
DETECT2000: An Improved Monte-Carlo Simulator for the 
Computer Aided Design of Photon Sensing Devices 

 
François Cayouette1,2, Denis Laurendeau3 and Christian Moisan3 

1Montreal Neurological Institute, McGill University, Montreal, Canada 
2Biomedical Engineering Department, McGill University, Montreal, Canada 

3Electrical and Computer Engineering Department, Laval University, Quebec City, Canada 
 

ABSTRACT 
 
We introduce a new version of DETECT. DETECT is a Monte-Carlo simulator developed for the Computer Aided 
Design (CAD) of optical photon sensing devices. The simulator generates individual emission photons in specified 
locations of a photon-emitting device and tracks their passage and interactions in active and passive components of the 
system. Extensive options are available in the simulator to model the geometry of the photon sensing device, to account 
for the time and wavelength distribution of emission photons, to track their interactions with surfaces, to account for 
their possible absorption and re-emission by a wave-shifting components and to model their detection by pixelated 
photomultipliers or photodiodes. DETECT2000 is a very significant upgrade of DETECT97, which has long been 
established in the nuclear medicine instrumentation community for its accuracy to model the performances of high 
resolution energy and position sensitive gamma-ray detectors. The 2000 version of DETECT offers an accelerated 
version of the simulator which has been redesigned in the object-oriented C++ language. New features such as the 
tracking of the time and wavelength history of individual optical photons have been added. 
 
Keywords: DETECT, Monte-Carlo, light photon transport, Computer Aided Design, Photon Sensing Devices 
 
 

1. INTRODUCTION 
 
Testing the theoretical performance of a photon sensing device before it is actually constructed can be of great help. 
With the appropriate Monte-Carlo simulator, it would be possible to study the light photon transport inside the device 
and give important information that could be used to improve the efficiency of the device. DETECT2000 is a Monte-
Carlo simulation model of the light photon behaviour inside an optical device. DETECT2000’s general geometric syntax 
can create any complex by joining together four basic geometrical forms: planes, cones, cylinders and spheres. Also, 
DETECT2000 comes with a variety of possible surface finishes. Some of the finishes are idealized surface model that 
can be used to estimate the best and worst possible performance of a device, as it was done for a scintillation crystal used 
in positron emission tomography (PET)[1]. Also, there is one surface finish type that can be customized to create any 
kind of surface roughness with any kind of possible reflection. This allows for very accurate simulations. 
 
DETECT2000 is an important upgrade from DETECT97[2], one of the successors of DETECT[3]. DETECT2000 has 
been entirely rewritten from the C language to the object oriented C++ language in order to simplify code maintenance 
and integration of further simulation features. Also, the rewriting was aimed at improving the portability of the source 
code therefore insuring an easier distribution. The source code of the second release of DETECT2000 is now available 
for download on the web since November 2001.   
 
 

2. DETECT2000 SOFTWARE DESIGN 
 
The Unified Modeling Language (UML) class diagram of the new architecture is shown in figure 1. The empty arrow 
ended links define an inheritance relation, an "is a" relation, between two class. The links starting with a diamond define 
an aggregation relationship, a "have a" relation, between the two classes. The differences between the full and empty 
diamonds are subtle and are beyond the scope of this paper. Some classes have been defined as abstract classes in order 
to define the general behaviour of the sub-classes that inherits from them. One such class is the Geometric class that 



defines the minimal behaviours for geometric objects which will compose the different components of the model. In a 
normal UML diagram, the name of the variables and the name of functions are written inside the class box. Doing so 
would make the diagram unreadable and do not give much additional information about the software design of 
DETECT2000. DETECT2000 has been coded in such a way that it should be relatively easy to add new features to the 
existing code. These features can be added either as new classes in the model or as new functions in the current classes. 
 
