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ABSTRACT
Virtual Queue-based marking schemes have been recently
proposed for AQM (Active Queue Management) in Inter-
net routers. We consider a particular scheme, which we call
the Adaptive Virtual Queue (AVQ), and study its following
properties: stability in the presence of feedback delays, its
ability to maintain small queue lengths and its robustness
in the presence of extremely short flows (the so-called web
mice). Using a mathematical tool motivated by the ear-
lier work of Hollot et al, we present a simple rule to design
the parameters of the AVQ algorithm. We then compare
its performance through simulation with several well-known
AQM schemes such as RED, REM, PI controller and a non-
adaptive virtual queue algorithm. With a view towards im-
plementation, we show that AVQ can be implemented as a
simple token bucket using only a few lines of code.

1. INTRODUCTION
In the modern day Internet, there has been a strong de-

mand for QoS and fairness among flows. As a result, in
addition to the sources, the links are also forced to play an
active role in congestion control and avoidance. Random
Early Discard (RED) [4] was originally proposed to achieve
fairness among sources with different burstiness and to con-
trol queue lengths. RED allows for dropping packets before
buffer overflow. Another form of congestion notification that
has been discussed since the advent of RED is Explicit Con-
gestion Notification (ECN)[3]. ECN has been proposed to
allow links to help in congestion control by notifying users
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when it detects an onset of congestion. The links on de-
tecting incipient congestion set a bit in the packet header
that notifies the user that a link on its route is experiencing
congestion. The user then reacts to the mark as if a packet
has been lost. Thus, the link avoids dropping the packet
(thereby enhancing goodput) and still manages to convey
congestion information to the user.

To provide ECN marks or drop packets to provide fairness
and control queue lengths, the routers have to select packets
intelligently in a manner that conveys information about the
current state of the network to the users. Algorithms which
the routers employ to convey such information are called Ac-
tive Queue Management (AQM) schemes. An AQM scheme
might mark or drop packets depending on the policy at the
router. In this paper, we use the term “marking” more gen-
erally to refer to any action taken by the router to notify
the user of incipient congestion. The action can, in reality,
be ECN-type marking or dropping (as in RED) depending
upon the policy set for the router. As in earlier work on
studying AQM schemes [14, 7, 6], this distinction is blurred
in the mathematical analysis to allow for the development
of simple design rules for the choice of AQM parameters.
However, our simulations consider marking and dropping
schemes separately.

Designing robust AQM schemes have been a very active
research area in the Internet community. Some AQM schemes
that have been proposed include RED [4], a virtual queue-
based scheme where the virtual capacity is adapted [11, 12],
SRED [15], Blue [2], Proportional Integral (PI) controller [7],
REM [1], a virtual queue based AQM scheme [5] (which we
refer to as the Gibbens-Kelly Virtual Queue, or the GKVQ
scheme) among others. While most of the AQM schemes
proposed detect congestion based on the queue lengths at
the link (e.g., RED), some AQM schemes detect congestion
based on the arrival rate of the packets at the link (e.g.,
virtual queue-based schemes) and some use a combination
of both (e.g., PI). Also, most of the AQM schemes involve
adapting the marking probability (as noted before we use
the term marking to refer to both marking and dropping)
in some way or the other. An important question is how
fast should one adapt while maintaining the stability of the
system? Here the system refers jointly to the TCP con-
gestion controllers operating at the edges of the network
and the AQM schemes operating in the interior of the net-
work. Adapting too fast might make the system respond
well to changing network conditions, but it might lead to
large oscillatory behavior or in the worst case even instabil-
ity. Adapting it too slowly might lead to sluggish behavior
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and more losses or marks than desired which might lead to
a lower throughput.

