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Ste-Foy, Québec, Canada, G1K 7P4

Denis Laurendeau

E-mail: (tdragan, hebert, laurendeau)@gel.ulaval.ca

Abstract

Range image registration and surface reconstruction
have been traditionally considered as two independent
problems where the latter relies on the results of the for-
mer. This paper presents a new approach to surface recov-
ery from range images where these two processes are inte-
grated and performed in a common volumetric representa-
tion. The volumetric representation contains both implicitly
represented reconstructed surface as the signed distance
field and corresponding matching information in the form
of the gradient of the distance field. This allows both simul-
taneous and incremental registration where matching com-
plexity is linear with respect to the number of images. This
improvement leads to incremental modeling from range im-
age acquisition to surface reconstruction. It is shown that
the approach is tolerant to initial registration errors as well
as to measurement errors while keeping the details of the
initial range images. The paper describes the formalism
of the approach. Experimental results demonstrate perfor-
mance advantages, tolerance to aforementioned types of er-
rors and, as an application, filtering using redundant range
data without loss of sharp details on the reconstructed sur-
face.

1 Introduction

Registration and integration (geometric fusion) are two
main steps in 3D modeling from multiple range images.
However, the complexity of existing algorithms [12], espe-
cially registration algorithms, is too high to allow real-time,
interactive modeling. This paper takes a step towards real-
time modeling systems by providing a method for incre-
mental registration and integration of range images. Simi-
larly to [11, 12] we merge the integration and registration
steps. Both reconstructed model and precalculated match-

ings are built incrementally. The algorithm is of linear com-
plexity with respect to both the number of images and the
number of points and is thus a good candidate for parallel
implementation. This improvement leads to numerous ap-
plications:

� Interactive acquisition. Providing a partially recon-
structed model to the user during the acquisition
greatly facilitates the selection of the next best view
and assures that the acquired images are sufficient for
the reconstruction of the model.

� Filtering. Real-time registration and integration of re-
dundant range data can be used to improve the quality
of the reconstructed model by reducing the variance of
the noise while keeping intact the sharp details of the
surface. This type of the filtering is equivalent to the
frame averaging in image processing.

� Self referencing. Registration of range images can be
used to reference the sensor with respect to its environ-
ment. This application is important in mobile robotics
since the algorithm provides an up-to-date volumetric
model of the scene and the rigid transformation be-
tween subsequent views.

The rest of the paper is organized as follows: a short
overview of registration strategies and problems related to
the complexity of registration, as well as an overview of vol-
umetric methods are given in section 2. Section 3 presents
the proposed solution and describes the formalism of the
approach for registration and integration of range images.
Experimental results obtained with the proposed algorithm
are presented in section 4. Finally, directions of further re-
search and concluding remarks are given in section 5.



2 Registration and Integration of Multiple
Range Images

There are three ways to perform the registration of range
images: i) registration of two surfaces at a time [17], usu-
ally referred to as pair-wise registration, ii) simultaneous
registration of all images [9, 13, 14, 18], and iii) sequential
registration of images to previously registered and merged
images [3]. The first approach generally causes an accu-
mulation of the registration error: when a pair of images
is not perfectly registered, the registration error propagates
to the next pair. On the opposite, simultaneous registration
does not suffer from this problem, but registering a single
image requires a matching to all other images. As a conse-
quence, the algorithm complexity grows exponentially with
the number of images. The third solution is a compromise
between the two others. In this case the registration error
is reduced and the number of pairwise matchings is equal
to the number of images. For a more detailed review of
existing registration algorithms as well as a comparison of
different algorithms, the reader is referred to [6, 16].

The main performance problem of registration is linked
to the matching step. The simplest approach to achieve
matching between two images is to select points in one im-
age and to project them on the triangulated surface of the
second one along the direction of the sensor [2, 9]. By do-
ing so, matching is determined by the relative position of
the images, rather then by the surface shape. Another com-
monly used approach is to take the closest point as the cor-
responding point [1]. A brute force matching algorithm re-
quires O(N 2) operations, where N is the number of points
in each image. Using more sophisticated approaches based
on k-d trees reduces complexity to O(NlogN).

Recently, a number of volumetric approaches for inte-
gration have been proposed [5, 8, 12, 15]. These algorithms
use an implicit representation of the surface in the form of
a signed distance field calculated on a discrete lattice of
points. The surface can be recovered from such a represen-
tation by extracting the zero-set of the distance field, usually
using the Marching Cubes algorithm [10]. A strong point of
the volumetric approach is its ability to incrementally build
the model by simply summing the distance fields for indi-
vidual images. The integration algorithm proposed in [8] is
of linear complexity and is thus well suited for our purpose.
Nevertheless, none of those volumetric algorithms, except
[12], provide the registration of range images. In this last
approach the extensive use of k-d trees to match the points
makes this approach unsuitable for incremental registration.

