
Measuring Link Bandwidths Using a Deterministic Model
of Packet Delay

Kevin Lai
Stanford University

laik@cs.stanford.edu

Mary Baker
Stanford University

mgbaker@cs.stanford.edu

ABSTRACT
We describe a deterministic model of packet delay and use it
to derive both the packet pair [2] property of FIFO-queueing
networks and a new technique (packet tailgating) for actively
measuring link bandwidths. Compared to previously known
techniques, packet tailgating usually consumes less network
bandwidth, does not rely on consistent behavior of routers
handling ICMP packets, and does not rely on timely delivery
of acknowledgments.

Preliminary empirical measurements in the Internet indicate
that compared to current measurement tools, packet tailgat-
ing sends an order of magnitude fewer packets, while main-
taining approximately the same accuracy. Unfortunately,
for all currently available measurement tools, including our
prototype implementation of packet tailgating, accuracy is
low for paths longer than a few hops.

1. INTRODUCTION
As long as Internet bandwidth has increased, the amount of
traffic sent over the Internet has grown to consume it. This
means that despite the increasing link bandwidth in network
backbones and into homes and offices, optimizing the use
and allocation of bandwidth continues to be an interesting
problem. Although many applications are more interested in
available bandwidth than link bandwidth, knowing the link
bandwidth along a path enables more accurate measurement
of available bandwidth. In addition, several applications can
directly use link bandwidth, including planning networks to
minimize bottlenecks and analyzing network performance as
a whole [14].

However, the Internet’s current size, heterogeneity, and rate
of change make determining link bandwidth a challenging
research problem. This is true even though applications are
usually only interested in the bandwidth along a particu-
lar path or even just the smallest bandwidth (the bottleneck
bandwidth) along that path. A database to store bandwidth
information would neither scale well nor cope with the rate

at which routes change [13]. Routers currently do not report
link bandwidths. Since routers gain much of their speed by
being as simple as possible, slowing them to answer link
bandwidth queries is probably not acceptable. The easiest
approach to deploy, and consequently the one in which we
are most interested, is for end hosts to infer link bandwidth
by actively probing or passively listening to traffic. Hosts
can share this information if the probing or listening is ex-
pensive [17].

The challenge of the inference approach is to measure link
bandwidth as accurately, quickly, robustly, and unobtru-
sively as possible. By robust we mean it is usable in the
variety of network environments that exists in the Inter-
net: few or many hops from source to destination, empty
or saturated links, one or several channels per link, differ-
ent wired and wireless link technologies, different queueing
disciplines, and different router implementations. By unob-
trusive we mean it places minimal additional load on the
network, since it is desirable to prevent measurement traffic
from delaying application data traffic.

As we describe in Section 2, existing solutions to infer all
link bandwidths along a path are built from a determinis-
tic model that considers only one measurement packet. As
a result, these techniques rely on routers handling ICMP
packets consistently, and timely delivery of acknowledge-
ments. These techniques use significant amounts of network
bandwidth to perform their measurements and can be slow
enough to become impractical for some of the applications
that most need them.

In this paper, we describe a new deterministic model of
packet delays that unifies previous models. Using this model,
we derive a novel technique, called packet tailgating, for
measuring link bandwidths along a path through the Inter-
net. Packet tailgating captures link-specific characteristics
by causing queuing of packets at particular links. For each
link, the technique sends a large packet with a time-to-live
(TTL) set to expire at that link followed by a very small
packet that will queue continuously behind the large packet
until where the large packet expires.

Packet tailgating consumes less network bandwidth than
previous techniques, does not rely on consistent router be-
havior for handling ICMP packets, does not rely on timely
delivery of acknowledgements, can theoretically detect multi-
channel links and can be run on multicast trees. Using our

Table 1: Variable Definitions.

n links hop length of the path
dl sec. latency of link l
dl sec. sum of latencies up and including link l
bl bits/sec. bandwidth of link l
sk bits size of packet k
tkl sec. time when packet k fully arrives at link l
qkl sec. amount of time packet k is queued at link l
lbn link number the bottleneck link

prototype tailgating implementation on a path through the
Internet, we demonstrate that packet tailgating sends an
order of magnitude fewer packets than previous techniques
while maintaining similar accuracy. Unfortunately, all cur-
rently available bandwidth measurement tools, including our
prototype implementation of packet tailgating, have low ac-
curacy on paths longer than a few hops.

In addition, we use our multi-packet delay model to de-
rive the packet pair [2] property of FIFO-queueing networks
which has previously been used to measure bottleneck link
bandwidth. Packet pair has previously been derived for fair-
queueing networks [9], but not for FIFO-queuing networks.

The rest of the paper is organized as follows. In Section 2 we
review related work on packet delay models used for mea-
suring link bandwidths along a path and for measuring bot-
tleneck bandwidth. In Section 3 we present a multi-packet
deterministic model of packet delay and show how we can
use it to derive previous packet delay models and the new
tailgating technique. In Section 4, we describe how we use
the technique to measure link bandwidths and analyze the
technique’s strengths and weaknesses. In Section 5, we com-
pare preliminary measurements of our packet tailgating im-
plementation with those of previous link bandwidth tech-
niques. In Section 6, we conclude. We include a derivation
of the packet pair property in the appendix.

2. PREVIOUS WORK
In this section, we describe previous work using determinis-
tic models to measure link bandwidth. Deterministic mod-
els are typically easier to work with mathematically than
stochastic models, enabling us to find an analytical solution
rather than a numerical one. Unfortunately, a determinis-
tic model implies modeling events with absolute certainty,
and many things cannot be known with enough certainty
to make this practical. Although the Internet qualifies as
a system where many things cannot be known with cer-
tainty, some aspects of Internet behavior can be reasonably
described using a deterministic model. In particular, previ-
ous work on bandwidth measurement has used a determin-
istic model along with filtering to fit empirical data to that
model.

2.1 The One-Packet Model
Bellovin [1], Jacobson [8], and Downey [4] measure link
bandwidths using what we call the one-packet model for
packet delay. This model uses the following equation (vari-
ables defined in Table 1):

Link 0
 Link 1

packet 0

routers

d
0

s
0
/b
0

d
1

s
0
/b
1

packet 0

Time

(ms)

0

2
t

0

0
t

0

1
t

Figure 1: This figure shows the amount of time a

packet spends on links 0 and 1. In this example, s0

= 6000 bits, b0 = 2Mb/s, d0 = 2ms, b1 = 3 Mb/s, d1

= 5ms. This packet travels across these two links in

t02 =
∑1
i=0

(
s0

bi
+ di

)
= 12ms.

t0l = t00 +

l−1∑
i=0

(
s0

bi
+ di

)
(1)

This equation predicts the time needed for one packet to
travel across the l − 1 links before the lth node. Each link

contributes some amount of transmission delay
(
s0

bi

)
and

latency (di). The transmission delay is due to the time that
a router takes to copy a packet around in buffers and serialize
a packet onto a link. The latency is due to the time for a
signal to travel at the speed of light, the time for a router to
look up routes in a routing table, and other fixed per-packet
delays that a router incurs before it can forward a packet.
An example of using the one-packet model to obtain packet
delay is shown in Figure 1.

