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ABSTRACT

This paper describes a segmentation technique for 2D
interventional MR images of liver tumours. Our goal is to
extract the targeted tumour with high accuracy and
reliability. Two features of MR data were likely to
challenge existing segmentation methods. The first one is
the inhomogeneous intratumoral texture, while the second
one is the “blurred” appearance and the non-uniform
sharpness of the tumour boundary. In order to detect the
region of interest, we create the tumour contour map
using a multithresholding technique and a measure of
similarity between successive contours. Tumours
presenting boundaries with non-uniform sharpness are
segmented with an algorithm based on pixel aggregation
and local textural information.
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1. INTRODUCTION

The segmentation process is essential for many
applications using medical image data, such as
quantification of morphological disease manifestations
[1], identification of anatomical areas of interest for
surgery planning paradigms or for radiation treatment [2],
construction of anatomical models [3] etc.
Since only a few regions of a medical image provide
useful information for further analysis, it is very important
to extract these regions with high accuracy.
Our goal is to design and implement a segmentation tool
adapted to 2D MR images of liver tumours. The region of
interest (i.e. the tumour) is extracted from each segmented
image of a sequence of 2D MR images corresponding to
different anatomic slices and stored in a database. The
resulting database will be used for creating a 3D
morphological model of the tumour.
We concentrate on two particular features of abdominal
MRI data. The first one is the inhomogeneous texture of
the liver tumours at a certain stage of their evolution. For
instance, large-sized liver tumours develop a lobular
appearance. The second feature is the non-uniform
sharpness of the tumour boundary which may contain
sharp segments alternating with “blurred” segments. Due
to infiltration into surrounding tissues, malignant liver

lesions often present contours that do not reveal a clear-
cut transition.
This paper describes our work toward a new segmentation
method that allows a precise detection of the tumour
region in MR liver images. The organization of the paper
is as follows. Section 2 provides a brief overview of
existing segmentation methods that were presented in the
literature. Section 3 presents our original segmentation
approach. Section 4 contains the experimental results
obtained in order to validate the method and section 5
draws conclusions and describes future work.

2. BACKGROUND

The study of MR liver images is very poorly represented
in the otherwise abundant literature on MR segmentation.
The interventional MR liver images are in general low-
contrasted, containing tumours with ill-defined or
“blurred” boundaries. The main cause of the “blurred”
appearance is the movement artefact induced by
respiration. While classical edge-detection methods do not
produce reliable segmentation results, for MR images of
the brain, active contours offer a very accurate detection
of the region of interest [4]. Unfortunately, the use of
active contours for the tumour detection in liver MR
images is not suitable because of the “blurred” contours.
Texture analysis offers reliable statistical descriptors for
region classification: cooccurrence matrices [5], measures
of nonuniformity, homogeneity, contrast [6], etc. The
statistical features are necessarily derived from a large
number of pixels; hence they are not suited for pixel
classification. A solution for this problem is offered by
Markov random fields [7], a powerful mathematical tool
that provides a stochastic textural model. A relaxation
algorithm, as, for example, the ICM algorithm associated
to the markovian model will converge towards the
segmentation result [8].
In order to develop a robust segmentation technique for
interventional MR liver images, we have not restricted our
investigation to the MR segmentation literature. There are
other types of medical images (mammography,
computerized tomography) who may present challenges
similar to our case. In [6], a computer-aided classification
of benign and malignant masses on mammograms is
attempted by computing gradient-based and texture-based
features. Textural features are computed from grey-level
cooccurrence matrices and are used to compare the
textural information contained in mass regions and in
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mass margins. The gradient-based features are used to
assess the sharpness of mass boundaries in a ribbon of
pixels across mass margins.
A new segmentation approach presented in [9] is suitable
for images containing objects with blurred boundaries.

In our proposed segmentation approach, we use the
concept of isolabel contour map defined in [11], but we
develop a different strategy for building this contour map
and a different measure of similarity between successive
contours.

3. PROPOSED SEGMENTATION
APPROACH

Our approach aims towards an accurate segmentation of
the tumour region in MR liver images. The database used
for our study contains two different types of images. This
classification is based on the appearance of the tumour,
which is the region of interest in our case. The two
different types of tumours are : a) tumour with smooth
intrinsic texture and b) tumour with inhomogeneous
intrinsic texture and boundaries of variable sharpness.
It is obvious that case a) is a rather simple segmentation
problem, while case b) contains the real challenge of our
study.