3 Incremental Registration

The best compromise between the complexity and the
quality of registration is to register an image to a model re-

constructed from previously registered and merged images.
However, this does not solve the complexity problem itself:
whenever an image is merged to the model, the number of
points and triangles grows and so does matching complex-
ity. Since the points cannot be projected on the surface of
the model, (the model is generally not a graph surface) one
must search for the corresponding point; this leads to com-
plexity O(N 2) or O(N logN) using k-d trees [7]. Our so-
lution to this problem and the main idea of incremental reg-
istration is to build the matching information incrementally
in the same way as the distance field is built for integration.
This consists in precomputing closest points in the neigh-
bourhood of the reconstructed surface such that matching is
encoded in closest points of a discrete 3D lattice. This re-
duces to precalculate closest points in the neighbourhood of
the reconstructed surface (on a discrete lattice of points), so
that the matching information can be obtained simply as the
value from the closest voxel centre. To do so, we note that
the direction of the closest point on the surface is actually
given as the direction of the gradient of the distance field d
(where differentiable), and that the following relation is true

r
X
i

d =
X
i

rd: (1)

The gradient of the integration (summed) field, and thus
the direction towards the closest point of the reconstructed
model can be computed incrementally in the same way as
the distance field itself. This solves the performance prob-
lem related to the number of images since each image is
used only once for matching. It is possible to compute
the gradient directly from the distance field but the result
is inaccurate since the distance field is calculated only on a
discrete lattice of points. Therefore, the gradient is rather
computed explicitly on the same lattice points for which the
distance field is calculated.

For the performance problem related to the number of
points we note that the distance field is always calculated
relative to a single triangle on the surface, and that there is
a connected region in 3D space where that triangle contains
the closest point for each point. Partitioning a surface en-
velope in these regions allows independent computation of
the field for each triangle. This reduces the complexity to
be proportional to the number of triangles. Such a partition
of an envelope, referred to as fundamental prisms, is intro-
duced in [4].

Not all distance fields are well suited for registration.
Calculating the distance in the direction of the sensor, as
proposed in [5], results in gradient values, and therefore in
matching directions, that are determined by the direction of
the sensor instead of depending on the shape of the surface.
In [11, 12] the computation of the distance field is based on
the distance to the closest point and is thus very sensitive to
noise (see [16], fig. 8). Hilton [8] calculates the distance
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relative to the triangles in the direction of their normal. He
also uses normal volumes to partition the space, so that in-
side such a volume the distance is calculated relative to a
single triangle and may lead to discontinuous iso-surfaces
over the edges of fundamental prisms. To ensure continuity
of the distance fields, we introduce a new distance defined
in the section 3.1.

Due to the sensitivity of the closest point direction to
noise, matching errors occur whenever the distance between
two surfaces is large because many points on one surface
are attracted by outliers. To limit this behaviour, Masuda
[12] restricts the search for the closest points to those points
within the distance equal to a voxel diagonal. However, this
severely limits the maximum acceptable initial registration
errors. Our solution to this problem is to compute the dis-
tance field in the direction of filtered normals rather then
towards the closest point on the surface. The rationale is
that the normals can be filtered efficiently without filtering
range data and, by doing so, the influence of noise can be
reduced to a very small area and is practically insignificant.

3.1 Calculating the Distance Field in the Direction
of Filtered Normals

The normal at each vertex of a triangulated surface is
computed as the average of the normals of all triangles
containing the vertex and filtered by averaging with nor-
mals at vertices of adjacent triangles. This procedure yields
normals at vertices but not at points located inside trian-
gle boundaries, an information that is required in order to
match points not only to vertices but to the triangulated sur-
face. For those points we linearly interpolate the normals at
vertices. Thus, for any point p on a triangle the normal is
obtained as

n(p) = b1n1 + b2n2 + b3n3;

where b1, b2 and b3 are barycentric coordinates of p and
n1;n2;n3 are normals at the vertices of the triangle.

Using this definition of the normals we define the closest
point pc to point p as the point which verifies

p = pc + dnc; (2)

where nc is the normal at point pc and d is the distance be-
tween p and pc. The computation of the signed distance
field is based on this definition. Interpolated normals, clos-
est point pc along the normal nc, and the closest point pe
found using Euclidean distance are illustrated in figure 1.