 

 
 
Fig. 1 UML class diagram of DETECT2000 
 
1. New architecture 
 
Some of the classes in DETECT2000 have been coded according to specific design patterns[4]. The design patterns 
provide standard solutions for commonly arising problems in software engineering. The first design pattern used is the 
Singleton that had been implemented in the FlagsNGlobals class. The values that are stored in this class are used in 
many parts of the program. By storing the values in the class, we are reducing the namespace pollution and this will 
reduce the probabilities of problems if another program tries to interface with DETECT2000's code. The second design 
pattern used in DETECT2000 is the facade in class Simulator.  By doing so, the Simulator class is in charge of the entire 
simulation process and creates an easy interface for any code to start DETECT simulations. 
 
During the rewriting process, special care was taken in order to have maximal portability. DETECT2000 has been tested 
under various operating systems (OS) such as: Sun OS, Windows (9x, 2000, ME and XP) and Red Hat Linux. Other 



Unix-like OS are very likely to be able to run DETECT2000 without any change to the source code. Also, under 
Windows, DETECT2000 can be compiled and executed using Cygwin, a text based Linux emulator. 
 
 

3. IMPROVEMENTS UPON EARLIER RELEASES 
 
1. Streamlined code 
 
While the code was translated from C to C++, special attention was given to the algorithms used. When it was possible, 
the algorithm implementation was modified to have it run faster without changing the overall behaviour. Also, some 
redundant checks that were done in both the simulation and the model checking phase were removed. Even if the C++ 
language is known to be slower than the C language,  the DETECT2000 implementation is typically 10-15% faster than 
the earlier implementation for  an equivalent simulation model simulation.  
 
Other algorithmic changes yield improved results only in particular cases. The most important of such improvements is 
the photon generation algorithm. Now, if the generation volume is a single point or completely enclosed inside one 
model component, the photons will be generated much faster. This is done by looking at the component in which the last 
photon was generated instead of checking the entire model. This speed improvement cannot be quantified because it is 
dependent on the model size and the number of simulated photons. The only inconvenience of this approach occurs 
when photons are generated in a large volume, there is a very small decrease in the simulation performance. The speed 
decrease is equivalent to having an additional component in the simulation model. Since the generation of photon is 
relatively rare, the penalty cost is negligible for most users.  
 
2. Better random number generator 
 
The conversion process, it became clear that the random number generation method was not sufficient when it came to 
doing very long simulations. In very long simulations, the total number of random numbers that can be generated can 
reach a significant portion of the length of the generator period. In order to avoid random number generation problems, 
the random number generator has been changed to a generator with a very long period: The L’Ecuyer generator with 
Bays-Durham shuffle[5]. This generator has a random number sequence of more than 2x1018 numbers.  With current 
computers, the entire period cannot be reached unless the simulation runs for decades. Although this random generator is 
slower than the previous one, the gain of having a random number sequence that has no risks of repeating itself is a 
bigger gain. 
 
The random number generation method change signifies that a simulation that was run under a previous version of 
DETECT may not have the exact same results. However, the differing results should not be statistically significant. 
Thorough testing was done after the conversion process to insure the statistical validity of the simulations. 
 
3. Thorough model checking 
 
In the previous DETECT version, some significant errors in the model definition could pass the model checking 
algorithm. Previously, it was possible to define a component with a surface without a finish and that surface was 
interfacing with the surrounding void. In normal conditions, a surface without a finish is use to connect components of 
the same material together in order to create more complex volume geometry. Since there is no check for a change of 
refractive index when a photon hits a surface without a finish, the simulation was simulating photons that left the 
simulation model with a direction change or possibility of Fresnel reflection. Now, in order to keep a correct simulation 
model, defining a component with a  surface without a surface finish generate a check for refractive index of the 
connecting component. If the refractive index values are not exactly the same for each component, or equal to 1 if the 
component interface with the void, then the model is considered to be invalid. 
 
With the advent of the wavelength dependent coefficient, discussed in section 4.2 of this paper, many new possible 
interactions can occur in the model. This requires a very stringent checking method for all the coefficient values and 
equally stringent model definition. Most of the coefficients on a given model component are independent from each 



other and can be individually checked, but some are dependent on others. In this case, the dependent coefficients must be 
all defined for the same wavelengths. If they are not defined in this way, the normalization of the coefficients when a 
photon is wave-shifted could create abnormal behaviours in the long run. DETECT2000 can now find model definitions 
that, although correct when first defined, would create problematic behaviour after long simulations.  
 