The one-packet model assumes that the transmission delay
is linear with respect to packet size, routers are store-and-
forward, links are single-channel, and no other traffic in the
path causes the measurement packet to queue. The assump-
tion that transmission delay is linear with respect to packet
size may not be true if, for example, a router manages its
buffers in such a way that a 128 byte packet is copied more
than proportionally faster than a 129 byte packet. How-
ever, this effect is usually small enough to be ignored. The
assumption that routers are store-and-forward (they receive
the last bit of the packet before forwarding the first bit) is
almost always true in the Internet.

A more limiting assumption is that links are composed of
only one channel. This assumption is a result of the model
considering only one packet. In practice, some links stripe
traffic packet by packet across multiple channels to make
them appear as one link. For example, BRI ISDN links

Packet Size (bytes)

D
el

ay
 (

se
c.

)

slope = 1/bandwidth

= min delay for

a size

= filtered out

Figure 2: This figure illustrates how the one-packet

model and linear regression are used to determine band-

width. The graph shows several hypothetical measure-

ments of the round trip delay of packets of different sizes

traveling along the same path. The gray samples expe-

rienced queueing. The black samples did not experience

queueing. The line is the linear regression of the black

samples. The inverse of the slope is the bandwidth of

the path.

are usually composed of two 64Kb/s channels in parallel.
Equation 1 will detect this as a single 64Kb/s link [4].

The final and most problematic assumption is that other
traffic does not cause the measurement packet to queue.
The assumption arises from the deterministic nature of the
model: we do not know when the other packets were sent
and what size they are, so we cannot model them determin-
istically. In the Internet, this assumption is almost always
false. In the next section, we describe how one-packet tech-
niques work around this.

We describe a multi-packet model in Section 3 that is able to
detect multi-channel links and to use intra-flow packets (i.e.,
from the same source and to the same destination) for better
measurement. However, the model shares the assumptions
that transmission delay is linear with packet size and that no
extra-flow packets in the path will cause the measurement
packets to queue.

2.2 One-Packet Techniques
Bellovin and Jacobson use the one-packet delay model to de-
velop a technique for measuring link bandwidths. Although
Equation 1 specifies the one-way delay, Bellovin and Jacob-
son instead use the round-trip delay to successive routers
along a path. The round-trip delay can be modeled as the
sum of the one-way delay for the initial packet and that of
its acknowledgement.

Bellovin and Jacobson resolve the problematic assumption
about no queueing by observing that queueing caused by
additional traffic can only increase delays. Therefore, the

minimum of several observed delays of a particular packet
size fits the model. Their technique is to send several pack-
ets for each of several different packet sizes, plot the delays
of these packets versus their sizes, and then use linear re-
gression (Figure 2) to obtain the slope of the graph. The
inverse of the slope is the bandwidth.

In practice, the problems with this technique are that linear
regression is expensive, routers are not built to send acks in
a timely manner, some nodes are “invisible”, and the reverse
path adds noise.

The first problem is that the linear regression described
above must be done for every link measured. Many packets
may be required to filter out the effect of other traffic and
calculate a regression with high confidence. Jacobson [7]
provides pathchar as an implementation of the algorithms
just described. Using its default settings, it will send 10MB
of data in the course of measuring a 10 hop Ethernet path
[10].

Downey [4] uses statistical methods to reduce measurement
traffic. Once he detects the convergence of a link bandwidth
estimate, then he avoids sending further packets to measure
this link. Methods such as this are complementary to our
packet tailgating technique.

The second problem is that the one-packet technique re-
quires getting timely acknowledgements from routers. Bellovin
uses Internet Control Message Protocol (ICMP) Echo and
Echo Reply packets sent to the routers, while Jacobson and
Downey use UDP packets, successively incrementing the IP
Time-To-Live (TTL) field to receive ICMP time exceeded
responses from the routers.

These approaches have the advantage that no special soft-
ware needs to be deployed on routers to gather timing infor-
mation, but unfortunately they may not work in all parts of
the Internet. Because of malevolent use of ICMP packets,
some routers and hosts either rate-limit them or filter them
out [16], thus slowing down or precluding measurement.

Another problem is that bridges, host operating systems
(OSs), and network interface cards (NICs) are usually store-
and-forward nodes but do not decrement the IP TTL and
are not individually addressable in IP. Consequently, the
links corresponding to these “invisible” nodes cannot be de-
tected or measured using the IP TTL decrement method
cited above. There is a node between the source applica-
tion and the source operating system because the sending
OS usually must copy packets from the application’s ad-
dress space to the kernel’s. In addition, the source OS’s
network card driver usually must copy the sent packet from
kernel address space across the system bus to the NIC. Fi-
nally, if the destination is a PC, the packet usually must be
copied from the destination’s NIC to the destination’s ker-
nel address space. The application–kernel, kernel–NIC, and
NIC–kernel copies usually must be individually complete be-
fore the packet can be forwarded any further in the pipeline.
These invisible nodes cause error in the measurement of the
next link.

The final problem is that relying on acknowledgements and

so
ur

ce

de
st

in
at

io
n

flow direction

packets

(
)
0

0

1

0
 t
t
 -
 (
)
0
1

n
n
 t
t
 -

b
l
b

s
 1

<
 =

Figure 3: This figure shows two packets of the same size

traveling from the source to the destination. The wide

part of the pipe represents a high bandwidth link while

the narrow part represents a low bandwidth link. The

spacing between the packets caused by queueing at the

bottleneck link remains constant downstream because

there is no additional downstream queueing.

round-trip delays means that there is twice the possibility
that queueing could corrupt a sample when compared to a
technique that relies only on one-way delay. This is because
queueing in the reverse path can delay the acknowledgement,
even if there is no queueing in the forward path. As a result,
many packets may be required to filter out the effect of other
traffic and calculate a regression with high confidence. To
use one-way delay, one-packet-based techniques to use one-
way delay would need new software at every router on a
path, which would not be practical.

