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Abstract

This paper presents a new approach for registering and
integrating range images where these two processes are
merged and performed in a common volumetric represen-
tation. The proposed approach allows both simultaneous
and incremental registration where matching complexity is
linear with respect to the number of images. This improve-
ment leads to incremental modeling from range image ac-
quisition to surface reconstruction. It is shown that the ap-
proach is tolerant to initial registration errors as well as to
measurement errors while keeping the details of the initial
range images. The paper describes the formalism of the
approach. Experimental results demonstrate performance
advantages and tolerance to aforementioned types of errors
for free form objects.

1 Introduction

Registration and integration (geometric fusion) are two
main steps in 3D modeling from multiple range images.
However, the complexity of existing algorithms [7], espe-
cially registration algorithms, is too high to allow real-time,
interactive modeling. This paper takes a step towards real-
time modeling systems by providing a method for incre-
mental registration and integration of range images. The
algorithm is of linear complexity with respect to both the
number of images and the number of points; it is thus a
good candidate for parallel implementation. This improve-
ment leads to numerous applications. Firstly, providing a
partially reconstructed model to the user during acquisition
facilitates the selection of the next best view and assures that
the acquired images are sufficient for the reconstruction of
the model. Secondly, real-time registration and integration
of redundant range data can be used to improve the qual-
ity of the reconstructed model by reducing the variance of

the noise while keeping intact the sharp details of the sur-
face. Finally, registration of range images can be used to
reference the sensor with respect to its environment. This
application is important in mobile robotics since the algo-
rithm provides an up-to-date volumetric model of the scene
and the rigid transformation between subsequent views.

2 Registration and Integration of Multiple
Range Images: Problem Statement

There are three ways to perform the registration of range
images: registration of two surfaces at the same time - usu-
ally referred to as pair-wise registration, simultaneous reg-
istration of all images, and sequential registration of images
to previously registered and merged images. The first ap-
proach generally causes an accumulation of the registration
error: when a pair of images is not perfectly registered,
then the registration error propagates to the next pair. On
the opposite, simultaneous registration does not suffer from
this problem, but registering a single image requires find-
ing matches in all other images. As a result, the algorithm
complexity grows exponentially with the number of images.
The third solution is a compromise between the two others.
In this case the registration error is reduced and the number
of pairwise matchings is equal to the number of images.

The main performance problem of registration is linked
to the matching step. The simplest approach to achieve
matching between two images is to select points in one im-
age and to project them on the surface obtained from the
second one along the direction of the sensor [2]. By do-
ing so, the matching is determined by the relative positions
of the images, rather then by the surface shape. Another
commonly used approach is to take the closest point as the
corresponding point [1]. A brute force algorithm requires
O(N2) operations, where N is the number of points in each
image. Using more sophisticated approaches based on k-d
trees reduces complexity to O(NlogN).



Recently, a number of volumetric approaches for integra-
tion have been proposed [4, 5, 7]. These algorithms use an
implicit representation of the surface in the form of a signed
distance field calculated on a discrete lattice of points. The
surface can be recovered from such a representation by ex-
tracting the zero-set of the distance field, usually using the
Marching Cubes algorithm [6]. A strong point of the vol-
umetric approach is its ability to incrementally build the
model by summing the distance fields for individual images.
The integration algorithm proposed in [5] is of linear com-
plexity and thus well suited for our purpose. Except [7],
none of those volumetric algorithms provide the registra-
tion of range images. However, the use of k-d trees makes
this last approach unsuitable for incremental registration.

3 Incremental Registration: Solutions

The main idea of incremental registration is to build
matching information incrementally in the same way as the
distance field is built for integration. This consists in pre-
computing closest points in the neighbourhood of the recon-
structed surface (on a discrete lattice of points), so that the
matching information can be obtained simply as the value
from the closest voxel centre. To do so, we note that the
direction of the closest point on the surface is actually given
as the direction of the gradient of the distance field d (where
differentiable), and that the following relation is true:
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The gradient of the integration (summed) field, and thus di-
rection towards the closest point of the reconstructed model
can be computed incrementally in the same way as the dis-
tance field itself. This solves performance problem related
to the number of images since each image is used only
once for matching. It is possible to compute the gradient
directly from the distance field but the result is inaccurate
since the distance field is calculated only on a discrete lat-
tice of points. Therefore, the gradient is rather computed
explicitly on the same lattice of points.

