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Abstract This paper presents a genetic programming
based approach for optimizing the feature extraction step
of a handwritten character recognizer. This recognizer
uses a simple multilayer perceptron as a classifier and op-
erates on a hierarchical feature space of orientation, cur-
vature, and center of mass primitives. The nodes of the
hierarchy represent rectangular sub-regions of their par-
ent node, the tree root corresponding to the character’s
bounding box. Within each sub-region, a variable num-
ber of fuzzy features are extracted. Genetic programming
is used to simultaneously learn the best hierarchy and the
best combination of fuzzy features. Moreover, the fuzzy
features are not predetermined, they are inferred from
the evolution process which runs a two-objective selec-
tion operator. The first objective maximizes the recog-
nition rate, and the second minimizes the feature space
size. Results on Unipen data show that, using this ap-
proach, robust representations could be obtained that
out-performed comparable human designed hierarchical
fuzzy regional representations.

Keywords On-line character recognition – Handwriting
– Evolutionary computations – Fuzzy logic – Unipen
dataset.

1 Introduction

Pattern recognition systems are classically modeled as a
processing pipeline made up of raw input sensing, seg-
mentation, feature extraction, classification, and post-
processing [7]. Except for classification where many well-
known generic methods exist, all of these steps are mostly
problem specific. The design of a recognition system thus
requires a thorough understanding of the recognition task
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and, most often, involves some form of a trial and er-
ror process before adequate system performance can be
reached. In particular, the segmentation and feature ex-
traction steps are very critical because no matter how
powerful a classifier may be, it can never fully compen-
sate for noisy or non-discriminating features.

This paper is about the segmentation and feature
extraction components of an on-line handwritten char-
acter recognition system [20], and on how the develop-
ment of these two steps can be partly automated us-
ing Genetic Programming (GP) [3,14]. GP is a machine
intelligence technique involving the simulation of natu-
ral evolution for the automatic programming of comput-
ers. It is a generic problem solving method applicable
whenever solutions can be represented by a computer
program and evaluated by an objective function; the so-
called “fitness” function. Populations of programs – ini-
tially random programs – evolve over time through a
sequence of processes that include (natural) selection,
crossover operations to exchange genetic material be-
tween two programs, and mutation operations to ran-
domly modify parts of the evolved programs. In the end,
the fittest individual (program) is chosen as “the” solu-
tion to the problem and, although GP systems do not
guarantee convergence to an optimal solution, they have
been shown in practice to outperform other techniques
as well as human experts for several hard problems [15].

In the context of character recognition, the output
of the feature extraction module, i.e. the character rep-
resentation, is possibly the most important key for the
development of higher performance systems [29]. In this
paper, we focus on a specific on-line representation and,
using GP, we try to improve upon it with techniques
that involve minimal human intervention. The organiza-
tion of the paper is as follows. In Section 2, the orig-
inal “fuzzy-regional” handwriting representation [13] is
first summarized and previously obtained results are re-
called for baseline comparison purposes. Results are also
given in this section for a new hierarchical variation of
the original uniform grid configuration. Then, Section 3
introduces a new data-driven approach where the hier-
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Fig. 1 a) Three digits; b) their circular arc stroke recon-
struction.

archical grid segmentation of the character is no longer
static, but now depends on the spatial distribution of
handwriting strokes. Next, in Section 4, the method for
finding the optimal genetically engineered hierarchical
representation is presented, together with experimental
results. Finally, Section 5 concludes the paper with a
discussion on how its actual contributions can be gen-
eralized for the design of feature extraction components
for other kinds of pattern recognition systems.

2 Fuzzy-Regional Representations

The on-line fuzzy-regional representation [13,18] starts
with a stroke decomposition approximated by a sequence
of circular arcs, as described in [17]. A character is thus
represented by a sequence of circular arc strokes

s1, s2, . . . , si, . . . , sq,

where each arc si = (p0,p1, l, c) is described by four pa-
rameters: p0 and p1 are respectively the starting and
ending points of the arc, l is its curvilinear length, and c
its curvature. A stroke orientation θ is also determined
from the angle of vector −−−→p0p1. Figure 1 shows some ex-
amples of isolated digits and their circular arc stroke
reconstruction. The circular arc segmentation algorithm
is based on the local extrema and inflection points of the
on-line curvature signal.