The distance field is calculated only within some enve-
lope of the surface. According to our definition of the dis-
tance, this envelope is bounded by two iso-surfaces that are
obtained by displacing each vertex of the original triangu-
lated image in the direction of the normals for some con-
stant value (see Figure 1). As mentioned earlier, the en-
velope is partitioned in fundamental prisms, an example

of which is shown in figure 2. Fundamental prisms are
bounded by two iso-triangles T (dmin) and T (dmax) and
by three edge-surfaces which are bilinear patches defined
using two vertices of a triangle and associated normals (see
Figure 2).

dmax

dmax

dmin

dmin

T(dmin)
p1

p3

T(0)

T(dmax)

p2

Edge surface

Figure 2. Fundamental prism.

As defined in Eq. 2, the distance for any point located
inside a fundamental prism with respect to the associated
triangle (generator triangle) is computed as the solution of
the following system:

[p1 + dn1 � p;p2 + dn2 � p;p3 + dn3 � p] = 0: (3)

In Eq. 3 square brackets denote the scalar triple product,
p1;p2;p3 are vertices of the triangle and n1;n2;n3 their
normals. If point p is in the prism then it is located in the
triangle T (d) whose vertices are p1 + dn1;p2 + dn2;p3 +
dn3. Barycentric coordinates b1, b2 and b3 of the point p
in this triangle correspond to the barycentric coordinates of
the closest point in the generator triangle. Therefore, once
the distance is known, the closest point is obtained as

pc = b1p1 + b2p2 + b3p3: (4)

The gradient of the distance map is nothing but the normal-
ized direction of the closest point:

rd(p) =
p� pc

kp� pck
(5)

In practice, both fields (distance and gradient) are cal-
culated independently for each fundamental prism. To do
so efficiently, the bounding box is calculated for each prism
and the distance is calculated using equation 3 for each lat-
tice point in the bounding box. Furthermore, one must ver-
ify that the point is located inside the prism. This reduces
to verifying that the point is contained in a triangle T (d) as
explained above.

Since the normals at vertices of triangles are not parallel
in general, a line passing through a vertex in the direction
of the normal at the same vertex may intersect facing edge

3



p

pc

pe

n1

n2

n4

n5

p1

p2

p4

p5

T3(dmax)

T3(dmin)

Interpolated normals

dmax

dmin

nc

n3

p3 T3(0)

d

d

T(d))T

Fundamental 

prisms

Figure 1. Volumetric envelope.

surface. This limits the maximal distance inside a prism be-
cause the equation 3 have infinitely many solutions at the
point of intersection. Therefore, the calculated distance is
accepted only if it is smaller than this maximal distance.
Note that it is always possible to choose (filter) normals so
that those intersections occur outside the envelope, for ex-
ample by taking all normals to be parallel to sensors direc-
tions.

3.2 Incremental Update of the Fields

The sum of fields for multiple images contains both the
implicit representation of the surface as a distance field and
its associated matching information in the form of a vector
field corresponding to the gradient of the distance field. We
refer to these fields as to integration fields. As mentioned
above, the integration fields are obtained by averaging fields
for individual images:

fint(p) =

"
NX
i

fi(p)!i(p)

#
=

"
NX
i

!i(p)

#
; (6)

dint(p) =

"
NX
i

di(p)!i(p)

#
=

"
NX
i

!i(p)

#
; (7)

where f denotes the vector (gradient) field, d denotes the
signed distance field, and where ! represents the confidence
level for the measured points, usually expressed as the co-
sine of the angle between the direction of the sensor and
surface normal. To preserve the continuity of the fields, the
weights !i should be interpolated in the same way as the
normals, using the barycentric coordinates i.e.

w(p) = w1b1 + w2b2 + w3b3: (8)

An example of the distance and vector field is shown in fig-
ure 3.

3.3 Image Registration

Once the integration fields are computed, the registra-
tion of a single image is performed by aligning all measured
points p with p+dint(pv)fint(pv)+hfint(pv); (p� pv)i,
where hfint(pv); (p� pv)i compensates for the distance
between the point p and the closest voxel center pv .

There are two implementations of the registration algo-
rithm. The first one is sequential since each image is regis-
tered to the integration field and then added to it. The sec-
ond one creates the integration field using all images and
then registers each image individually. Both algorithms are
described in pseudo-code below.

Algorithm 1 (Incremental Registration).