The packet tailgating technique described in Section 4 can
overcome most of these limitations. It performs linear re-
gression only once instead of once for each link. Because it
does not rely on timely delivery of acknowledgements from
routers, it is robust against routers that generate ICMP
packets inconsistently. Finally, it can increase accuracy and
reduce the number of packets sent by measuring one-way
delay instead of round trip delay, without requiring new
software at routers. Packet tailgating still suffers from the
invisible node problem; we partially address it in our imple-
mentation described in Section 4.1.

2.3 The Packet Pair Model
Some applications are only interested in the smallest band-
width link along a path (the bottleneck link) rather than the
bandwidths of all links in a path. An advantage of measur-
ing bottleneck bandwidth is that it can be done with as few
as two packets instead of thousands. Bolot [2], Carter and
Crovella [3], Paxson [14], and Lai and Baker [10] use the
packet pair model and technique to measure the bottleneck
bandwidth.

In contrast to the one-packet model described in Section 2.1,
packet pair in FIFO-queueing networks uses a two-packet

model. This model predicts the difference in arrival times of
two packets of the same size traveling from the same source
to the same destination:

t1n − t0n = max

(
s1

blbn
, t10 − t00

)
(2)

The variables in this equation are defined in Table 1. The in-
tuitive rationale for this equation (we give an analytical one
in Appendix A) is that if two packets are sent close enough
together in time to cause the packets to queue together at
the bottleneck link (s1

blbn
> t10 − t00), then the packets will

arrive at the destination with the same spacing (t1n − t0n) as
when they exited the bottleneck link (s1

blbn
). The spacing

will remain the same because the packets are the same size
and no link downstream of the bottleneck link has a lower
bandwidth than the bottleneck link (as shown in Figure 3,
which is a variation of a figure from [6]).

This algorithm makes several assumptions that may not hold
in practice. First, the packet pair model assumes that the
two packets queue together at the bottleneck link and at no
later link. This could by violated by other packets queueing
between the two packets at the bottleneck link, or packets
queueing in front of the first, the second or both packets
downstream of the bottleneck link. If any of these events
occur, then Equation 2 does not hold. In practice, previous
work mitigates this limitation by filtering out samples that
suffer undesirable queueing.

In addition, this model assumes that the two packets are
sent close enough in time that they queue together at the
bottleneck link. Carter actively sends traffic for measure-
ment purposes to guarantee that this is the case. Paxson
and Lai avoid this cost by using existing TCP traffic.

Another assumption is that the bottleneck router uses FIFO-
queueing. If the router uses weighted fair queueing, then
packet pair measures the available bandwidth of the bottle-
neck link [9].

Finally, the packet pair model, like the one-packet model,
assumes that transmission delay is linear with respect to
packet size and that routers are store-and-forward.

In contrast to the one-packet model, an extension to packet
pair avoids the assumption that links are single-channel by
considering bunches of more than two packets [14]. This
extension is also able to consider other packets in the same
flow. Unfortunately, it does not consider the per-link laten-
cies taken into account in the one-packet model. The multi-
packet model we present in the following section considers
both.

3. A MULTI-PACKET MODEL
In this section we describe a deterministic multi-packet model
that is more powerful than the models described in the pre-
vious section and show how it can be used to measure link
bandwidths along a path. The new model takes into ac-
count all the packets in a single flow as well as latency. We
developed the multi-packet model as a result of attempting
to unify the one-packet and packet pair models. In fact,
as we show below, the multi-packet model can derive both

Link
l
-1
 Link
l

routers

d
 l

t
k

t
k-1

Time

(ms)

Link
l
+1

q
k

packet k -1

packet k

packet k -1

packet k

packet k +1

l+1

l

l

Figure 4: This figure shows the amount of time several

packets from a flow spend on links l − 1 and l. In this

example, sk−1 = 4000 bits, sk = 2000 bits, sk+1 = 12000

bits, bl−1 = 2Mb/s, dl−1 = 2ms, bl = 1 Mb/s, dl = 3ms.

Packet k is queued at link l for qkl = max (0, 11− 3− 5)

= 3ms. Packet k + 1 arrives 1ms after packet k leaves

because something delayed it earlier in the path.

the one-packet and packet pair models as well as the new
tailgating technique.

3.1 Multi-Packet Delay Equation
The multi-packet model consists of a delay equation derived
from two other equations: an arrival time equation and a
queueing delay equation. The following arrival time equa-
tion is a slight variation on the one-packet equation (1) (vari-
ables defined in Table 1):

tkl = tk0 +

l−1∑
i=0

(
sk

bi
+ di + qki

)
(3)

This equation predicts that packet k arrives at link l at its
transmission time (tk0) plus the sum over all the previous

links of the latencies (di), transmission delays
(
sk

bi

)
, and

queueing delays (qki) of those links. Equation 3 differs from
the one-packet equation (1) in that it considers k−1 packets
in the same flow and the queueing delays of those packets.

We model the queueing delay due to other packets in the
same flow using the following equation:

qkl = max
(

0, tk−1
l+1 − dl − t

k
l

)
(4)

This equation predicts that packet k is queued at the router
just before link l from the time it arrives at that router (tkl)
until it can begin transmitting, which is the time when the
previous packet (k − 1) arrives at the next router (tk−1

l+1)
minus the latency of this link (dl). We assume that the first

packet is never queued (q0
0 = · · · = q0

n−1 = 0). An example
of using Equation 4 to compute queueing delay is shown in
Figure 4. This equation is equivalent to those described by
Paxson [15] and Stoica [18]. Notice that packet k+ 1 in the
figure is not queued at all because it arrives at link l after
packet k has been transmitted. Queueing delay cannot be
negative, so the max() function in the queueing equation
causes it to be 0 in this case.

We combine Equations 3 and 4 to form the multi-packet
delay equation:

tkl = tk0 +

l−1∑
i=0

(
sk

bi
+ di + max

(
0, tk−1

i+1 − di − t
k
i

))
(5)

The multi-packet equation is as least as powerful as both
the one-packet and packet pair models because we can derive
both of those models from Equation 5. We reduce the multi-
packet equation to the one-packet equation (1) by taking
k = 0. To derive the packet pair equation from Equation 5
we reformulate the packet pair equation as the following
property:

Theorem 3.1 (Packet Pair Property). Let
bmin(l) ≤ bi, (∀i, 0 ≤ i ≤ l), then if we send two packets of

the same size (s0 = s1) at the same time (t00 = t10) and there
is no cross traffic, they will arrive with a difference in time
equal to the size of the second packet divided by the smallest

bandwidth on the path (t1n − t0n = s1

bmin(n−1)
).