2.1 Feature Extraction

The feature extraction module decomposes the character
into a fixed number of rectangular regions in the charac-
ter’s bounding box. Within each of these regions, a fuzzy
vector is extracted from the orientation and curvature of
the strokes. Figure 2 shows the fuzzy sets that are used
to quantify the segmented strokes. The four characteris-
tic functions of Figure 2a enable the fuzzyfication of the
stroke angle θ ∈ [−180, 180], and the three functions of
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Fig. 2 a) Sets H, V, O+, and O− for parameter θ; b) sets
R, C+, and C− for parameter c.

Figure 2b are for the stroke curvature c ∈ [−∞,∞]. A
fuzzyfied stroke can thus be considered a more or less
horizontal (H), vertical (V), oblique with positive slope
(O+), or oblique with negative slope (O−), depending
on the stroke angle θ. Similarly, a stroke can be more
or less rectilinear (R), have a positive curvature (C+)
or a negative curvature (C−). As only one fuzzy vector
is associated to each region of a character, the maxi-
mum fuzzy membership value in each fuzzy set is con-
sidered when several strokes occur in the same region.
For example, if one region contains two strokes, one very
C+ (thus not very C−) and the other very C− (thus
not very C+), then the resulting fuzzy vector will be
both very C+ and very C-. The complete feature vector
space is constructed by simple concatenation of the dif-
ferent regional fuzzy vectors. This fuzzyfication process
allows the mapping of different regional characteristics
extracted from a variable number of strokes into a fixed-
length vector with values in the [0, 1] ∈ IR interval.

A problem with the previous representation is that
stroke orientation is global and does not give precise
information about the local orientation of the strokes
within each region. A refinement proposed originally in
[13] is to crop the strokes at the region boundaries be-
fore computing the θ angles. Thus, the end points used
for computing this orientation angle are never outside
the region boundaries. Another refinement was to nor-
malize each fuzzy membership by multiplying it with the
ratio of the length of the associated stroke over the di-
agonal length of the region. These two refinements are
used throughout the paper for every experiment.

In addition to the previous seven fuzzy variables, two
new features are also extracted from each region: the
horizontal (MX) and vertical (MY) centers of mass of
the strokes after cropping. These new features are also
normalized within the [0, 1] interval, and represent the
coordinates of a relative position in the region extent;
(0, 0) is the lower left corner of the region, and (1, 1) its
upper right corner.
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Fig. 3 Different grid topologies: a) regular 3×2 (RFR-3x2);
b) regular 3×3 (RFR-3x3); c) 2-level quad tree (RFR-quad2);
d) 2-level quin tree (RFR-quin2).

2.2 Grid Topologies

In previous papers [13,18], it was proposed to divide the
character bounding box into a uniform grid with, for ex-
ample, 3 × 2 or 3 × 3 regions, as shown respectively in
Figure 3a and 3b. In this paper, it is also proposed to use
a hierarchical grid topology, starting from the character
bounding box, subdividing the region into four regions
(quad tree) or five regions (quin tree), recursively. Figure
3c shows the five region decomposition for a 2-level quad
tree, while Figure 3d shows the six region decomposition
for a 2-level quin tree. 3-level quad tree (RFR-quad3)
and 3-level quin tree (RFR-quin3) representations are
also tested as standard grid topologies. These hierarchi-
cal quad and quin tree representations are inspired from
the work of Park et al. [19].

2.3 Experimental Results

All classification results presented in this paper have
been obtained using a MultiLayer Perceptron (MLP)
classifier trained with standard on-line back-propagation
and momentum [12], with a single hidden layer of 50
neurons. The learning rate and momentum are fixed re-
spectively at 0.1 and 0.25. Training was controlled using
a cross-validation procedure where 67% of the learning
set is used for training and 33% for validation. The MLP
was trained for a minimum of 35 epochs and the total
number of training epochs varied from 65 to 125. The
decision strategy (the post-processing module) is simply
to classify data according to the maximum output of the
MLP (no rejection).

Experiments were conducted on Section 1a (isolated
digits) of the Unipen data set [11]. Training data are from

Unipen Train-R01/V07, consisting in 15 953 characters,
while testing data are from DevTest-R02/V02, consisting
of 8 598 characters. Experiments are conducted using the
complete data sets, except for those character samples
that have zero width and zero height, as reported in [18]
(4 in the training set and 34 in testing set).