In this paper, we start by presenting an implementation of
a virtual-queue AQM scheme, namely the Adaptive Virtual
Queue (AVQ). We then discuss a methodology for finding
the fastest rate at which the marking probability adapta-
tion can take place given certain system parameters like the
maximum delay and the number of users so that the sys-
tem remains stable. We note that, the marking probability
in the AVQ is implicit, no marking probability is explic-
itly calculated and thus, no random number generation is
required. On the other hand, we replace the marking prob-
ability calculation with the computation of the capacity of a
virtual queue. Motivated by the success of the analysis and
design of other AQM schemes in [14, 7, 6], we consider a
single router accessed by many TCP sources with the same
round-trip time (RTT) and use a control-theoretic analysis
to study the stability of this system. However, unlike [14,
7, 6], we make no assumptions regarding the dynamic be-
havior of the linearized system. For instance, the authors in
[7] neglect the delay in the flow control dynamics by assum-
ing that the flow rates are large enough which forces their
system to have a small number of users. We make no such
assumptions in this paper.

The AVQ algorithm maintains a virtual queue whose ca-
pacity (called virtual capacity) is less than the actual capac-
ity of the link. When a packet arrives in the real queue,
the virtual queue is also updated to reflect a new arrival.
(This was originally proposed in [11] as a rate-based mark-
ing scheme.) Packets in the real queue are marked/dropped
when the virtual buffer overflows. The virtual capacity at
each link is then modified such that total flow entering each
link achieves a desired utilization of the link. It was shown
in [12] that a fluid-model representation of the above scheme
along with the congestion-controllers at the end-hosts was
semi-globally asymptotically stable when the update at the
links were done sufficiently slow. A feature of the AVQ
scheme that is appealing is in the absence of feedback de-
lays, it is shown in [12], that the system is fair in the sense
that it maximizes the sum of utilities of all the users in the
network. Combining this with a result in [11] which shows
that a TCP user with an RTT of dr can be approximated
by a user with a utility function −1

d2
rxr

, where xr is the rate

of the TCP user, shows that the network as a whole con-
verges to an operating point that minimizes

∑
r

−1
d2

rxr
. This

utility function called the potential delay was introduced as
a possible fairness criterion in [13]. The throughput under
this utility function is given by 1/dr

√
pr, where pr is the

loss probability seen by User r which is consistent with the
models in [14, 7, 6]. While we use this simplified model
for analysis in the paper, our simulations in ns-2 use TCP-
Reno, including slow-start, time-out, fast retransmit, etc. A
slightly more refined utility function is used in [9] and the
results in this paper can be easily modified to incorporate
that utility function.

The starting point of this paper is the fluid-model of the
TCP flow-control problem along with the AVQ scheme that
was proposed in [11]. However, here we explicitly consider
the feedback delay due to the RTT of each user and thus,
we obtain a delay-differential equation. We linearize this
system and obtain conditions on d, the number of users N,
the utilization γ of the link and a smoothing parameter α in
the update equation of the AVQ scheme to ensure stability.

The rest of the paper is organized as follows: in Section 2,
we present an implementation of the AVQ algorithm and
provide design rules for the stability of the AVQ and TCP
together. In Section 3, we provide detailed ns-2 to validate
our design rules and also compare the AVQ algorithm with
RED, REM, GKVQ and the PI controllers. The PI con-
troller is somewhat similar to AVQ in that it adapts the
marking probability in a manner similar to the virtual ca-
pacity adaptation in the AVQ scheme, but it depends on
the queue size at the link. As a result, for small buffers the
system tends to perform poorly. Also, since the marking
probability is directly modified and this update has to be
slow enough for system stability, the scheme exhibits slug-
gishness when short flows are introduced. This would be
the subject of simulations in Section 3. In Section 4, we
provide theoretical justification for the design rules in Sec-
tion 2. Conclusions are provided in Section 5.

2. THE AVQ ALGORITHM
Let C be the capacity of a link and γ be the desired uti-

lization at the link. The AVQ scheme, as presented in [11,
12], at a router works as follows:

• The router maintains a virtual queue whose capacity
C̃ ≤ C and whose buffer size is equal to the buffer size
of the real queue. Upon each packet arrival, a fictitious
packet is enqueued in the virtual queue if there is suf-
ficient space in the buffer. If the new packet overflows
the virtual buffer, then the packet is discarded in the
virtual buffer and the real packet is marked by setting
its ECN bit or the real packet is dropped, depending
upon the congestion notification mechanism used by
the router.