Using Equation 5, we derive the Packet Pair Property in
Appendix A.

As well as combining the advantages of previous models, the
multi-packet model combines the assumptions of previous
models. The model assumes that packets from other flows
do not cause queueing in the modeled flow. As with previous
models, this assumption can be worked around by using the
minimum of several observed delays of particular packet size.
Like previous models, it assumes that transmission delay is
linear with respect to packet size and that routers are store-
and-forward.

3.2 Link Bandwidth Measurement
In addition to deriving previous models, we use the multi-
packet model to develop a new technique for link bandwidth
measurement. To do so we assume that we can send one
packet with no queueing and a second packet that queues
behind the first packet at a specific link, but not at any later
link. We describe how we ensure this assumption in practice
in Section 4.

The basic approach we take is to start with the multi-packet
delay equation and try to solve for the bandwidth blq of the
link lq at which queueing occurs. We rewrite Equation (5)
to state the time packet k takes to arrive at the destination
link n (with variables defined in Table 1):

tkn = tk0 +

n−1∑
i=0

(
sk

bi
+ di + max

(
0, tk−1

i+1 − di − t
k
i

))

Assuming no queuing except at the queuing link, we can
split this delay into the time to travel to the queueing link,
the time spent at the queueing link, and the time spent after
the queueing link:

tkn =

tk0 +

lq−1∑
i=0

(
sk

bi
+ di

)+

[
sk

blq
+ tk−1

lq+1 − t
k
lq

]
+ n−1∑

i=lq+1

(
sk

bi
+ di

)
We substitute using (5) and simplify:

= tklq +
sk

blq
+ tk−1

lq+1 − t
k
lq +

n−1∑
i=lq+1

(
sk

bi
+ di

)

=
sk

blq
+ tk−1

lq+1 +

n−1∑
i=lq+1

(
sk

bi
+ di

)

We substitute using (5), include the assumption that the
first packet experiences no queueing, and simplify:

=
sk

blq
+

lq∑
i=0

(
sk−1

bi
+ di

)
+ tk−1

0 +

n−1∑
i=lq+1

(
sk

bi
+ di

)

=
sk−1

blq
+

lq−1∑
i=0

(
sk−1

bi

)
+

n−1∑
i=lq

(
sk

bi

)
+ tk−1

0 +

n−1∑
i=0

(di)

Before continuing with the derivation, we define the follow-
ing variables for more compact notation:

dl =

l∑
i=0

di
1

bl
=

l∑
i=0

(
1

bi

)

Using these definitions, we continue simplifying the equa-
tion:

=
sk−1

blq
+ sk−1

lq−1∑
i=0

(
1

bi

)
+ sk

n−1∑
i=lq

(
1

bi

)
+ tk−1

0 + dn−1

=
sk−1

blq
+
sk−1

blq−1
+ sk

n−1∑
i=0

(
1

bi

)
−
lq−1∑
i=0

(
1

bi

)+

tk−1
0 + dn−1

=
sk−1

blq
+
sk−1

blq−1
+ sk

(
1

bn−1
− 1

blq−1

)
+ tk−1

0 + dn−1

Solving for blq and collecting terms,

blq =
sk−1

(tkn + sk−sk−1

blq−1 − sk

bn−1 − tk−1
0 − dn−1)

(6)

This shows that we can compute the bandwidth of a link at
which queuing occurs (blq) from the sizes of the two packets

(sk−1, sk), the arrival time of the second packet (tkn), the

transmission time of the first packet (tk−1
0), the bandwidth

of all earlier links (blq−1) and (bn−1), and the delay of all
earlier links (dn−1). To use this equation in practice, we have
to solve various problems including calculating the inter-
packet transmission time, dealing with clock skew, and using
round trip measurements. We describe our solutions to these
and other implementation problems in the next section.

4. PACKET TAILGATING TECHNIQUE
In this section, we describe the tailgating technique and our
prototype implementation, (nettimer). We also analyze the
advantages and disadvantages of the technique.

The technique is divided into two phases: the sigma phase,
which measures the characteristics of the entire path, and
the tailgating phase, which measures the characteristics of
each link individually.

The purpose of the sigma phase is to measure the non-link-
specific quantities described in the previous section: bn−1

and dn−1. We do this by sending single packets of differ-
ent sizes and using linear regression on the minimum delay
for each size. We send packets until the confidence of the
linear regression exceeds 99%. This is the same technique
(described in Section 2) that Jacobson and Downey use. As
mentioned before, this step requires many packets. While
previous work does this step for every router along a path,
we only do it once from the source to the destination to
calculate bn−1 and dn−1 for (6).

The purpose of the tailgating phase is to compute the re-
mainder of the variables in (6). As mentioned before, the
tailgating technique assumes that we can send one packet
without queueing and a second packet that queues after the
first packet at link lq, but at no later link. We do this by
sending the largest possible non-fragmented packet with an
IP Time-to-Live (TTL) field of lq immediately followed by
the smallest possible packet. The smaller packet almost al-
ways (the exception is discussed in Section 4.2) has a lower
transmission delay than the larger packet’s transmission de-
lay on the next link. This causes the smaller packet (the
tailgater) to queue continuously after the larger packet (the
tailgated). The TTL for the tailgated packet will cause it
to be dropped at link lq, so the tailgater can then continue
without queueing to the destination.

As with the sigma phase, we take the minimum of several
delay samples of the tailgater packet. We start this process
with a TTL of 1 and continue until we reach the destination.
We measure closer links first to compute blq−1 for later links.

In our nettimer implementation, we randomly probe dif-
ferent links until the error for all of them drops below 2%.
This value was chosen to balance the time to finish with the
accuracy of the results. We calculate the error for a partic-
ular link by using the bootstrap method [5]. We randomly
re-sample with replacement from the set of delays for a link
until we have a new set of samples of 25% of the size of the
original. Using this new set, we compute a new minimum
delay. We repeat this process 20 times and then compute the
variance of all the new delays. The error is this variance di-
vided by the actual minimum delay of the set. These values
are selected so that the CPU overhead of the computation

is unnoticable at typical network latencies.

4.1 Tailgating Complexities
In addition to the basic technique described above, we have
to deal with several additional complexities: 1) calculating
the maximum inter-packet transmission time, 2) clock skew,
3) using round trip measurements, 4) causing acknowledge-
ments to be sent, 5) detecting that packets were dropped,
and 6) dealing with invisible nodes.