The recognition rates obtained for different human-
engineered topologies are reported in Table 1. Experi-
ments are conducted on the six standard grid topologies
presented in Section 2.2, extracting for each region the
nine features described in Section 2.1. Thus, the feature
set size for each topology is the number of regions mul-
tiplied by nine. The “Mean Rec. Rate” column is the
average recognition rate on the test set for ten differ-
ent training runs of MLPs, the “Max. Rec. Rate” col-
umn is the best recognition rate achieved over these ten
runs, and the “Stdev. Rec. Rate” is the standard devia-
tion around the average. The “Mean Shift RFR-3x2” and
“Max. Shift RFR-3x2” columns are respectively the av-
erage and maximum recognition rate improvements over
the mean rate of RFR-3x2 which serves as a baseline for
this study.

Results show an average recognition rate of 95.60%
for the baseline RFR-3x2. From this baseline represen-
tation, improvements are achieved mostly by representa-
tions with many more features (up to five times): +0.25%
for RFR-3x3, +0.73% for RFR-quad3 and +0.77% for
RFR-quin3. On the other hand, the 2-level quad and
quin tree representations show a −0.24% decrease in per-
formance for RFR-quin2 and −0.87% for RFR-quad2.
These results demonstrate that the grid topology may
have an important effect on performance using such re-
gional representations. The RFR-quin3 topology performs
the best with an improvement of +0.77%, on average,
and with a best case scenario of +1.06%. The RFR-
quad3 performs a little worse than RFR-quin3 on av-
erage (+0.73% vs +0.77%), but this may not be statis-
tically significant. However, it uses 90 less features than
its RFR-quin3 counterpart, which is a significant advan-
tage.

A direct comparison of the previous results with those
found in the literature is not easy. In a survey compiled
by Ratzlaff [23], it seems that most recognition rates
reported for Section 1a of Unipen were obtained using
subsets of Train-R01/V07, not with DevTest-R02/V02
which appears to be significantly harder. In reference
[18], we have reported an average recognition rate of up
to 96.9% (compared with 96.37% for the best result of
Table 1) using similar regional representations, but with
additional global features. To the best of our knowledge,
the only other report for the complete DevTest-R02/V02
was made by Ratzlaff who obtained 98.1% using a differ-
ent representation and a different classifier [22]. But he
also states in his paper that he was forced to manually
label the data as he did not have access to the official
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Grid Feature Mean Rec. Max. Rec. Stdev. Rec. Mean Shift Max. Shift
Topology Set Size Rate (%) Rate (%) Rate (%) RFR-3x2 RFR-3x2

RFR-3x2 54 95.60 95.77 0.18 – +0.18
RFR-3x3 81 95.84 96.09 0.21 +0.25 +0.49

RFR-quad2 45 94.72 95.07 0.25 −0.87 −0.52
RFR-quad3 189 96.33 96.66 0.17 +0.73 +1.06
RFR-quin2 54 95.35 95.65 0.20 −0.24 +0.05
RFR-quin3 279 96.37 96.66 0.21 +0.77 +1.06

Table 1 Recognition rates for different grid topologies of fuzzy-regional representations.

class labels1. Thus, it is probable that this manual re-
labeling of DevTest-R02/V02 has cleaned up the data to
some extent, possibly correcting any mislabeling. More-
over, through a recognition experiment conducted with
10 human readers, it has been shown previously [13] that
about 1% of the digits found in section 1a of DevTest-
R02/V02 are totally unrecognizable. This suggests that
this 1% of characters may be mislabeled.

In any case, the aim of this paper is not to develop an
optimal recognition system per se, as this would probably
imply the use of multiple classifiers and representations,
but rather to explore different topologies in the context
of region based fuzzy representations, and to experiment
with GP for genetically engineering such topologies.

3 Data-driven Representations

The fuzzy-regional representation has several interest-
ing aspects, such as the mapping of an arbitrary on-
line script into a fixed-length normalized feature vector.
On the other hand, the use of a static grid topology
may be sub-optimal, especially for deformed or slanted
characters. Inspired by the work of Park et al. [19], we
now study the use of data-driven hierarchical topologies
where regions are recursively defined around the cen-
ter of mass of strokes, instead of the absolute center of
the parent region. For example, in the case of the quin
tree topology, the four corners of the central region cor-
respond to the centers of the four other regions, which
are themselves defined by the center of mass of the whole
character, as illustrated by Figure 4. For the 3-level quad
and quin tree representations, the position of each region
at the third level is computed using the center of mass of
its parent region at the second level. For the data-driven
3x2 and 3x3 grid topologies, the width and height of each
region are adjusted according to the center of mass of the
character relative to its geometrical center.

