
These weights give us more freedom in making different assumptions and hence in deriving cor-
responding training equations. By generalizing Baum’s auxiliary function into this framework and
building up an associated objective function using Lagrange multiplier method, it is proved that
the derived training equations guarantee the maximization of the objective function and hence the
convergence of the training process. Furthermore, as two special cases in this treatment, we show
that Levinson’s training equations can be easily derived with an independence assumption, and
some other training equations can also be derived with a uniform dependence assumption.

The remainder of this paper is organized as follows. Section 2 summarizes the first order
HMM. Section 3 describes the combinatorial method for HMM multiple observation training.
Section 4 shows two special cases: an independence assumption versus a uniform dependence
assumption. Finally, section 5 concludes this paper.
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2 First Order Hidden Markov Model

2.1 Elements of HMM

A hidden Markov process is a doubly stochastic process: an underlying process which is hidden
from observation, and an observable process which is determined by the underlying process. With
respect to first order hidden Markov process, the model is characterized by the following elements
[10]:

� set of hidden states:

S = fS1; S2; � � � ; SNg (1)

whereN is the number of states in the model.

� state transition probability distribution1:

A = faijg (2)

where for1 � i; j � N ,

aij = P [qt+1 = Sjjqt = Si] (3)

8>><
>>:

0 � aij
NX
j=1

aij = 1
(4)

� set of observation symbols:

V = fv1; v2; � � � ; vMg (5)

whereM is the number of observation symbols per state.

� observation symbol probability distribution2:

B = fbj(k)g (6)

where for1 � j � N , 1 � k �M ,

bj(k) = P [vk at tjqt = Sj] (7)

8>><
>>:

0 � bj(k)
MX
k=1

bj(k) = 1
(8)

1A is also called transition matrix.
2B is also called emission matrix.
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� initial state probability distribution:

� = f�ig (9)

where for1 � i � N ,

�i = P [q1 = Si] (10)

8>><
>>:

0 � �i
NX
i=1

�i = 1
(11)

For convenience, we denote an HMM as a triplet in all subsequent discussion:

� = (A;B; �) (12)

2.2 Ergodic model and left-right model

An HMM can be classified into one of the following types in the light of its state transition:

� ergodic model:

An ergodic model has full state transition.

� left-right model 3:

A left-right model has only partial state transition such thata ij = 0, 8j < i.

2.3 Observation evaluation: forward-backward procedure

LetO = o1o2 � � � oT be an observation sequence whereot 2 V is the observation symbol at timet,
and letQ = q1q2 � � � qT be a state sequence whereqt 2 S is the state at timet. Given a model�
and an observation sequenceO, the observation evaluation problemP (Oj�) can be solved using
forward-backward procedure in terms of forward and backward variables (reference Figure 1):

� forward variable4:

�t(i) = P (o1o2 � � � ot; qt = Sij�) (13)

�t(i) can be solved inductively:
3This type of model is widely used in modeling sequential signals.
4i.e. the probability of the partial observation sequenceo1o2 � � �ot with stateqt = Si, given model�.
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Figure 1: Illustration of forward-backward procedure

1. initialization:

�1(i) = �ibi(o1); 1 � i � N (14)

2. induction:

�t+1(j) = [
NX
i=1

�t(i)aij]bj(ot+1); 1 � t � T � 1; 1 � j � N (15)

� backward variable5:

�t(i) = P (ot+1ot+2 � � � oT jqt = Si; �) (16)

�t(i) can be solved inductively:

1. initialization:

�T (i) = 1; 1 � i � N (17)

2. induction:

�t(i) =
NX
j=1

aijbj(ot+1)�t+1(j); 1 � t � T � 1; 1 � i � N (18)

5i.e. the probability of the partial observation sequenceo t+1ot+2 � � �oT , given stateqt = Si and model�.
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...
...

Si Sj

aijbj(Ot+1)

�t(i) �t+1(j)

t-1 t t+1 t+2

Figure 2: Illustration of the joint event

� observation evaluation:

P (Oj�) =
NX
i=1

�t(i)�t(i); 8t (19)

especially,

P (Oj�) =
NX
i=1

�T (i) (20)

It is easy to see that the computational complexity of the forward-backward procedure is
O(TN2).

2.4 Model training: Baum-Welch algorithm

Now let us consider the model training problem: given an observation sequenceO, how to find the
optimum model parameter vector� 2 � that maximizesP (Oj�). To solve this problem, Baum
and his colleagues defined an auxiliary function and proved the two propositions below [4]:

� auxiliary function:

Q(�; ��) =
X
Q

P (O;Qj�) log P (O;Qj��) (21)

where�� is the auxiliary variable that corresponds to�.

� proposition 1:

If the value ofQ(�; ��) increases, then the value ofP (Oj��) also increases, i.e.