• At each packet arrival, the virtual queue capacity is
updated according to the following differential equa-
tion:

˙̃C = α(γC − λ), (1)

where λ is the arrival rate at the link. The rationale
behind this is that marking has to be more aggressive
when the link utilization exceeds the desired utilization
and should be less aggressive when the link utilization
is below the desired utilization.

We now make the following observations. No actual en-
queueing or dequeuing of packets is necessary in the virtual
queue, we just have to keep track of the virtual queue length.
Equation (1) can be thought of as a token bucket where to-
kens are generated at rate αγC up to a maximum of C and
depleted by each arrival by an amount equal to α times the
size of the packet. Define

B = buffer size
s = arrival time of previous packet
t = Current time
b = number of bytes in current packet
V Q = Number of bytes currently in the virtual queue
Then, the following pseudo-code describes an implemen-

tation of AVQ scheme:

The AVQ Algorithm

At each packet arrival epoch do
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V Q ← max(V Q − C̃(t − s), 0) /∗ Update Virtual
Queue Size ∗/

If V Q + b > B
Mark or drop packet in the real queue

else
V Q ← V Q+ b /∗ Update Virtual Queue Size ∗/

endif
C̃ = max(min(C̃ + α ∗ γ ∗ C(t − s), C) − α ∗ b, 0) /∗

Update Virtual Capacity ∗/
s← t /∗ Update last packet arrival time ∗/

We note the following features of the AVQ scheme:

1. The implementation complexity of the AVQ scheme is
comparable to RED. RED performs averaging of the
queue length, dropping probability computation and
the random number generation to make drop decisions.
We replace these with the virtual capacity calculation
in AVQ.

2. AVQ is a primarily a rate-based marking, as opposed
to queue length or average queue length based mark-
ing. This provides early feedback, the advantages of
which have been explored by Hollot et al [7, 6], which
was also mentioned in Kelly et al [10].

3. Instead of attempting to regulate queue length as in
RED, PI controller or recent versions of REM, we reg-
ulate utilization. As we will see in simulations, this is
more robust to the presence of extremely short flows or
variability in the number of long flows in the network.
The reason is that, when utilization is equal to one,
variance introduced by the short flows seems to lead
to an undesirable transient behavior where excessively
large queue lengths persist over long periods of time.

4. Unlike the GKVQ algorithm [5], we adapt the capacity

of the virtual queue. A fixed value of C̃ leads to a uti-
lization that is always smaller than C̃/C and it could
be much smaller than this depending on the number
of users in the system. Our marking mechanism is also
different in that we do not mark until the end of a busy
period after a congestion episode.

5. There are two parameters that have to be chosen to im-
plement AVQ: the desired utilization γ and the damp-
ing factor α. The desired utilization γ determines
the robustness to the presence of uncontrollable short
flows. It allows an ISP to trade-off between high levels
of utilization and small queue lengths. Both the pa-
rameters α and γ determine the stability of the AVQ
algorithm and we provide a simple design rule to choose
these parameters.

The starting point for the analysis of such a scheme is
the fluid-model of the TCP congestion-avoidance algorithm
as proposed in [11]. A theoretical justification of how a
stochastic discrete-time equation can be approximated by a
fluid-model is shown in [8]. We will then incorporate the
virtual capacity update equation with this model and study
the stability of system under linearization.