For all data-driven topologies, because centers of mass
are already used to determine the region boundaries,
the corresponding features (MX and MY) are removed

1 DevTest-R02/V02 was originally released to Unipen con-
tributors without labels in preparation for a competition
which was finally never organized. Later on, the labels were
released in a separate file hierarchy which needed to be
merged with the original unlabeled data.

a) b) c) d)

Fig. 4 2-level quin tree data-driven grid topology (DDR-
quin2) for different digit characters: a) a zero; b) a one; c) a
six; d) a seven.

from the fuzzy representation, and replaced by a re-
gion height/width ratio (HW). The final representation
length is thus 8 times the total number of regions.

3.1 Experimental Results

Table 2 shows the recognition results for the data-driven
representations, with experiments conducted in the same
conditions as those exposed in Section 2.3. Results show
that, contrary to expectations, data-driven representa-
tions mostly tend to decrease performance, especially for
the quad and quin tree topologies. This illustrates the
fact that feature extraction can be counterintuitive. Only
the DDR-3x3 seems to benefit a little from the data-
driven approach, up to +0.51% better than the baseline,
and +0.26% better than its RFR equivalent. Figure 5
gives a bar graph comparing the mean recognition rate
shift over the baseline for the different RFR and DDR
representations.

4 Genetical Engineering of Representations

Up until now, a fixed set of predetermined hand-crafted
static and data-driven topologies were tested, and we
have shown experimentally that some are better than
others. Also, a fixed set of features was systematically
extracted from every region, sometimes generating large
representations that may suffer from the well-known curse
of dimensionality. Finally, the features themselves have
been predefined by a fixed set of hard-coded characteris-
tic functions. The objective of this section is to establish
an automatic procedure based on genetic programming
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Grid Feature Mean Rec. Max. Rec. Stdev. Rec Mean Shift Max. Shift
Topology Set Size Rate (%) Rate (%) Rate (%) RFR-3x2 RFR-3x2

DDR-3x2 48 95.43 95.62 0.12 −0.17 +0.03
DDR-3x3 72 96.10 96.29 0.12 +0.51 +0.69

DDR-quad2 40 93.98 94.21 0.21 −1.62 −1.39
DDR-quad3 168 94.97 95.31 0.23 −0.63 −0.29
DDR-quin2 48 95.02 95.26 0.18 −0.58 −0.34
DDR-quin3 248 94.69 95.09 0.21 −0.91 −0.51

Table 2 Recognition rates for different grid topologies of data-driven representations.
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for tested RFR and DDR.

to explore more diverse topologies with per region spe-
cialized features.

In previous work, several papers have investigated
the use of Evolutionary Computations (EC) for feature
selection [30], feature space transformation [24] and fea-
ture construction [16,25,26]. In the context of document
recognition, Teredesai and Govindaraju [27,28] have used
GP to design active classifiers for off-line script recogni-
tion. Their system is based on Park’s hierarchical rep-
resentations [19], with an implicit feature selection. An-
other relevant work is from Radtke, Wong, and Sabourin
[21] who use a multiobjective memetic algorithm to de-
sign off-line character representations in a manner sim-
ilar to ours. But their approach uses genetic algorithms
instead of genetic programming.

4.1 Evolution of Representations

Genetic Programming (GP) [3,14] is an EC technique [1,
2] that allows automatic programming of computers by
heuristics inspired from natural evolution principles, us-
ing genetic operations of crossover and mutation to alter
computer programs, and natural selection to choose the
fittest programs. Classical GP represents programs as
acyclic and undirected graphs (trees), where each node
is associated to an elementary operation specific to the

problem domain, and where the data type processed and
returned by these primitives is usually the same for all
nodes. A crossover operation is usually done by exchang-
ing randomly chosen subtrees between two individuals,
while a mutation operation consists of replacing a ran-
domly chosen subtree with a new one, also randomly
generated.

Classical EC techniques, including GP, typically max-
imize (or minimize) a single objective function. How-
ever, evolutionary multi-objective optimization [4] has
emerged in recent years as an important sub-field of EC.
Modern population-based multi-objective optimization
techniques are based on the concept of Pareto optimality,
where solutions are ranked according to a dominance cri-
terion. A solution is said to dominate another if at least
one of its objective values is better than the correspond-
ing one for the dominated solution, and all others are at
least equal. The Pareto front of a population is defined
by the set of non-dominated solutions.