For the performance problem related to the number of
points we note that the distance field is always calculated
relative to a single triangle on the surface, and that there is
a connected region where for each point, this triangle con-
tains the closest point. Partitioning a surface envelope in
these regions allows independent computation of the field
for each triangle. This reduces the complexity to be propor-
tional to the number of triangles. Such a partition, referred
to as fundamental prisms, is introduced in [3].

Not all distance fields are well suited for registration.
Calculating the distance in the direction of the sensor, as
proposed in [4], results in gradient values, and therefore in

matching directions, that are determined only by the direc-
tion of the sensor. In [7] the computation of the distance
field is based on the distance to the closest point and is thus
very sensitive to noise. Hilton [5] calculates the distance
relative to the triangles in the direction of their normal. He
also uses normal volumes to partition the space, so that in-
side such a volume, the distance is calculated relative to a
single triangle; this may lead to discontinuous iso-surfaces.
To ensure continuity of the distance fields, a new distance is
defined in section 3.1.

Due to the sensitivity of the direction of the closest point
to noise, matching errors occur whenever the distance be-
tween two surfaces is large because many points on one
surface are attracted by outliers. To limit this behaviour,
Masuda [7] restricts the search for the closest points to those
points located within the distance equal to a voxel diagonal.
However, this severely limits the maximum acceptable ini-
tial registration errors. Our solution to this problem is to
compute the distance field in the direction of filtered nor-
mals rather then towards the closest point on the surface.
The rationale is that the normals can be filtered efficiently
without filtering range data and, by doing so, the influence
of noise can be reduced to a very small area and practically
unsignificant.

3.1 Calculating the Distance Field in the Direction
of Filtered Normals

At each vertex of a triangulated surface the normal is
computed as an average of normals of all triangles contain-
ing the vertex and filtered by averaging with normals at ver-
tices of adjacent triangles. This procedure yields normals at
vertices but not at points located inside triangle boundaries,
an information that is required in order to match points to
the triangulated surface. For interior points we linearly in-
terpolate the normals at vertices. Thus, for any point p on a
triangle, the normal is obtained as

n(p) = b1n1 + b2n2 + b3n3;

where b1, b2 and b3 are barycentric coordinates of p and
n1;n2;n3 are normals at the vertices of the triangle.

Using this definition of the normals, we define the closest
point pc to point p as the point which verifies

p = pc + dnc; (2)

where nc is the normal at the point pc and d is the distance
between p and pc. The computation of the signed distance
field is based on this definition. Interpolated normals, clos-
est point pc along the normal nc, and the closest point pe

found using Euclidean distance are illustrated in figure 1.
The distance field is calculated only within some enve-

lope of the surface. According to our definition of the dis-
tance, this envelope is bounded by two iso-surfaces that are
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obtained by displacing each vertex of the original triangu-
lated image in the direction of the normals for some con-
stant value (see figure 1). An example of a fundamental
prism in 3D is shown in figure 2a.
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Figure 1. Volumetric envelope.
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Figure 2. a) Fundamental prism, b) Distance
field.

As defined in Eq. 2, the distance for any point located
inside a fundamental prism with respect to the associated
triangle (generator triangle) is computed as the solution of
the following system:

[p1 + dn1 � p;p2 + dn2 � p;p3 + dn3 � p] = 0: (3)

In Eq. 3 square brackets denote the scalar triple product,
p1;p2;p3 are vertices of the triangle and n1;n2;n3 their
normals. If point p is in the prism then it is located in a
triangle T (d) whose vertices are p1 + dn1;p2+ dn2;p3 +
dn3. Barycentric coordinates b1, b2 and b3 of the point p
in this triangle correspond to the barycentric coordinates of
the closest point in the generator triangle. Therefore, once
the distance is known, the closest point is obtained as

pc = b1p1 + b2p2 + b3p3: (4)

The gradient of the distance map f is nothing else but the
normalized direction of the closest point:

f(p) = rd(p) =
p� pc

kp� pck
(5)

In practice, the distance field and its gradient are calcu-
lated independently for each fundamental prism. To do so
efficiently, a bounding box is calculated for each prism and
the distance is calculated using equation 3 for each point in-
side the bounding box. Furthermore, one must verify that
the point is located inside the prism.