3.1 Segmentation of smooth-textured liver
tumours
As in [9], we create an isolabel contour map in order to
extract the boundaries of the region corresponding to the
tumour. Our database contains only images with 256 grey
levels (as in figure 3.1 a).
We first create the isolabel contour map of the entire
image, then we select the contour map of the tumour,
which is a subset of the image contour map.
To obtain the isolabel contour map, we iteratively
threshold the grey level image 256 times. At each
iteration, after thresholding, pixels belonging to the
boundary between the two regions of the binarised image
are labelled with the current threshold value. The set of
pixels with an identical label forms an isolabel contour.
As a result of the iterative thresholding and boundary-
extraction process, we obtain the isolabel contour map of
the whole image, containing 256 isolabel contours. An
instance of an isolable contour is shown in figure 3.1 b).
In order to extract the isolabel contour map of the tumour,
we need a minimum amount of information about its
location in the liver. The radiologist is asked to select one
single reference pixel located inside the tumour. We also
need to know whether the targeted tumour is brighter or
darker than the background. In T1-weighted MR

images, tumours appear darker than the surrounding tissue
while it is the opposite in T2-weighted MR images.
The extraction of the tumour isolabel contour map from
the isolabel contour map of the image is an iterative
process. The initial value of the label is set to the intensity
value of the reference pixel. If the targeted tumour is
brighter (darker) than the background, the label decreases
(increases) one unit per iteration. We will further consider
the tumour as the foreground of the image.
The central idea of the algorithm is that intensity in a
bright (dark), relatively homogeneous foreground region
gradually drops (rises) when approaching the boundary.
When reaching the boundary, an abrupt intensity variation
occurs. This transition depends on the local sharpness of
the boundary. The transition from foreground to
background generates a very different contour with
respect to the contours enclosed in the foreground region.
Since the tumour contour map contains only similar
contours, the first dissimilar contour encountered marks
the transition to the background and stops the generation
process of the tumour contour map.
At every iteration, we select a subset of the analysed
isolabel contour, which is a closed contour that encloses
the reference pixel (see figure 3.1c). The reference pixel is
marked in red in figures 3.1b et 3.1c.
Choosing this contour is done with successive
morphological dilations of the reference pixel. The
dilation process stops when reaching a closed contour
having the label of the currently analysed isolabel
contour. This contour is selected and further tested for
inclusion/exclusion in/from the tumour isolabel contour
map. If the selected contour is similar to the contour
extracted at the previous iteration, it is included in the
tumour contour map. If, on the contrary, it is dissimilar, it
is excluded from the tumour contour map and the
generation of the tumour contour map is complete. Figure
3.1 d) shows three similar contours belonging to the
tumour contour map. The boundary of the tumour is
considered to be the last similar contour included in the
tumour contour map.

a) b) c) d)
Figure 3.1 a) the white arrow points at the tumour region belonging to a MR liver image ; b) isolabel contour k belonging to
the image contour map; c) selection of the contour belonging to the tumour contour map; d) three similar contours belonging

to the tumour contour map;
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In order to compare two contours, we propose a new
measure of similarity.
We consider two successive contours of the tumour
contour map, cont(i) and cont(i-1) where the index
represents the label value. If the targeted tumour is
brighter than the background, cont(i-1) always encloses
cont(i) for every possible value of i, as in figure 3.3. We
consider obj(i-1) to be the object enclosed by cont(i-1)
and obj(i) to be the object enclosed by cont(i). We define
a distance between every point P belonging to cont(i-1)
and obj(i) using a morphological approach. Thus, the
distance between P and obj(i) is equal to the minimum
number of successive dilations of obj(i), performed in
order to include P.

Figure 3.3 Two successive contours of the
tumour contour map

We consider the following structuring element :
( ) ( ) ( ) ( ){ }10100100 −−= ,,,,,,,K (3.1)

The distance between obj(i) and P is defined as:

( )( ) { }nK)i(objP,Nn|nminiobj,Pd ⊕∈∈= (3.2)

where ⊕ is the morphological dilation operator and n is
the number of successive dilations.
The distance between every pixel belonging to cont(i-1)
and obj(i) is computed.
As a measure of similarity between cont(i-1) and cont(i)
we use the variance :
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where M is the number of points of contour cont(i-1),
p(di) is the likelihood of distance di estimated from the

distance histogram and d is the average distance
between cont(i-1) and cont(i) :
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In order to decide whether cont(i) and cont(i-1) are similar

or dissimilar, we choose a threshold 2
0σ for the variance

σ2. Thus, cont(i-1) and cont(i) are considered as dissimilar

when σ2 is greater than 2
0σ , and similar when σ2 is less

or equal to 2
0σ .