To evolve handwriting character representations, we
have implemented a two-objective tree-based GP that
merges elements from both the static and data-driven
fuzzy regional representations. The data processed by
tree nodes consist of two coordinate pairs for the lower-
left and upper-right corners of a rectangular region. Ta-
ble 3 enumerates the building blocks available to the
evolutionary process. This set of functional primitives
(tree nodes) can be classified into two categories. The
first is region-modifying primitives (S2H, S2V, S3H, S3V,
S4, S5, D2H, D2V, D3H, D3V, D4, D5, and ZM) that
split the current region into sub-regions, or that mod-
ify the extent of the current region (ZM only). The sec-
ond category is feature-extraction primitives (OR, CU,
MX, MY, and HW) that extract a given type of features
from the current region without modifying its definition.
The current region for a given node is always defined by
its parent node and the root node simply inherits the
full bounding box of the character. There is one addi-
tional terminal primitive (T) which has no effect other
than closing the tree structure. A weight is associated
with each primitive in order to bias its selection proba-
bility during initialization and mutation operations. This
bias is useful for building an equilibrium between region-
modifying and feature-extraction primitives.

Two types of region-modifying primitives are defined.
The first type splits the parent region at predetermined
width/height fractions (S2H, S2V, S3H, S3V, S4, and
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Name Args Weight Description

S2H 2 1.0 Static two region horizontal split.
S2V 2 1.0 Static two region vertical split.
S3H 3 1.0 Static three region horizontal split.
S3V 3 1.0 Static three region vertical split.
S4 4 1.0 Static quad region split.
S5 5 1.0 Static quin region split.

D2H 2 1.0 Data-driven two region horizontal split.
D2V 2 1.0 Data-driven two region vertical split.
D3H 3 1.0 Data-driven three region horizontal split.
D3V 3 1.0 Data-driven three region vertical split.
D4 4 1.0 Data-driven quad region split.
D5 5 1.0 Data-driven quin region split.
ZM 1 1.0 Randomly generated zoom factor.
OR 1 16.0 Randomly generated orientation feature.
CU 1 12.0 Randomly generated curvature feature.
MX 1 4.0 Horizontal center of mass feature.
MY 1 4.0 Vertical center of mass feature.
HW 1 4.0 Height/width ratio feature.
T 0 1.0 Grounding terminal.

Table 3 Primitives used for GP.

Fig. 6 Fuzzy set shape used to extract orientation and cur-
vature features.

S5), much like it was done in Section 2. It also includes
the ZM primitive that changes the scale of the current
region by applying a randomly generated zoom factor
between 20% and 200%. This zoom value is generated
randomly during initialization or mutation, acting as an
ephemeral random constant [14] (its value is set to a new
random number each time the primitive is mutated). The
second type of region modifying primitives (D2H, D2V,
D3H, D3V, D4, D5) split the parent region according to
the centroid of the strokes found in the parent region,
in a way similar to the data-driven representations of
Section 3.

Every feature-extraction primitive produces a side-
effect by adding a new feature to the output represen-
tation without affecting the current region which is sim-
ply passed on unchanged to its child node. The feature-
extraction primitives are also of two types. The first is
composed of orientation and curvature primitives (OR
and CU) that extract respectively a degree of orientation
and curvature possessed by the strokes contained in the
current region. Both primitives include three randomly
generated parameters (center, core, and boundary) that
specify a symmetric trapezium fuzzy set, as illustrated
in Figure 6. As with the zooming primitive, these three
parameters are in fact ephemeral random constants gen-

erated during initialization or mutation. The ranges of
values for the OR primitive are: center in [−90◦, 90◦],
core in [0◦, 30◦], and boundary in [5◦, 50◦]. Each of these
three values is discrete with 5◦ increments in their respec-
tive domains. The fuzzy shape for orientation extraction
is repeated two times, that is at −180◦ and +180◦ from
the original center position. For the CU primitive, the
center is in [−0.160, 0.160], the core in [0, 0.160] and the
boundary in [0.005, 0.160], all three with discrete incre-
ments of 0.005. The second type of feature-extraction
primitives is composed of the horizontal and vertical cen-
ter of mass (MX and MY), and the height/width ratio
of the region (HW). These primitives do not make use of
ephemeral random constants.