Q(�; ��) � Q(�; �) �! P (Oj��) � P (Oj�) (22)
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� proposition 2:

� is a critical point ofP (Oj�) if and only if it is a critical point ofQ(�; ��) as a function of
��, i.e.

@P (Oj�)

@�i
=

@Q(�; ��)

@��i

�����
��=�

; 1 � i � D (23)

whereD is the dimension of� and�i, 1 � i � D, are individual elements of�.

In the light of the above propositions, the model training problem can be solved by the Baum-
Welch algorithm in terms of joint events and state variables (reference Figure 2):

� joint event 6:

�t(i; j) = P (qt = Si; qt+1 = SjjO;�)

=
�t(i)aijbj(ot+1)�t+1(j)

P (Oj�)
(24)

� state variable7:

t(i) = P (qt = SijO;�)

=
NX
j=1

�t(i; j) (25)

� parameter updating equations:

1. state transition probability:

�aij =

T�1X
t=1

�t(i; j)

T�1X
t=1

t(i)

; 1 � i � N; 1 � j � N (26)

2. symbol emission probability:

�bj(k) =

TX
t=1;ot=vk

t(j)

TX
t=1

t(j)

; 1 � j � N; 1 � k �M (27)

3. initial state probability:

��i = 1(i); 1 � i � N (28)

6i.e. the probability of being in stateS i at timet, and stateSj at timet+ 1, given the observation sequenceO and
model�.

7i.e. the probability of being in stateS i at timet given the observation sequenceO and the model�.
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3 Multiple Observation Training

3.1 Combinatorial method

Now let us consider a set of observation sequences from a pattern class:

O = fO(1); O(2); � � � ; O(K)g (29)

where

O(k) = o
(k)
1 o

(k)
2 � � � o

(k)
Tk
; 1 � k � K (30)

are individual observation sequences. Usually, one does not know if these observation sequences
are independent of each other or not. And a contravercy can arise if one assumes the independence
property while these observation sequences are statistically correlated. In either case, we have the
following expressions without losing generality:

8>>>><
>>>>:

P (Oj�) = P (O(1)j�)P (O(2)jO(1); �) � � �P (O(K)jO(K�1) � � �O(1); �)
P (Oj�) = P (O(2)j�)P (O(3)jO(2); �) � � �P (O(1)jO(K) � � �O(2); �)
...
P (Oj�) = P (O(K)j�)P (O(1)jO(K); �) � � �P (O(K�1)jO(K)O(K�2) � � �O(1); �)

(31)

Based on the above equations, the multiple observation probability given the model can be ex-
pressed as a summation:

P (Oj�) =
KX
k=1

wkP (O(k)j�) (32)

where
8>>>><
>>>>:

w1 =
1
K
P (O(2)jO(1); �) � � �P (O(K)jO(K�1) � � �O(1); �)

w2 =
1
K
P (O(3)jO(2); �) � � �P (O(1)jO(K) � � �O(2); �)

...
wK = 1

K
P (O(1)jO(K); �) � � �P (O(K�1)jO(K)O(K�2) � � �O(1); �)

(33)

are weights. These weights are conditional probabilities and hence they can characterize the
dependence-independence property.

Based on the above expression, we can construct an auxiliary function below for model train-
ing:

Q(�; ��) =
KX
k=1

wkQk(�; ��) (34)

where�� is the auxiliary variable corresponding to�, and

Qk(�; ��) =
X
Q

P (O(k); Qj�) log P (O(k); Qj��); 1 � k � K (35)

are Baum’s auxiliary functions related to individual observations. Sincewk, 1 � k � K, are not
functions of��, we have the following theorem related to the maximization ofP (Oj�)[23]:
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� theorem 1:

If the value ofQ(�; ��) increases, then the value ofP (Oj��) also increases, i.e.

Q(�; ��) � Q(�; �) �! P (Oj��) � P (Oj�) (36)

Furthermore, aswk, 1 � k � K are weights that characterize the dependence-independence
property of the observations, if one assumes that these weights are constants, one has the
following theorem[23]:

� theorem 2:

For fixedwk, 1 � k � K, � is a critical point ofP (Oj�) if and only if it is a critical point of
Q(�; ��) as a function of��, i.e.

@P (Oj�)

@�i
=

@Q(�; ��)

@��i

�����
��=�

(37)

In such a case, the maximization ofQ(�; ��) is equivalent to the maximization ofP (Oj�).