4.1.1 Inter-packet Transmission Time
As discussed in 3.2, the tailgated and tailgater packets must
be sent such that queueing takes place at the link to be mea-
sured. We could guarantee this by sending the packets at the
same instant in time, but this is impossible. Here we derive
the maximum time we have between each packet transmis-
sion so that (6) remains valid. There may be scheduling
variations in the source host’s operating system such that
the deadline sometimes cannot be met, so we want to deter-
mine when the deadline is to filter out those measurements.

We want packet k to queue at link lq:

qklq > 0

Using (4),

max
(

0, tk−1
lq+1 − dlq − t

k
lq

)
> 0

tklq < tk−1
lq+1 − dlq

Using (3) and the assumption that the tailgated and tail-
gater packets experience no queueing before lq,

tk0 +

lq−1∑
i=0

(
sk

bi
+ di

)
< tk−1

0 +

lq∑
i=0

(
sk−1

bi
+ di

)
− dlq

Simplifying,

tk0 − tk−1
0 <

sk−1

blq
+
sk−1 − sk

blq−1

This means that we might have trouble sending the tailgater
packet quickly enough if closer links have high bandwidth.
For example, if the tailgated packet is 1500 bytes and the
first link has a bandwidth of 100Mb/s, then we must send
the tailgater packet within 120 microseconds, which is pos-
sible on most machines. However, if the first link is 1Gb/s,
then we only have 12 microseconds to send the tailgater. In
this case, we can use the regression technique on closer links
until we are at a link sufficiently far away that we can meet
the transmission deadline.

4.1.2 Clock Skew
Equation 6 uses timing at both the sender tk−1

0 and the
receiver tkn, which suggests that clock skew could cause error
in the calculation. However, we show here that any clock
skew is canceled in the calculation.

We model clock skew as time measurements taken at the
receiver to be offset by ε:

t̂kn = tkn + ε d̂n−1 = dn−1 + ε

Where t̂, d̂, and b̂ are the clock skewed versions of packet
arrival time, cumulative link delay, and link bandwidth. The

clock skewed version of (6) becomes

b̂lq =
sk−1

(t̂kn + sk−sk−1

blq−1 − sk

bn−1 − tk−1
0 − d̂n−1)

Substituting and simplifying,

b̂lq =
sk−1

(tkn + ε+ sk−sk−1

blq−1 − sk

bn−1 − tk−1
0 − dn−1 − ε)

=
sk−1

(tkn + sk−sk−1

blq−1 − sk

bn−1 − tk−1
0 − dn−1)

= blq

So clock skew does not affect the calculation.

4.1.3 Using Round Trip Measurements
Although (6) uses timings at both the sender and the re-
ceiver, we can transform it to use only timings at the sender.
The idea is to cause the receiver to send an acknowledge-
ment for each tailgater packet that arrives. If we can corre-
late the tailgater and acknowledgement packets (described
in the next section), then we can determine the round-trip
properties of the path and use these to calculate the link
bandwidths of the forward path.

We define S, T , Q, B, and D to be the packet size, packet
arrival time, packet queueing delay, link bandwidth, and
link delay of the flow in the reverse of the direction we are
interested in. We start with measurements of the arrival
times of packets at link 0, the round trip delay (drt), and
the round trip bandwidth (brt) and derive a form of (6)
containing only these variables.

We know that that the round trip delay is equal to the sum
of the delay in the forward direction and the delay in the
reverse direction and similarly for bandwidth:

drt = dn−1 +Dn−1 1

brt
=

1

bn−1
+

1

Bn−1

dn−1 = drt −Dn−1 1

bn−1
=

1

brt
− 1

Bn−1

Furthermore, using (3) and assuming that the acknowledge-
ment is sent immediately when the tailgater arrives and ex-
periences no queueing:

T k0 = tkn +

n−1∑
i=0

(
sk

bi
+ di

)
tkn = T k0 −

n−1∑
i=0

(
sk

bi
+ di

)
Substituting into (6) and simplifying,

blq =
sk−1

T k0 − sk−Sk
Bn−1 + sk−sk−1

blq−1 − sk

brt
− tk−1

0 − drt

We know all the terms of this equation except the inverse
sum of the inverse reverse link bandwidths Bn−1. At this
point, we assume that the bandwidths are symmetric (Bn−1 =
brt

2
). To measure asymmetric links, we would have to be able

to measure one way delay.

4.1.4 Causing Acknowledgements to be Sent
To get round trip measurements, we must cause the receiver
to reply consistently to arriving packets. The nettimer im-
plementation sends TCP FIN packets in both the sigma and
tailgate phase. Hosts are required to respond to TCP FIN
packets with a TCP RST (reset) packet. Nettimer uses this
to measure the round-trip-delay. This is better than using
ICMP packets because some routers and hosts block or rate-
limit ICMP packets. Similarly, TCP is better than UDP be-
cause UDP packets sent to closed ports induce ICMP port
unreachable messages which are rate-limited on some sys-
tems (e.g. Linux and Solaris).

4.1.5 Dropped Packets
A dropped tailgater is not a problem because it simply
means one fewer delay samples. However, a source can
only admit a tailgater timing sample if it also received the
ICMP TTL-exceeded message for the corresponding tail-
gated packet. This is because the tailgated packet could
have been dropped (perhaps because of congestion) before
link lq, and the tailgater packet could have traveled through
the network unimpeded, thus giving an abnormally low min-
imum delay.

4.1.6 Dealing with Invisible Nodes
Finally, to combat the problem of invisible nodes mentioned
in Section 2, nettimer gets timing information directly from
the kernel using libpcap [12], rather than from the applica-
tion level. This removes the application–kernel node from
the measured path. In addition, we tried to extend the tail-
gating technique to measure the kernel–NIC node by causing
select packets to be dropped in the NIC, but we could not
find a way to do this across many different NIC drivers.
As with the one-packet-based tools, bridges remain invisible
nodes for nettimer.

4.2 Tailgating Analysis
In this section we list the advantages and disadvantages of
the packet tailgating technique. The advantages of the tech-
nique are its speed, unobtrusiveness and robustness com-
pared to the other link bandwidth techniques described in
Section 2. The disadvantages of the technique are its need
to send packets back-to-back on the first link, its inability to
measure a very fast link after a very slow link, the fact that
queuing anywhere along the path disrupts the measurement
of all links on the path, and the accumulation of errors in
the calculation.

Packet tailgating is potentially faster and less obtrusive than
the previously discussed techniques because it performs the
expensive linear regression step only once for the entire path
instead of once for every link. The tailgating step has to
be done for every link, but this only requires finding the
minimum delay for a pair of packets compared to finding
the minimum delay of 16 to 64 different packet sizes. We
test this hypothesis using nettimer in the next section.