4. Limitless model size 
 
The rewriting process has removed the model limitations on the various component types. In the previous version of 
DETECT, the different model components had a limit because they were stored in static arrays. The static arrays were 
changed to dynamically allocated arrays. The use of dynamic structures now allows for a very efficient memory usage 
and the actual memory allocation is a function of the size of the simulation. As an example, a simulation involving about 
2000 components requires about 2.5MB of physical memory. With dynamic memory allocation, the number of model 
components is only limited by the physical memory of the system on which the simulations are running or by the 
maximal value of the system integer, which is more than 2 billion for a 32 bits system. 
 
In order to increase further the memory efficiency of DETECT2000, all the model objects are also dynamically created. 
The model is in fact stored in dynamically allocated arrays of pointers that are instantiated only when needed. This 
approach does not have any memory overhead because dynamically allocated objects do not need an instantiated flag 
inside their structure. 
 
Since the model no longer has limits, some of the definition lines can be very long. This is especially true for the 
definition of some component’s surfaces. The connection definition can take many lines of the text. Thus, there is no 
limit on the size of the input string because it is now able to grow dynamically in order to fit any simulation file. 
 
All these modifications were done to remove the need to recompile DETECT2000’s source code every time a model 
limitation is reached. Now, one compilation of the source code creates a DETECT2000 executable that will accept any 
valid simulation file. 
 
Along with the model size limitations, the limitation on the suffix of the FATE file possibilities has been removed. From 
ten possibilities, the FATE can take any positive integer value as a suffix. Also, one simulation file is no longer limited 
to one FATE file. At any time in the simulation, the FATE file can be closed and replaced by a new one. This new 
feature can help separate different events that are simulated inside one simulation file.  
 
 

4. NEW DETECT2000 FEATURES 
1. Time delay generation  
 
In previous versions of DETECT, scintillation photons were generated and detected “instantaneously". In reality, this is 
never the case. For each material and photon-detecting surface, it is now possible to specify the parameters of a 
normalized probability distribution function (PDF) from which the delay is randomly sampled. Leo [6], Birks [7] and 
Moszynski [8] discuss these distributions at length, typically under the heading of “light pulse shape" and “pulse shape 
discrimination". Decay constants, relative weights and other distribution characteristics found in the literature are 
typically obtained using a “delayed-coincidence method" described by Bollinger and Thomas [9]. 
 
In DETECT2000, the generation time and detection time of each photon are written into the FATE files of the 
simulation. By extracting these values in conjunction with the flight time, it is now possible to have the entire elapsed 
time for each photon. DESTINY, a small program provided in the DETECT2000 suite is able to parse the FATE files in 
order to extract time data. DESTINY then creates a histogram of the desired time value such as generation time, 
detection time, flight time, etc. If no time delay is defined for a given material or detection surface, then no delay is 
applied for that component. There are three different ways to define a delay with DETECT2000: the sum of n decreasing 
exponentials, the sum of one rising and n decreasing exponentials and the convolution of a gaussian and the sum of n 
decreasing exponentials. For each case, the decreasing exponentials can have different weights to create a more realistic 
delay. 



 
Since DETECT2000 can have very long simulations, it is important to reduce the time needed to compute the delay time. 
Taking the inverse of the delay function would take, in the long run, a significant part of the simulation time. To avoid 
this problem, we are creating a table of time related to the PDF when the delay time is specified. The PDF is divided into 
1024 different parts and for each part, a mean value is computed. Since having only 1024 values is not sufficient to 
create a good time distribution, we use interpolation. Each time DETECT2000 generates a delay time, it produces a 
uniform distribution random number. This number is then multiplied by 1024 to choose which value will be used. The 
floating point remainder of the multiplication is used to linearly interpolate the delay value using the next value in the 
table. This method yields a very good approximation of the true PDF as shown in figures 2 and 3. 
  

 
Fig. 2 Generated time dependencies. A falling exponential PDF of 300ns on the left and a PDF composed of two 

equally weighted falling exponentials of 75ns and 300ns on the right.  
 