4.2 Experimental Results

The experimental protocol used to evolve a population
of genetic handwriting representations requires a double
cross-validation procedure to avoid overfitting the data
during both the evolutionary process and the training of
our neural network classifier. The Train-R01/V07 set is
thus first randomly decomposed into a fitness evaluation
set used to estimate the fitness of individual represen-
tations, and a validation set used to retrieve the best-
of-run representation. Then, the fitness evaluation set is
sub-divided again into a fitness evaluation training set
used to update the weights of the MLP classifier, and
a fitness evaluation validation set used to halt learning
when the neural network starts overfitting the data. In
this way, the final validation set is completely indepen-
dent of the evolutionary process and favors the selection
of the individual representation that exhibits the best
faculty of generalization; we call this representation the
best-of-run representation. Finally, the best-of-run indi-
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vidual is re-evaluated on the complete DevTest-R02/V02
set to produce the recognition rates reported below.

This protocol was repeated four times using two dif-
ferent sizes for the validation set: 33% of the whole train-
ing set for the first two experiments, 20% for the last two.
In each case, the fitness evaluation set (respectively 67%
and 80% of the total) was randomly divided into two
equal parts: half for the fitness evaluation training set,
and half for the fitness evaluation validation set. More-
over, this random sub-division is re-shuffled for each fit-
ness evaluation.

A two-objective optimization is conducted during the
evolutionary process. The first objective is to maximize
the recognition rate during the training phase. The pa-
rameters used for the MLP network are: one hidden layer
of 50 neurons, a learning rate of 0.1, a momentum of 0.25,
a minimum of 25 training epochs and a maximum of
100, and termination of training after 5 epochs without
recognition rate improvements on the fitness evaluation
validation set. The second objective is to minimize the
total number of features in the representation.

Each evolution ran with populations of 1000 individ-
uals over 100 generations, using a crossover probability of
0.9, mutation (standard, swap, and shrink) probabilities
of 0.05 each, and a NSGA-II [5] multi-objective selection
operator. Minimum and maximum initial tree depths are
set to 3 and 7, respectively, while tree depth is limited
to a maximum of 17 levels during evolution. The GP im-
plementation is done in C++ using the Open BEAGLE
framework [8,9] and distributed on a 26 nodes Beowulf
cluster of 1.2GHz AMD Athlons using Distributed BEA-
GLE [6,10]. Recognition rates obtained using the best-
of-run representations for the four evolutions are given
in Table 4. Each best-of-run individual was tested ten
times, using the same training methodology as in Sec-
tions 2.3 and 3.1.

Results show that with less than half the number of
features, the best genetically engineered representation
was able to match the recognition rate of the best hu-
man designed representation of Section 2.3 (mean rates
of 96.40% versus 96.37%, respectively). Moreover, the
standard deviations of these mean rates are systemati-
cally lower (0.15% versus 0.21% for the above best case).
Another interesting observation is that the evolution pro-
cess is quite stable. Comparable results are obtained for
the four distinct evolution runs, even if the larger vali-
dation set of the first two (Evol1 and Evol2) appears to
have produced representations with fewer features.

Figure 7 summarizes the Evol1 tree structure by show-
ing the region modifying primitives as ellipses, and the
feature extraction primitives as rectangular boxes (see
Table 3 for a description of the primitives). When sev-
eral features are extracted within a given region, they are
enumerated in a single box without their parameters. For
example, “2OR, 1CU” means that two orientation prim-
itives and one curvature primitive were extracted from
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Fig. 8 Evolution of the average and maximum fitness for the
Evol1 training data.

the region defined by the parent node. Terminal primi-
tives are omitted unless their parent is region modifying.

This tree structure shows that the evolution process
has converged to a mixture of the static and data driven
segmentation strategies. It is interesting to note that the
highest region modifying node of all four representations
is always data driven. So the data driven strategy may
not be such a bad idea after all, as long as it is not
systematic. For one of the representations (Evol2), the
root node is not region modifying. It thus extracts global
features. Finally, we can observe that the hierarchical
segmentation is mostly 2 and 3-level deep, but sometimes
goes up to 4-levels.