The proposed measure of similarity is sensitive to shape
variations but not sensitive to size variations, as shown in
figure 3.4.

Figure 3.4 a) similar contours; b) dissimilar
contours

However, the proposed similarity measure is sensitive to
the contour orientation. If two similar contours translate
or rotate, their degree of similarity changes. This
drawback is not relevant for our case, since the contours
to be compared are successive contours of the tumour
contour map and they are not allowed to translate or
rotate.

3.2. Segmentation of tumours with
inhomogeneous texture and boundaries of
variable sharpness

The algorithm presented in paragraph 3.1 fails to detect
the boundary of a contour with inhomogeneous texture
and “blurred” boundaries. The last similar contour
belonging to the tumour contour map is located inside the
tumour (see figure 4.2 a, 4.3 b and 4.4 b).
To detect the real boundary of the tumour we propose a
pixel aggregation process. A pixel aggregation algorithm
must specify : a) the seed pixels and b) the local feature to
be analysed for every candidate pixel for inclusion in the
expanded region .
In our case, the seed pixels belong to the last similar
contour of the tumour contour map. This initial contour is
stored in a one-dimensional circular array. The
trigonometric sense is used for moving around the
contour.
The local feature to be analysed for every candidate pixel
is texture-based and represents the correlation coefficient
of two coocurrence matrices.
We compute the cooccurrence matrix C of the object
enclosed by the initial contour with the following relation:

( ) ( ) ( ) ( ) ( ){ }
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(3.5)

where obj0 is the object enclosed by the initial contour.
For every analysed pixel s we consider a 11×11 patch,
centered on the pixel and we compute its cooccurrence
matrix CBLOC(s). The size of the patch was chosen by
considering the spatial limit of pixel interaction [10].
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Figure 3.6 Two iterations of the segmentation algorithm based on pixel aggregation; pixels to be included in the
LIFO queue are marked in red , pixels to be included in the grown region after evaluation are marked in green, while pixels

to be excluded from the grown region are marked in blue

The correlation coefficient between CBLOC(s) and C is
computed with the following relation :
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where u, v are two vectors with the same number N of
elements.
Thus, for every candidate pixel s the texture-based local
feature is :

( ) ( )( )C,sCblocRsr = (3.7)

This feature represents a measure for the interaction
strength between pixel s and the tumour region. Its range
is limited to the interval (0, 1). A high value of r(s)
indicates that pixel s strongly interacts with the region of
interest and should be included in this region. On the
contrary, a low value of r(s) means that pixel s should be
excluded from the region. A threshold value r0 for r(s) is
chosen, in order to decide the inclusion/exclusion of pixel
s from the tumour region.
The pixel aggregation process is an iterative algorithm.
The number of iterations is equal to the number of seed
pixels (i.e. the number of pixels belonging to the initial
contour). The current seed pixel at iteration i is the
contour pixel s(i). The current seed pixel s(i) is placed in
an initially empty LIFO queue, which holds pixels to be
evaluated for inclusion in the expanded region. The value
r(s(i)) is compared to a predefined threshold r0. If r(s(i)) is
less than r0, there is no pixel aggregation process for seed
s(i) and the next contour pixel s(i+1) becomes the current

seed pixel. If r(s(i)) is greater than r0, the neighbors of s(i)
belonging to the current background are included in the
LIFO queue. Furthermore, we extract pixel p from the
queue corresponding to the seed pixel s(i). If r(p) is
greater than or equal to r0, pixel p is included in the
expanded region and its neighbours belonging to the
current background are included in the LIFO queue. If
r(p) is less than r0, the next element of the LIFO queue is
extracted and analysed. The region-growing process
corresponding to the current seed pixel s(i) stops when the
LIFO queue is empty. Then, we move to the next seed
pixel s(i+1) and its corresponding pixel aggregation
process begins.
Figure 3.6 shows two successive iterations, i and i+1 of
the segmentation algorithm based on pixel aggregation.
For every seed pixel s(k) belonging to the initial contour,
the algorithm grows a region R(k). The final object
corresponding to the tumour region is :
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where obj0 is the object enclosed by the initial contour
and N is the total number of pixels belonging to the initial
contour.