Calculate fields f1 and d1 for the first fmage
fint  f1 and dint  d1
i 2

Repeat
Register image Ii using fint and dint
Calculate fields fi and di for image Ii
Add fields fi and di to fint and dint
i i+ 1

Until no images left

Algorithm 2 (Simultaneous Registration).

Repeat
Initialize integration fields fint and dint to zero
For i = 1:number of images
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Figure 3. 2D slice through the integration fields. The distance field dint is depicted as shades of gray,
while the directions of gradient field dintfint are depicted as arrows.

Calculate fields fi and di for image Ii
Add fields fi and di to fint and dint

End
For i = 1:number of images

Register image Ii
End

Until convergence

While the first algorithm is intended for use during the
acquisition, the second one is used for registration and inte-
gration after all the images have been acquired.

4 Results

In order to assess the performance of the algorithm it is
very convenient to use synthetic range images since both
registration and measurement errors can be perfectly con-
trolled. More importantly, the position of the images fol-
lowing registration can be compared to their exact position.
For this purpose, 12 perfectly aligned and noiseless range
images from a CAD model of a Beethoven statue were gen-
erated. Images were then transformed as follows: each
image was translated along each axis for a random value
between 0 and 5 voxels and was rotated around each axis
(while centered at the origin) for a random angle between 0

and 5 degrees. Rotation angles and translation vectors have
uniform distribution. Noise added to measured points fol-
lowed a normal distribution. The assessment of the registra-
tion error is made by comparing the position of each point
in the registered model to its exact position. Resolution of
the synthetic images was 150� 150 while the resolution of
the 3D lattice was 128� 128� 128.

To provide experimental evidence supporting the claim
that the filtering of normals makes the algorithm less sen-
sitive to noise, the residual registration error was measured
for varying level of noise while keeping the registration er-
rors constant. The result shown in figure 4 indicates that the
noise has a minor impact on the performance of the algo-
rithm.

One might argue that the discretization of the fields
should result in a less accurate registration. This is true
but, since the model is reconstructed on a discrete lattice
of points, registration errors smaller then the voxel size are
invisible. Therefore it is sufficient to reduce the registration
errors below voxel size. Experimental results confirm that
this is accomplished by the proposed algorithm. Figure 5
shows the average and the maximum error distribution for
the Beethoven model before (a) and after (b) registration.

Finally, the influence of noise on the convergence speed
of the algorithm is illustrated in Figure 6 for both 12 noise-
less images and 12 images corrupted by noise of variance
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Figure 4. Registration error vs. level of noise.

1 voxel. The diagrams on the right side show change of
the norm of rotation the matrix while the plots on the left
side show the change of the translation vector as a function
of the number of iterations. These diagrams show that the
convergence of the algorithm is practically unaffected by
noise.

Since the reconstruction field is an average of all individ-
ual fields, the filtering is performed automatically. An ex-
ample of the surface reconstructed by registering and inte-
grating a single image with 1, 10 and 50 observations of the
object from another viewpoint using the above algorithm is
shown in figure 7. The second image covers the left side
of the first image. Note that averaging makes sense only if
the images are well registered. Also note that registering
a very large number of images, say a few thousands, with
a registration algorithm whose complexity is O(M 2) with
respect to the number of images, is very difficult if not al-
most impossible for current algorithms. Another problem is
that a frame rate of 30 or 60 images per second clutters disk
space rapidly. By doing the reconstruction and filtering on-
line, as it is proposed in this paper, the redundant data can
be discarded as soon as its field is summed in the integration
field.

Illustration of reconstruction and registration of the syn-
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Figure 5. Distribution of registration error for
12 noiseless images of a Bethoveen statue.
(a) Registration error before registration. (b)
Residual registration error after registration

thetic and real data is shown in figure 8 for the Beethoven
model and the model of a rabbit from the Stanford image
repository. The execution time of the unoptimized algo-
rithm, including I/O, on a 1.2GHz PC, is 2 seconds per im-
age containing approximately 10000 triangles each.

5 Conclusion

We presented volumetric algorithms for registration and
integration of range images. The algorithms are of linear
complexity with respect to the number of images and the
number of triangles. The impacts of our approach are nu-
merous, but perhaps, the most important one is on sensor
design. Online registration and filtering by averaging allow
design of less accurate 3D scanners without sophisticated
referencing systems that still can produce high quality mod-
els. As a matter of fact, we believe that the future of 3D
scanners is not only in the design of very accurate scanners
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that use accurate referencing, but also in high-speed scan-
ners that provide high-quality models not by the quality of
range images but rather by their quantity (redundancy).