For the Evol1 training data, Figure 8 also gives the
evolution of the average and maximum individual fitness
over the first 100 generations. This graph shows that
average convergence is quite rapid. Each evolution took
about 2 weeks of execution time on our small cluster.
Most of this time is used for training the MLP networks.
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Grid Feature Mean Rec. Max. Rec. Stdev. Rec. Mean Shift Max. Shift
Topology Set Size Rate (%) Rate (%) Rate (%) RFR-3x2 RFR-3x2

Evol1 90 96.40 96.72 0.15 +0.81 +1.12
Evol2 81 96.27 96.57 0.16 +0.67 +0.97
Evol3 112 96.31 96.46 0.13 +0.71 +0.87
Evol4 105 96.37 96.51 0.10 +0.77 +0.91

Table 4 Recognition rate for best-of-run representations obtained from four distinct GP evolutions.
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Fig. 9 Characters from DevTest-R02/V02 that were badly classified by at least three out of four classifiers.

In order to gain a better insight into the weaknesses
of our evolved character recognizer, we have looked at
every badly classified character in the test set. Many of
them are badly written or badly segmented, and some
are obviously mislabeled. Figure 9 gives a subset of these
characters. They are shown in their circular arc stroke re-
construction form, which corresponds to the input of the

GP feature extraction module. We assume here that the
filtering process that produces this stroke decomposition
preserves all of the discriminant information contained
in the script, even though we fully recognize that this
is a strong hypothesis. The reader should recall that the
objective of this paper is to expose a new method for op-
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timizing the feature extraction component of a character
recognizer, not to report overall best performances.

The characters of Figure 9 are those that were badly
classified by at least three out of our four classifiers. They
represent about 2.2% of DevTest-R02/V02, section 1a.
Examples of incomplete characters are found mostly for
digits 0 and 4. For instance, a slash segmented without
its associated 0, or the vertical bar of a 4 without its
angle part. Some characters are dot like or dash like.
Either they are parts of badly segmented characters, or
they have been mislabeled and should not even be part
of section 1a. Some scripts are completely unrecogniz-
able, like the last instance of characters 0 and 2. Others
contain two characters like the first instance of character
7. Others are obviously mislabeled like some instances
of characters 2, 3, 4, 6, and 7. Overall, we see that this
test set is quite difficult even if some badly classified
characters also appear to be recognizable. This may im-
ply that our set of primitives should be augmented with
new types of features.

5 Conclusion

We have seen in this paper how counter-intuitive the de-
sign of discriminant features can be. For example, con-
trary to what we expected, the systematic use of the
data-driven segmentation introduced in Section 3 has
resulted in lower recognition rates than its static coun-
terpart of Section 2. More importantly, we have shown
in Section 4 that genetic programming can be used to
at least partly automate the trial and error process that
most often surround the development of the feature ex-
traction component of pattern recognition systems. This
was demonstrated for a particular case of handwriting
character recognition, but the general approach is in no
way limited to this application.

The proposed approach has the advantage of mov-
ing a part of the burden from expensive human develop-
ment to cheap machine computations, which can be per-
formed nonstop, 24 hours per day. Of course, the problem
must be appropriately formulated to allow convergence
toward interesting solutions. This was done here by the
use of a tree-based hierarchical partitioning of the char-
acter bounding box, the use of some high-level feature
extraction primitives, and a two-objective process that
tries to both minimize the number of features while max-
imizing the recognition rate. This multi-objective genetic
programming can be generalized to many other feature
extraction systems, simply by adapting the basic build-
ing blocks to the problem at hand, in order to allow
extraction of discriminant information.

For the particular case of our character recognizer,
even if it did not produce significantly higher recognition
rates for our Unipen test data set, the genetic engineering
of handwriting representations was able to drastically

reduce the feature set size while favoring a more stable
classifier training process.
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10. Gagné, C., Parizeau, M., Dubreuil, M.: Distributed BEA-
GLE: An environment for parallel and distributed evo-
lutionary computations. In: Procceedings of the 17th
Annual International Symposium on High Performance
Computing Systems and Applications (HPCS) 2003, pp.
201–208. Sherbrooke (QC) (2003)

11. Guyon, I., Schomaker, L., Plamondon, R., Liberman, M.,
Janet, S.: Unipen project of on-line data exchange and
recognizer benchmarks. In: Proc. of the 14th Int. Conf.
on Pattern Recognition (ICPR), pp. 29–33 (1994)

12. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Net-
work Design. PWS Publishing Company (1995)
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