4. EVALUATION

We evaluated the performance of our segmentation
approach by comparing its results to those obtained by
manual editing.
The manual segmentation was performed by a radiology-
expert, who traced the contour of the tumour using
conventional editing tools in a graphics interface.
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We compared S, the object generated with our
segmentation approach and R, the reference object
enclosed by the manually edited contour. We considered
the surface overlap metric [11], which performs a pair-
wise comparison of two binary segmentations by relative
overlap. Images are analysed pixel-by-pixel to calculate
false positive, false negative, true positive and true
negative pixels.
Let NP be the number of false positive pixels, NN the
number of false negative pixels, NR the total number of
reference pixels, and NS the total number of subject pixels.
We considered the following correspondence measure :

( )
SR

PN

NN

NN
R,SC

+
+

−=1 (4.1) (5.1)

with PRNS NNNN +=+ (4.2)

This measure gives a score of 1 if subject S and reference
R are identical and 0 if Φ=RS I .
Our database contained 10 patient data sets of MR
interventional liver images, acquired at a magnetic
intensity of 0.5 Tesla. No contrast agents were used. The
images were acquired on General Electric Sigma Horizon
open-field MR system at the Intervention Magnetic
Resonance Imaging Unit of the Centre Hospitalier
Universitaire de Québec (CHUQ). Reference
segmentations were available for 15 images.

a) b)
Figure 4.1 a) Starting contour for segmentation of a smooth-textured tumour; b) Final segmentation result and evaluation.

a) b) c) d)
Figure 4.2 a) Starting contour for a tumour with inhomogeneous texture and fuzzy boundaries; b), c) Contours obtained

respectively at second and fifth iteration of the segmentation algorithm; d) Final segmentation result and evaluation.

a) b) c)
Figure 4.3 a) The targeted tumour , with inhomogeneous texture and fuzzy boundaries; b) Starting contour; c) Final

segmentation result and evaluation.

a) b) c)
Figure 4.4 a) The targeted tumour, with inhomogeneous texture and boundaries of variable sharpness; b) Starting contour;

c) Final segmentation result and evaluation.
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Figures 4.1 to 4.4 show the initial stage, some
intermediate instances and the final segmentation results
of the segmentation algorithm for four liver tumours
belonging to the database. False-positive and false-
negative pixels are marked in red and green respectively.
The threshold value for the contour similarity measure
described in section 3.1 is set to 10%, while the threshold
value r0 used in the pixel aggregation process is set to
0.25.
The quantitative results of the evaluation process for the
four previously presented tumours are shown in table 4.1.

Tumour NS NP NN NR C(S,R)
(%)

4.1 a) 540 12 21 549 96.96
4.2 a) 604 0 56 660 95.56
4.3 a) 648 20 0 628 98.43
4.4 a) 1172 11 55 1216 97.23

Table 4.1 Quantitative results for the evaluation process

For the whole set containing 15 analysed images, the
average value of the correspondence measure is 97.05 %.

5. CONCLUSIONS

Our segmentation approach takes into account the
gradient, shape and texture information of Interventional
MR images of liver tumours in order to detect accurately
the targeted tumours.
The segmentation approach depends on the tumour type.
We propose a simple segmentation approach for smooth-
textured tumours. We use the concept of isolabel-contour
maps[9], but introduce a new measure of similarity
between successive contours. The boundary of the tumour
is extracted by choosing the appropriate threshold value
for the similarity measure.
The most challenging type of tumours are those with
intrinsic texture and contours of variable sharpness. For
this type, we propose a segmentation algorithm based on
pixel aggregation.
The two presented approaches are not independent. Thus,
the starting contour for the second approach is the last
similar contour extracted from the tumour contour map.
The approach based on pixel aggregation is used only
when the previous approach does not provide satisfactory
results.
The robustness of the proposed segmentation techniques
is proven by the evaluation results.
Future work will concentrate on improving the robustness
of the approach and on the development of an approach
for selecting the best algorithm for tumour detection.
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