Consider a single link of capacity of C and let the desired
utilization of the link be γ ≤ 1. Let N TCP users be access-
ing that link and let d be the common round-trip propaga-
tion delay of each user. We will model the TCP users using

the −1
d2x

utility function as proposed in [11]. For the sake of
simplicity and tractability, we will neglect the slow-start and
the time-out behavior when modeling the TCP users. We
will later show through simulations that even with slow-start
and timeouts, the result holds. The congestion-avoidance
algorithm of the TCP users can be written as:

ẋi =
1

d2
− βxi(t)xi(t− d)p(

N∑
j=1

xj(t− d), C̃(t− d)), (2)

where β < 1 and C̃ is the virtual-capacity of the link. A β
value of 2/3 would give us the steady-state throughput of

TCP as 1
d

√
3

2p∗ , where p∗ is the steady-state marking prob-

ability which is consistent with the results in [16]. Hence, we
will use β = 2/3, in all our calculations. Also, note that on
substituting xi ≈ Wi

d
, where Wi is the window-size of user

i, we recover the TCP window control algorithm [11, 14].
The update equation at each link can now be written as:

˙̃C = α(γC − λ), (3)

where λ =
∑N

j=1 xj is the total flow into the link and α > 0
is the smoothing parameter. Note that α determines how
fast one adapts the marking probability at the link to the
changing network conditions. We will present a design rule
that specifies how to choose α for a given feedback delay
(d), utilization (γ) and a lower bound on the number of
users (N). In fact, as we will show in Section 4, one can
arrive at bounds on any of the four parameters α, γ, N or d
given the other three using the same design rule. However,
in practice, it would seem most natural to choose α given
the other three parameters.

The equilibrium point of the non-linear TCP/AQM model
is given by: ∑

i

x∗
i = λ∗ = γC

x∗
i =

γC

N

p(γC, C̃∗) =
N2

β(dγC)2

Let us assume that

λ(t) = λ∗ + δλ(t)

C̃(t) = C̃∗ + δC̃(t).

The linearized model of the non-linear TCP/AQM model
can now be written as:

˙δλ = −K11δλ(t)−K12δλ(t− d) + K2δC̃(t− d) (4)

˙δC̃ = −αδλ(t), (5)

where

K11 :=
N

γCd2
K12 :=

N

γCd2
+ β

γC2

N

∂p(γC, C̃∗)

∂λ

K2 := β
γC2

N

∣∣∣∣∂p(γC, C̃∗)

∂C̃

∣∣∣∣ .
We will now state the main result of this paper which serves
as the design for the AVQ algorithm. The proof of this result
is given in Section 4.
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Theorem 1. Suppose that the feedback delay d̂, number
of users N̂ , and the utilization γ̂, are given. Find α∗ satis-
fying:

ωd̂ + arctan

(
ω

K11

)
=

π

2
, (6)

where ω is defined as:

ω(α, d,N, γ) =
1√
2

√
(K2

12 −K2
11) +

√
(K2

12 −K2
11)2 + 4K2

2α
2.

Then, for all α < α∗, the system is stable. Moreover, for
every α < α∗, the system remains stable for all N > N̂,
γ < γ̂ and d < d̂.

We note that (6) can be easily solved using a simple nu-
merical solver such as those found in Mathematica or Mat-
lab.

3. SIMULATIONS
In this section, we will use the packet-simulator ns-2 to

simulate the adaptive virtual queue scheme. We will show
that simulation results agree with the convergence results
shown in the previous section. In particular, we will se-
lect an α, using Theorem 1 that will ensure stability for a
given round-trip delay d, and a lower bound on the number
of users, Nmin. We then present a single set out of many
experiments that we did to show that α indeed stabilizes
the system even in the presence of arrivals and departure of
short connections. We will then compare this scheme with
many other AQM schemes.

3.1 Simulation Setup
Throughout this section, we consider a single link of ca-

pacity 10 Mbps that marks or drops packets according to
some AQM scheme. For AVQ, we always let γ, the desired
utilization, be 0.98. We use TCP-Reno as the default trans-
port protocol and assume that packets have an average size
of 1000 bytes. Each TCP connection has a propagation de-
lay between 40 ms and 130 ms. The buffer size at the link
is assumed to be 100 packets.

In the first four experiments, we assume that the link
marks packets and thus, any packet loss is due to buffer
overflow. In these experiments, we demonstrate that the
AVQ scheme achieves high utilization and low packet loss.
Further, the algorithm responds quickly to changing net-
work conditions such as varying number of TCP flows. In
the last experiment, we compare the AVQ scheme with other
schemes when the link drops packets (as opposed to mark-
ing) to indicate congestion. Again, the AVQ scheme is
shown to have smaller queue lengths compared to other
schemes.