 
Fig. 3 Generated time dependencies. A rising and a falling exponential PDF of 100ns and 150ns respectively on the 

left and a falling exponential of 150ns convoluted with a gaussian of 20ns standard deviation on the right. 
 
2. Wavelength dependent coefficients 
 
Material and surface finish definitions can now call files in which a relevant coefficient or, in some cases, end result of 
an event is specified as a function of scintillation photon wavelength in nm. Interaction processes involving a 
wavelength dependent coefficient then occurs as a function of the current wavelength of the photon being tracked 



throughout its lifetime. This is a very powerful new feature of DETECT2000 which accounts for spectral dependencies 
that are known to the user. 
 
In previous versions of DETECT, the only wavelength dependencies were done by specifying two values for a 
coefficient. The first value was used for the wavelength of the generated photon and the second value was used when the 
photon had been wavelength shifted. This approach greatly reduce the number of possibilities. Now, it is possible to 
specify a generation spectrum and specify the wavelength dependent coefficients where they are needed. With 
DETECT2000, it is not necessary to specify a value for every possible generation wavelength. The simulation program 
will interpolate the correct value given the specified coefficient distribution. 
 
3. Fast Statistical Counting 
 
In DETECT2000 a new method, the fast statistical counting (FSC), as been implemented to help reduce the simulation 
run time. This method can also be called fast quantum efficiency counting. This method is used to reduce the number of 
photons that need to be simulated. Depending on the simulation model, FSC can reduce the simulation time by a very 
significant amount. However, using FSC does not guarantee similar results as a simulation done without FSC. When this 
feature is used, it is recommended to compare the FSC simulation runs with normal simulation to find out discrepancies. 
As a safeguard, this feature is disabled by default. FSC has already been used with success to study a position-encoding 
PET detector. In that case, only a single detection surface type was used for multiple PMTs and the authors were 
primarily interested in relative number of photons incident on each PMT[2][10]. 
 
The FSC algorithm uses the quantum efficiency of the PMT to increase the weight of each simulated photon. The 
quantum efficiency determines the probability of the detection surface to correctly detect the photon. When a photon hits 
a detection surface, the inverse of the PMT’s quantum efficiency at the photon’s wavelength becomes the weight of the 
current and subsequent non-detected photons. Since the quantum efficiency can only be defined in the [0,1] range, the 
new weights reduce the number of actually simulated photons. 
 
4. Position sensitive surfaces 
 
Another new feature that has been developed in DETECT2000 is the position sensitive detection surfaces, which 
simulates the behaviour of position sensitive PMTs (PS-PMT). This kind of detection surface is in fact an optional 
feature that can be activated for any detection surface in the model. When this is activated, the position of each detected 
light photon is recorded inside the surface. At the end of each simulation, the centroid of all the detected photons is 
written along with the simulation results. Since the data is stored inside the surface finish definition, it is possible to 
merge many detection surfaces results into one centroid data. However, many surface definitions with the same 
coefficient must be defined in order to have different centroid data if more than one similar PS-PMT is used in the 
model. The only negative impact of this approach is the slightly longer model definition file and a very slight increase in 
the memory usage of the software. 
 
Before this feature was implemented, the user had to parse the entire FATE file in order to compute the centroid of 
detected light photons. Since the FATE file of a simulation can be more than more a few megabytes, using the position 
sensitive surface has the advantage of avoiding the creation of big intermediate files. 
 
5. Projections of detected photons 
 
Previously, if one was interested in knowing the location of the detected light photons, it would be necessary to parse the 
entire FATE file with a custom program. Now, a new feature has been integrated to DETECT2000 that yields very good 
results without the use of a specialized program. It is now possible to define projections of detected light photons.  Since 
detection surfaces are not necessarily planar, the Projection object allows a very simple way to determine the distribution 
of detected photons. 
 