3.2 Incremental Update of the Fields

The sum of fields for multiple images contains both the
implicit representation of the surface as a distance field d int,
and its associated matching information in the form of a
vector field fint corresponding to the gradient of the dis-
tance field. We refer to these fields as to integration fields.
As mentioned above, the integration fields are obtained by
averaging fields for individual images:

fint(p) =

"
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where f denotes the unit vector (gradient) field, d is the
signed distance field, and ! represents the confidence level
for the measured points, usually expressed as the cosine of
the angle between the direction of the sensor and the surface
normal. To preserve the continuity of the fields, the weights
!i should be interpolated in the same way as the normals,
using barycentric coordinates. An example of the distance
and vector fields is shown in figure 2b.

3.3 Image Registration

Once the integration fields are computed, the registra-
tion of a single image is performed by aligning all measured
points p with p+dint(pv)fint(pv)+hfint(pv); (p� pv)i,
where hfint(pv); (p� pv)i compensates for the distance
between the point p and the closest voxel center pv . There
are two implementations of the registration algorithm. The
first one is sequential since each image is registered to the
integration field and then added to it. The second one cre-
ates the integration field using all images and then registers
each image individually. The first algorithm is described in
pseudo-code below.

Incremental Registration
Initialize fields using first image: fint  f1, dint  d1, i 2

Repeat until no images left
Repeat until convergence

Find matching points for image Ii using fint and dint

Calculate and apply transformation on image Ii

Calculate fields fi and di for registered image Ii

Add fields fi and di to fint and dint, i i+ 1

4 Results

In order to assess the performance of the algorithm it is
very convenient to firstly use synthetic range images since
both registration and measurement errors can be perfectly
controlled. More importantly, the position of the images
following registration can be compared to their exact posi-
tion. For this purpose, 12 perfectly aligned and noiseless
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range images from a CAD model of a Beethoven statue
were generated. Images were then transformed as follows:
each image was translated along each axis for a random
value between 0 and 5 voxels and was rotated around each
axis (while centred at the origin) for a random angle be-
tween 0 and 5 degrees. Rotation angles and translation vec-
tors have uniform distribution. Noise added to measured
points followed a normal distribution. The assessment of
the registration error is made by comparing the final posi-
tion of each point in the registered model to its exact po-
sition. Resolution of the synthetic images was 150 � 150
while the resolution of the 3D lattice was 128� 128� 128.

To provide an experimental evidence supporting the
claim that the filtering of normals makes the algorithm less
sensitive to noise, the residual registration error was mea-
sured for varying level of noise while keeping the registra-
tion errors constant. The result shown in figure 3 indicates
that the noise has a minor impact on the performance of the
algorithm.
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Figure 3. Registration error vs. level of noise.

One might argue that the discretization of the fields
should result in a less accurate registration. This is true
but, since the model is reconstructed on a discrete lattice
of points, registration errors smaller then the voxel size are
invisible. Therefore it is sufficient to reduce the registra-
tion errors below voxel size. Experimental results confirm
that this is accomplished by the proposed algorithm. Fig-
ure 4 shows the actual registration error distribution for the
Beethoven model before (a) and after (b) registration.
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Figure 4. Registration error distribution.

Reconstruction and registration of the synthetic and real
data are shown in figure 5 for the Beethoven model and the
model of a rabbit from the Stanford image repository. The
execution time of the unoptimized algorithm, on a 1.2GHz
PC, is 2 seconds per image containing approximately 10000
triangles each.

Triangulated images before registration

Triangulated images after registration

Reconstructed models

Figure 5. Reconstruction and registration.
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