3.2 Maximization: Lagrange multiplier method

Based on theorem 1, one can always maximizeQ(�; ��) to increase the value ofP (Oj��), regardless
of 1) if the individual observations are independent of one another or not, and 2) whether the
combinatorial weights are constants or not. Let us consider the auxiliary function with boundary
conditions:

Q(�; ��) =
KX
k=1

wkQk(�; ��)

1�
NX
j=1

�aij = 0; 1 � i � N

1�
MX
k=1

�bj(k) = 0; 1 � j � N

1�
NX
i=1

��i = 0

(38)

we can construct an objective function using Lagrange multiplier method:

F (��) = Q(�; ��) +
NX
i=1

cai[1�
NX
j=1

�aij] +
NX
j=1

cbj [1�
MX
k=1

�bj(k)] + c�[1�
NX
i=1

��i] (39)

wherecai, cbj andc� are Lagrange multipliers. Differentiating the objective function with respect
to individual parameters and finding solutions to corresponding Lagrange multipliers, we obtain
the following training equations that guarantee the maximization of the objective function (see
appendix for detailed derivation):
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1. state transition probability:

�amn =

KX
k=1

wkP (O(k)j�)
Tk�1X
t=1

�
(k)
t (m;n)

KX
k=1

wkP (O(k)j�)
Tk�1X
t=1


(k)
t (m)

; 1 � m � N; 1 � n � N (40)

2. symbol emission probability:

�bn(m) =

KX
k=1

wkP (O(k)j�)
TkX

t=1;o
(k)
t

=vm


(k)
t (n)

KX
k=1

wkP (O(k)j�)
TkX
t=1


(k)
t (n)

; 1 � n � N; 1 � m �M (41)

3. initial state probability:

��n =

KX
k=1

wkP (O(k)j�)(k)1 (n)

KX
k=1

wkP (O(k)j�)

; 1 � n � N (42)

3.3 Convergence property

The training equations derived by Lagrange multiplier method guarantee the convergence of the
training process. Firstly, these training equations give the zero points of the first order Jacobi
differential matrix @F (��)

@��
. Secondly, the second order Jacobi differential matrix@2F (��)

@��2
is diagonal

and all its diagonal elements are negative. Thus, the algorithm guarantees local maxima and hence
the convergence of the training process (See [23] for detailed proofs).

The above training equations are adaptive to both the ergodic model and the left-right model
since we do not put any constraints on the model type during the derivation.

4 Two Special cases - Independence versus Uniform Depen-
dence

4.1 Independence assumption

Now let us assume that the individual observations are independent of each other, i.e.

P (Oj�) =
KY
k=1

P (O(k)j�) (43)
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In this case, the combinatorial weights become:

wk =
1

K
P (Oj�)=P (O(k)j�); 1 � k � K (44)

Substituting the above weights into equations (40) to (42), we obtain Levinson’s training equations:

1. state transition probability:

�amn =

KX
k=1

Tk�1X
t=1

�
(k)
t (m;n)

KX
k=1

Tk�1X
t=1


(k)
t (m)

; 1 � m � N; 1 � n � N (45)

2. symbol emission probability:

�bn(m) =

KX
k=1

TkX

t=1;o
(k)
t

=vm


(k)
t (n)

KX
k=1

TkX
t=1


(k)
t (n)

; 1 � n � N; 1 � m �M (46)

3. initial state probability:

��n =
1

K

KX
k=1


(k)
1 (n); 1 � n � N (47)

4.2 Uniform dependence assumption

If we assume that the individual observations are uniformly dependent on one another, i.e.

wk = const; 1 � k � K (48)

Substituting the above weights into equations (40) to (42), it readily follows that

1. state transition probability:

�amn =

KX
k=1

P (O(k)j�)
Tk�1X
t=1

�
(k)
t (m;n)

KX
k=1

P (O(k)j�)
Tk�1X
t=1


(k)
t (m)

; 1 � m � N; 1 � n � N (49)
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2. symbol emission probability:

�bn(m) =

KX
k=1

P (O(k)j�)
TkX

t=1;o
(k)
t

=vm


(k)
t (n)

KX
k=1

P (O(k)j�)
TkX
t=1


(k)
t (n)

; 1 � n � N; 1 � m �M (50)

3. initial state probability:

��n =

KX
k=1

P (O(k)j�)(k)1 (n)

KX
k=1

P (O(k)j�)

; 1 � n � N (51)

5 Conclusions

A formal treatment for HMM multiple observation training has been presented in this paper. In
this treatment, the multiple observation probability is expressed as a combination of individual
observation probabilities without losing generality. The independence-dependence property of the
observations are characterized by the combinatorial weights, and hence it gives us more freedom
in making different assumptions and also in deriving corresponding training equations.

The well known Baum’s auxiliary function has been generalized into the case of multiple
observation training, and two theorems related to the maximization have been presented in this
paper. Based on the auxiliary function and its boundary conditions, an objective function has been
constructed using Lagrange multiplier method, and a set of training equations have been derived
by maximizing the objective function. Similar to the EM algorithm, this algorithm guarantees the
local maxima and hence the convergence of the training process.

We have also shown, through two special cases, that the above training equations are general
enough to include different situations. Once the independence assumption is made, one can readily
obtain Levinson’s training equations. On the other hand, if the uniform dependence is assumed,
one can also have the corresponding training equations.
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