A Projection object is defined by a plane center, a projection axis, a height axis and a plane width and height. When a 
photon is detected by any of the detection surfaces in the model, the final location of the photon is kept in memory. Then 



this location is projected on each of the Projection objects. When the projection of the final location falls outside the 
plane boundaries, the event is ignored for that projection plane. This allows the definition of multiple projection planes 
which may each be in charge of one PMT. This also provides overall information of the photon distribution inside the 
crystal. 
 
After each simulation, the Projection object outputs its results in the form a 2D histogram. The number of bins in each 
axis of the histogram can be defined by the user when the Projection object is created. This allows for optimal resolution 
for the simulated model. Each of the Projection objects writes its data into a separate file that can be later used for 
analysis. 
 
 

5. DISCUSSIONS AND CONCLUSION 
 
Using DETECT2000, we have done Monte-Carlo simulations on a multi-layered PET scintillation crystal in order to 
assess its performance[1]. The scintillation crystal is composed of two arrays of independent crystals that are all 
connected by a central layer. The scintillation block geometry has been modeled as an aggregation of more than 2200 
individual components. For a simulation model of this size, the required memory is less than 3 megabytes of RAM under 
the  Windows 2000 OS. When the most computing intensive surface finish is used for that simulation model, the average 
time to simulate 10000 photons without FSC was about 30 seconds on a Pentium 733MHz. However, this average 
simulation time should be taken only as an indication because the simulation is dependent on many things such as the 
size of the model, the actual location of the generated photons and the model’s surfaces type. 
 
DETECT2000 is enjoying a wide user base in both academia and industry. This is mostly due to the accessibility of the 
source code and the comprehensive license that comes with it. Also, it is possible to suggest modifications to the source 
code that would remove bugs or add features. A significant number of suggestions have been used to add features for the 
second release of DETECT2000. New features are currently implemented in a further release of DETECT2000.  
 
The source code of DETECT2000 and of the other programs in the DETECT2000 suite this available for download at 
the following URL:  
http://www.gel.ulaval.ca/detect/ 
Online documentation, user’s guides and papers relating to DETECT can also be found on this website.  
 
 

6. ACKNOWLEDGEMENTS 
 
F. Cayouette’s work is supported by a scholarship from the Natural Science and Engineering Research Council of 
Canada (NSERC Grant no. PGS A - 231976 – 2000) 
 



REFERENCES 
 

1. F. Cayouette, C. Moisan and C. J. Thomson, “Monte-Carlo Modeling of Scintillation Crystal Performance for 
Stratified PET Detectors using DETECT2000", IEEE 2001Conference Record, M13A-21, (2001). 

2. G. Tsang, C. Moisan and J.G. Rogers, "A Simulation to Model Position Encoding Multicrystal PET Detectors", 
IEEE Trans. Nucl. Sci., NS-42 p. 2236 (1995). 

3. G. F. Knoll, T. F. Knoll and T. M. Henderson, “Light Collection Scintillation Detector Composites for Neutron 
Detection", IEEE Trans. Nucl. Sci., NS-35, p. 872 (1988). 

4. E. Gamma, R. Helm, R. Johnson, J Vlissides. Design Patterns: Element of Reusable Object-Oriented Software, 
Addison-Wesley (1994). 

5. P. L’Ecuyer, Communications of the ACM, vol. 31, pp. 742-774 (1988) 
6. W. R. Leo. Techniques for Nuclear and Particle Physics Experiments: A How-To Approach, Springer-Verlag:    

New York, (1987). 
7. J. B. Birks. The Theory and Practice of Scintillation Counting. The MacMillan Co.: New York, (1964). 
8. M. Moszynski and B. Bengtson. “Light Pulse Shapes from Plastic Scintillators", Nucl. Instr. and Meth., 142 pp. 

417-434 (1977). 
9. L. M. Bollinger and G. E. Thomas, “Measurement of the time dependence of scintillation intensity by a delayed-

coincidence method", Rev. Sci. Inst., 32, pp. 1044-1050, (1961). 
10. D. Vozza, C. Moisan and M. Loope, "Simulating the Performances of an LSO Based Position Encoding Detector for 

PET", IEEE Trans. Nucl. Sc., NS-44 p. 2450 (1997). 