The most important drawback of the proposed approach,
as well as of any volumetric approach, is the limited res-
olution imposed by memory requirements. Representing a
surface, which is a 2D object, in a 3D volume leads to very
inefficient memory usage since most of the voxels are un-
used. There are several proposed solutions for this problem
such as run-length encoding [5] or octrees. However, those
methods are just more sophisticated data structures and they
do not reflect any geometric properties of the shape they
represent. We believe that more efficient and useful com-
pression schemes are possible; this will be the next step in
our research.
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(FCAR) and Natural Sciences and Engineering Research
Council of Canada (NSERC) supporting this research.

References

[1] P. Besl and N. McKay. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, February 1992.

[2] G. Blais and M. Levine. Registering multiview range data to
create 3d computer objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17:820–824, 1995.

[3] Y. Chen and G. Medioni. Object modelling by registration
of multiple range images. International Journal of Image
and Vision Computing, 10(3):145–155, April 1992.

[4] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. Brooks, and W. Wright. Simplification en-
velopes. In SIGGRAPH ’96 Conference Proceedings, pages
119–128, August 1996.

[5] B. Curless and M. Levoy. A volumetric method for build-
ing complex models from range images. In SIGGRAPH ’96
Conference Proceedings, pages 303–312, August 1996.

[6] G. Dalley and P. Flynn. Range image registration: A soft-
ware platform and empirical evaluation. In Proceedings of
the Third International Conference on 3D Digital Imaging
and Modeling, pages 246–253, May 2001.

[7] M. Greenspan and G. Godin. A nearest neighbor method for
efficient icp. In Proceedings of the Third International Con-
ference on 3D Digital Imaging and Modeling, pages 161–
168, May 2001.

[8] A. Hilton and J. Illingworth. Geometric fusion for a hand-
held 3d sensor. Machine vision and applications, 12:44–51,
2000.

[9] O. Jokinen. Area-based matching for simultaneous regis-
tration of multiple 3-d profile maps. Computer Vision and
Image Understanding, 71(3):431–447, September 1998.

[10] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. SIGGRAPH
’87 Conference Proceedings, 21(4):163–169, 1987.

[11] T. Masuda. A unified approach to volumetric registration
and integration of multiple range images. In Proceedings of
the 14th International Conference On Pattern Recognition,
pages 977–981, August 1998.

[12] T. Masuda. Generation of geometric model by registration
and integration of multiple range images. In Proceedings of
the Third International Conference on 3D Digital Imaging
and Modeling, pages 254–261, May 2001.

[13] P. J. Neugebauer. Reconstruction of real-world objects via
simultaneous registration and robust combination of multi-
ple range images. International Journal of Shape Modeling,
3(1,2):71–90, 1997.

[14] H. G. R. Bergevin, M. Soucy and D. Laurendeau. Towards a
general multi-view registration technique. Pattern Analysis
and Machine Intelligence, 18(5):540–547, May 1996.

[15] G. Roth and E. Wibowoo. An efficient volumetric method
for building closed triangular meshes from 3-d image and
point data. In W. Davis, M. Mantei, and V. Klassen, editors,
Graphics Interface, pages 173–180, May 1997.

[16] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In Proceedings of the Third International Confer-
ence on 3D Digital Imaging and Modeling, pages 145–152,
May 2001.

[17] G. Turk and M. Levoy. Zippered polygon meshes from range
images. SIGGRAPH ’94 Conference Proceedings, 26:311–
318, 1994.

[18] J. Williams and M. Bennamoun. Simultaneous registration
of multiple corresponding point sets. Computer Vision and
Image Understanding, 81(1):117–142, January 2001.

7



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Iteration number (i)

||
T

i|
|

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iteration number (i)

||
R

i-
I|
|

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Iteration number (i)

||
T

i|
|

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iteration number (i)

||
R

i-
I|
|

(c) (d)

Figure 6. Change of transformation parameters as a function of the number of iterations. Top row:
Change of translation (a) and rotation (b) for 12 noiseless images of Beethoven. Bottom row: Change
of translation (c) and rotation (d) for 12 images corrupted by noise of variance 1 voxel.

(a) (b) (c)
Figure 7. Example of filtering. (a) Reconstruction from a single image. (b) Reconstruction from
10 registered and averaged images (left side). (c) Reconstruction from 50 registered and averaged
images (left side).
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Initial images Registered images Reconstructed model

Figure 8. Examples of reconstruction and registration. Top row: real range data from Stanford image
repository. Middle row: registration and reconstruction using noiseless synthetic data. Bottom row:
registration and reconstruction using noisy images (noise variance 1 voxel).
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