Packet tailgating is potentially more robust because it can
detect multichannel links, does not rely on timely delivery of
ICMP packets, and can be run without acknowledgements.

Packet tailgating can measure multi-channel links because,
like the packet bunch extension to packet pair, it can send

multiple packets to fill the channels. To do this, we send the
tailgated packet followed by any number of tailgaters. If we
send c + 1 packets where c is the number of channels, then
we can cause the last tailgater to queue behind the tailgated
packet. We can use this queueing to measure the bandwidth
of one of the channels (we assume that all the channels have
the same bandwidth). We determine the number of channels
by sending variable numbers of tailgaters until we observe
that sending c+1 packets results in significantly higher delay
than sending c.

Unlike the techniques described in Section 2.2, packet tail-
gating does not use ICMP time-exceeded packets from inter-
mediate nodes for measurement. Our nettimer implementa-
tion uses these packets for identifying routers and for deter-
mining which tailgated packets were prematurely dropped,
but it does not rely on their timely delivery. This enables it
to run faster in environments where these packets are rate-
limited and to run more accurately in environments where
they are delivered inconsistently.

In fact, packet tailgating can work without acknowledg-
ments at all from the destination, although our current im-
plementation does not have this feature. By deploying soft-
ware at the destination host, we can measure the one-way
delay of packets. The tailgating source can continue to send
later tailgater packets without knowing the delay of earlier
tailgater packets. If the earlier delays can be occasionally
transmitted back to the source, then the source can adap-
tively decide when to finish the two stages, but this is an op-
timization. Otherwise, the tailgater source can just send a
fixed number of packets in each stage. Eventually the source
and destination must communicate so that the source can
specify which tailgated packets were prematurely dropped.

Measuring without acknowledgements avoids queuing in the
return path, enabling packet tailgating to be twice as ac-
curate as single-packet techniques. In addition, measuring
without acknowledgements avoids ack-implosion on multi-
cast trees, enabling packet tailgating to measure the band-
width of several links simultaneously on a multicast tree.
Single packet techniques used on a multicast tree would
cause a flood of acknowledgements to flow back to the source.
The queueing of these acks would likely destroy their use-
fulness for round trip delay measurements.

Packet tailgating also has several limitations compared to
previous techniques. The first is that the source must be
able to send packets quickly on the first link. This limitation
is quantified in the previous section.

The second limitation is that tailgating cannot measure a
very fast link after a very slow link. The problem is that the
tailgated packet may have finished transmitting on the faster
link before the tailgater packet has finished transmitting on
the slower link. The typical size of the tailgated and tailgater
packets are 1500 and 40 bytes (with 1500 bytes being the
largest unfragmented packet many paths will carry and 40
bytes being the smallest TCP packet due to IP header size).
Therefore, this is only a problem when the ratio of band-
widths of the faster link to the slower link exceeds 1500/40
= 37.5.

Table 2: Program Versions: This table lists the versions

of the programs we used.

Program Version Date
pathchar alpha April 21, 1997
clink 1.0 August 14, 1998
pchar 1.1.1 January 24, 2000
nettimer 1.0.6 May 30, 2000

The solution to this problem is to use the one-packet tech-
nique to measure the problematic link and use tailgating
everywhere else. We split the path by performing the sigma
phase three times: once to the node just before the very fast
link, once to the node just after the very fast link, and once
to the destination node. We know we should do this when
the measured ratio of bandwidths of two adjacent links ap-
proaches 37.5. This solution increases the number of packets
sent beyond what regular tailgating sends but should still
send fewer packets than using a one-packet method over the
entire path.

Another limitation is that queueing anywhere along the path
disrupts the measurement of all the links. In contrast, for
one-packet techniques, only queueing at earlier links affects
the measurement of a link. This could be a significant dis-
advantage for tailgating if there is a very congested link far
downstream along a path. It would prevent accurate and
fast tailgating measurement of all the earlier links. The
solution is similar to that for the previous limitation. We
perform the sigma phase to the node just before the con-
gested link and to the destination node. We then perform
the tailgating phase to the pre-congestion node to measure
all the links before the congested one.

The final limitation is that errors may accumulate during
the calculation such that links that are very far away are
unmeasurable. The one-packet techniques only propagate
errors forward one link [8] so they are fairly robust with
respect to errors. In our measurements in the next section,
the accumulation of error is not noticeable in paths up to
length 11. However, quantifying the exact error is part of
our future work.

5. MEASUREMENTS
The goal of this experiment is to determine whether packet
tailgating has accuracy comparable to previously known tech-
niques with a significant reduction in the number of packets
sent and received. For these measurements, we use a proto-
type implementation of nettimer. The results in this sec-
tion are preliminary and are intended as a proof of concept
and not an evaluation of the full potential of the technique.

We compare the results of the latest publicly available ver-
sions (listed in Table 2) of pathchar [7], clink [4], pchar

[11], and nettimer. pathchar, clink, and pchar implement
the one-packet technique described earlier. Although 1.0
is the latest publicly available version of Downey’s clink

program, it does not incorporate the adaptive algorithms
described in [4]. However, those techniques are complemen-
tary with packet tailgating.

Table 3: Short Path: This table lists the results of run-

ning the link bandwidth programs on the short path.

TTL is the distance of the link from the source. C is

the number of channels in the link. BW/C is the ac-

tual physical bandwidth per channel. Columns 3-6 are

bandwidths given in Mb/s.

TTL C BW/C pathchar clink pchar nettimer
1 1 10 7.9 7.8 7.9 6.7
2 1 100 34 35 34 62
3 1 100 31 32 32 21
4 1 100 9.6 7.9 7.9 38

Table 4: Network Load: This table lists the total num-

ber of packets transferred during the short and long path

probes.

Program Short Path Packets Long Path Packets
pathchar 11562 31782
clink 6002 16400
pchar 11732 32417
nettimer 982 6663

Table 5: Long Path: This table lists the results of run-

ning the link bandwidth programs on the long path. TTL

is the distance of the link from the source. C is the num-

ber of channels in the link. BW/C is the actual physical

bandwidth per channel. Columns 3-6 are bandwidths

given in Mb/s.

TTL C BW/C pathchar clink pchar nettimer
1 1 10 8.0 7.9 7.9 7.6
2 1 100 35 32 34 36
3 1 100 77 100 88 100
4 1 622 345 223 222 244
5 1 622 145 173 330 239
6 1 622 289 508 183 286
7 1 622 207 168 224 277
8 1 155 55 60 49 45
9 2 100 36 35 39 55

10 2 100 73 44 66 34
11 1 100 36 52 43 66

We ran each program using default settings from
tnt.stanford.edu to statistics.stanford.edu (4 hops)
and to www.berkeley.edu (11 hops). The short path has
a RTT of 1.0ms and the long path has an RTT of 4.2ms.
The actual number of channels of the links and their band-
widths are listed in the 2nd and 3rd columns of Table 3 and
Table 5. We chose these paths because we know that both
endpoints are well connected and that their administrators
would be likely to tell us the link bandwidths of these links.
In addition, both the one-packet and tailgating techniques
can measure these paths because the destinations do not
rate-limit or filter ICMP packets and there is no very slow
link followed by a very fast link.

The measurement source node, tnt.stanford.edu, is an In-
tel Pentium II 266MHz with 256MB of main memory. It
is running Redhat 6.1 with a GNU/Linux kernel 2.2.12-20.
The results were gathered from 1:21 to 2:13 AM PST on
May 30. We chose this time because there would be rel-
atively little traffic in the network. We used tcpdump to
determine the number of packets sent and received.

The short path results are summarized in Table 3 and Ta-
ble 4. All of the programs have approximately the same ac-
curacy, but nettimer uses an order of magnitude fewer pack-
ets than the others. In bandwidth measurements, pathchar,
clink, and pchar are mostly in agreement, which is not sur-
prising considering their measurement technique is similar.
In particular, all of these programs under-estimate the last
link on this path. This is because the destination host re-
sponds to probes with an ICMP port unreachable message
which is up to 584 bytes. This is within the RFC standard
because it sometimes allows the sender to make a more ac-
curate correlation between the ICMP packet and the UDP
packet that caused it. However, pathchar, clink, and pchar

apparently do not take into account how much longer the
large ICMP packet takes to travel back to the source, caus-
ing an under estimation of the bandwidth.

The long path results are summarized in Table 5 and Ta-
ble 4. These results show that there is not significant accu-
mulation of error in the tailgating implementation compared
to the others. However, the results of all the programs devi-
ate by as much as 68% from the nominal values, even though
there was relatively little traffic during this time.

We believe that the four most likely contributors to error
for all four programs are 1) unreachable nominal values, 2)
errors in implementation, 3) noise, 4) timing resolution, and
5) multi-channel links.

Although some of the links have a nominal value of 622Mb/s,
in practice a router may not actually be able to forward
packets this quickly. We are attempting to investigate this
issue through simulation.

Another possible source of error is the implementation. The
problem with not accounting for large ICMP packets is an
example of such an error. If three independent implemen-
tations of the same algorithm all have the same error, then
there are likely even more errors in our singular implemen-
tation.

The problem with noise is that we are trying to measure
differences in packet delays that are several orders of mag-
nitude smaller than delays caused by other traffic. In our
experiment, to measure the 622Mb/s links, we have to de-
tect differences in delays of 1500bytes

622Mb/s
= 19µs. Just one

packet queued at the wrong time could result in a delay
of 1500bytes

10Mb/s
= 1.2ms. This is almost 100 times larger than

the delay we are trying to measure. One solution is to de-
ploy nettimer software at the destination instead of relying
on TCP RST packets. This would eliminate the interference
of noise along the reverse path. We are implementing this
in our next version of nettimer.

The timing resolution of the host machine and operating sys-
tem can also cause a large error in the bandwidth estimate.
We measured the timing resolution of the source machine by
sending small packets to the loopback interface and measur-
ing the smallest non-zero inter-packet delay. This gives an
upper bound on timing resolution. The timing resolution of
tnt.stanford.edu is no worse than 20µs. Nonetheless, this
could cause us to measure a 622Mb/s link as a 414Mb/s link
or a 1333Mb/s link. The GNU/Linux 2.3 kernel has a more
efficient method of conveying packet timings to applications,
and we hope to test this shortly.

Finally, while we are adapting nettimer to detect multi-
channel links, the one-packet techniques will have difficulty
measuring the multi-channel links 9 and 10 because of the
inability of their fundamental model to consider such links.

6. CONCLUSION
As the Internet grows larger and more heterogenous, it be-
comes more important, but more difficult, for us to under-
stand its most fundamental aspects. The ability to measure
metrics such as link bandwidth is essential, but the power
of measurement models and techniques must keep pace with
the size and complexity of the Internet.

In this paper we present a new deterministic model of packet
delay that unifies previous models. From this model, we
derive a new technique, called packet tailgating, to mea-
sure link bandwidths along a path through the Internet.
Preliminary measurements from our prototype implemen-
tation show that it places an order of magnitude less load
on the network than previous measurement techniques while
maintaining similar accuracy. The technique can theoreti-
cally measure multi-channel links, can be run on multicast
trees, does not rely on consistent behavior of routers han-
dling ICMP packets, and does not rely on timely delivery
of acknowledgments. Ultimately, the tailgating technique
depends only on the existence of store-and-forward routers,
the IP TTL mechanism, and packet queueing.

We are adding several features to nettimer. First, we are en-
hancing the implementation to measure multi-channel links.
Second, we are reducing its vulnerability to noise by using
one-way packet delay measurements rather than acknowl-
edgements, and by using finer-grained timing information.
Finally, we are exploring its use on a variety of different
types of links, including wireless links and DSL. The source
code for nettimer is available via our web site:
http://www.stanford.edu/∼laik/projects/nettimer/.

7. ACKNOWLEDGMENTS
We thank Ed Swierk, Petros Maniatis, and Mema Rous-
sopoulos as well as the anonymous SIGCOMM reviewers for
their many helpful comments on this paper. Our thanks
to Walter Willinger for his comments on the multi-packet
model. Our thanks to Van Jacobson, Allen Downey, and
Bruce Mah for providing pathchar, clink, and pchar, re-
spectively. Special thanks to Steve Tingley, Charlie Or-
gish, Jay Kohn, and Ron Roberts of Stanford University
and the anonymous system administrators at U.C. Berke-
ley for tracking down the nominal link bandwidths of our
test paths. Finally, thanks to Vern Paxson for inspiring this
work.

This work was supported by a gift from NTT Mobile Com-
munications Network, Inc. (NTT DoCoMo). Additionally,
Kevin Lai was supported in part by a USENIX Scholar Fel-
lowship.

8. REFERENCES
[1] S. M. Bellovin. A Best-Case Network Performance

Model.
http://www.research.att.com/ smb/papers/netmeas.ps,
1992.

[2] J.-C. Bolot. End-to-End Packet Delay and Loss
Behavior in the Internet. In Proceedings of ACM
SIGCOMM, 1993.

[3] R. L. Carter and M. E. Crovella. Measuring
Bottleneck Link Speed in Packet-Switched Networks.
Technical Report BU-CS-96-006, Boston University,
1996.

[4] A. B. Downey. Using pathchar to Estimate Internet
Link Characteristics. In Proceedings of ACM
SIGCOMM, 1999.

[5] B. Efron and R. J. Tibshirani. An Introductin to the
Bootstrap. Chapman and Hall, 1993.

[6] V. Jacobson. Congestion Avoidance and Control. In
Proceedings of ACM SIGCOMM, 1988.

[7] V. Jacobson. pathchar. ftp://ftp.ee.lbl.gov/pathchar/,
1997.

[8] V. Jacobson. pathchar – a tool to infer characteristics
of Internet paths. Presented at the Mathmatical
Sciences Research Institute, 1997.

[9] S. Keshav. A Control-Theoretic Approach to Flow
Control. In Proceedings of ACM SIGCOMM, 1991.

[10] K. Lai and M. Baker. Measuring Bandwidth. In
Proceedings of IEEE INFOCOM, 1999.

[11] B. A. Mah. pchar.
http://www.ca.sandia.gov/ bmah/Software/pchar/,
2000.

[12] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
Proceedings of the 1993 Winter USENIX Technical
Conference, 1993.

[13] V. Paxson. End-to-End Routing Behavior in the
Internet. In Proceedings of ACM SIGCOMM, 1996.

[14] V. Paxson. End-to-End Internet Packet Dynamics. In
Proceedings of ACM SIGCOMM, 1997.

[15] V. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. PhD thesis, University of
California, Berkeley, April 1997.

[16] S. Savage. Sting: a TCP-based Network Measurement
Tool. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, 1999.

[17] S. Seshan, M. Stemm, and R. Katz. SPAND: Shared
Passive Network Performance Discovery. In
Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 1997.

[18] I. Stoica and H. Zhang. Providing guaranteed services
without per flow management. In Proceedings of ACM
SIGCOMM, 1999.

APPENDIX
A. PACKET PAIR DERIVATION
Before starting the derivation, we define and derive two lem-
mas to keep the main derivation clearer. The lemmas have
no other conceptual significance.

Lemma A.1. Let s0 = s1, t00 = t10, 0 ≤ j ≤ n. Then

t1j − t0j =

j−1∑
i=0

max
(
0, t0i+1 − di − t1i

)
Proof.

t1j − t0j =

=

j−1∑
i=0

(
s1

bi
+ di + max

(
0, t0i+1 − di − t1i

))
+

t10 −

(
j−1∑
i=0

(
s0

bi
+ di

)
+ t00

)
(From Equation 5)

=

j−1∑
i=0

max
(
0, t0i+1 − di − t1i

)
2

Lemma A.2. Let s0 = s1, t00 = t10, 0 ≤ j ≤ n. Then

t0j+1 − dj − t1j =
s0

bj
−
j−1∑
i=0

max
(
0, t0i+1 − di − t1i

)
Proof.

t0j+1 − dj − t1j =

=

j∑
i=0

(
s0

bi
+ di

)
+ t00 − dj −(

j−1∑
i=0

(
s1

bi
+ di + max

(
0, t0i+1 − di − t1i

))
+ t10

)
(From Equation 5)

=

j−1∑
i=0

(
s0

bi
+ di

)
+
s0

bj
+ dj − dj −(

j−1∑
i=0

(
s1

bi
+ di

)
+

j−1∑
i=0

max
(
0, t0i+1 − di − t1i

))

=
s0

bj
−
j−1∑
i=0

max
(
0, t0i+1 − di − t1i

)

2

We state the packet pair property and then derive it:

Theorem A.1 (Packet Pair Property). Let
bmin(l) ≤ bi, (∀i, 0 ≤ i ≤ l), then if we send two packets

of the same size (s0 = s1) at the same time (t00 = t10), they
will arrive with a difference in time equal to the size of the
second packet divided by the smallest bandwidth on the path

(t1n − t0n = s1

bmin(n−1)
).

Proof. We perform induction on n, the number of links. For
n = 1, we substitute using Equation 5:

t1n − t0n = t11 − t01

=

0∑
i=0

(
s1

bi
+ di + max(0, t0i+1 − di − t1i)

)
+ t10 −(

0∑
i=0

(
s0

bi
+ di

)
+ t00

)

We continue simplifying and substitute again using Equa-
tion 5:

=
s1

b0
+ d0 + max(0, t01 − d0 − t10) + t10 −(

s0

b0
+ d0 + t00

)
= max(0, t01 − d0 − t10)

= max(0,

0∑
i=0

(
s0

bi
+ di

)
+ t00 − d0 − t10)

= max(0,
s1

b0
+ d0 − d0)

=
s1

b0

=
s1

bmin(n−1)

This proves the n = 1 case. For n > 1, we start by using
Lemma A.1:

t1n − t0n =

=

j−1∑
i=0

max(0, t0i+1 − di − t1i)

We simplify further and apply the inductive hypothesis:

=

j−2∑
i=0

(
max(0, t0i+1 − di − t1i)

)
+

max(0, t0n − dn−1 − t1n−1)

=
s0

bmin(n−2)

+ max(0, t0n − dn−1 − t1n−1)

We apply Lemma A.2:

=
s0

bmin(n−2)

+

max

(
0,

s0

bn−1
−
n−2∑
i=0

max(0, t0i+1 − di − t1i)

)

We apply Lemma A.1:

=
s0

bmin(n−2)

+ max

(
0,

s0

bn−1
− t1n−1 − t0n−1)

)

We apply the inductive hypothesis again and simplify:

=
s0

bmin(n−2)

+ max

(
0,

s0

bn−1
− s0

bmin(n−2)

)
= max

(
s0

bmin(n−2)

,
s0

bn−1

)

There are two possibilities at this point. One possibility:

s0

bmin(n−2)

≥ s0

bn−1

bn−1 ≥ bmin(n−2) (7)

t1n − t0n =
s0

bmin(n−2)

=
s1

bmin(n−1)

(From (7) and s0 = s1)

The other possibility:

s0

bmin(n−2)

<
s0

bn−1

bn−1 < bmin(n−2) (8)

t1n − t0n =
s0

bn−1

=
s1

bmin(n−1)

(From (8) and s0 = s1)