The maximum delay that a packet can incur is Tp + qmax
C

,
where Tp is the round-trip propagation delay. Therefore,
we design the AVQ controller for a delay of d = 210 ms.
Using the design rule in Theorem 1, any α < 0.17, will
ensure stability. In the experiments, we let α be 0.15. In all
experiments, we consider two types of flows: FTP flows that
are long lived and short flows of 20 packets each.
Experiment 1:

In this experiment, we study the convergence properties and
buffer sizes at the queue for the AVQ scheme alone. The
number of FTP flows is 180 while the short flows arrive at
the link at the rate of 30 flows per second. To simulate a

sudden change in network conditions, we start the experi-
ment with only FTP flows in the system. Short flows are
introduced after 100 seconds. Again, the propagation delays
of the short flows are distributed in the interval [40, 130] ms.
The evolution of the virtual capacity is given in Figure 2.
At 100 seconds, there is a drop in the virtual capacity since
the AVQ algorithm adapts to the changing number of flows.
Beyond 100 seconds, the virtual capacity is lower than it was
before 100 seconds since the links marks packets aggressively
due to the increased load. The queue length evolution for
the system is given in Figure 1. Except during transients in-
troduced by load changes, the queue lengths are small, less
than 20 packets. At 100 seconds, the queue length jumps
up due to the short flows. However, the system stabilizes
and the queue lengths are small once again. Table 1 gives
the average and the standard deviation of the queue length
before and after the introduction of short flows. We can see

Table 1: Experiment 1. Mean and the standard
deviation of the queue size before and after the in-
troduction of short flows.

Before Short Flows After Short flows

Avg. Queue Size 13.11 10.39
Std. Deviation 20.44 15.17

the average queue lengths and the standard deviation are
almost similar. Another important performance measure is
the number of packets dropped due to buffer overflow in the
system. Since ECN marking is used, we expect the num-
ber of packets lost due to buffer overflow to be small. In-
deed only 10 out of roughly 250, 000 packets are dropped.
These drops are primarily due to the sudden additional load
brought on by the short flows. Another performance mea-
sure that is of interest is the utilization of the link. The
utilization was observed to be 0.9827, which is very close to
the desired utilization of 0.98. 


We will now compare the AVQ scheme with other AQM
schemes that have been proposed. Since there are many
AQM schemes in the literature, we will compare the AVQ
scheme with a representative few. In particular, we will
compare the AVQ scheme with

1. Random Early Discard (RED) proposed in [4]. In our
experiments, we use the “gentle” version of RED. Un-
less otherwise stated, the parameters were chosen as
recommended in
http://www.aciri.org/floyd/REDparameters.txt.

2. Random Early Marking (REM) proposed in [1]. The
REM scheme tries to regulate the queue length to a de-
sired value (denoted by qref) by adapting the marking
probability. The REM controller marks each packet
with a probability p which is updated periodically (say,
every T seconds) as

p[k + 1] = 1− φ−µ[k+1],

where φ is a arbitrary constant greater than one and

µ[k+1] = max(0, µ[k]+γ(q[k+1]−(1−α)q[k]−αqref)),

and α and γ are constants and q[k + 1] is the queue
length at the k+1 sampling instant. Since REM is very
sensitive to φ, we will use the values as recommended
in [1]
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Figure 1: Experiment 1. Queue length vs
time for the AVQ scheme
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Figure 2: Experiment 1. Evolution of the
virtual capacity with time for the AVQ
scheme

3. The PI controller proposed in [6]. The PI controller
marks each packet with a probability p which is up-
dated periodically (say, every T seconds) as

p[k + 1] = p[k] + a(q[k + 1]− qref)− b(q[k]− qref),

where a > 0 and b > 0 are constants chosen according
to the design rules given in [6].

4. The virtual queue based AQM scheme (GKVQ) pro-
posed by [5]. In this scheme, the link maintains a

virtual queue with fixed capacity C̃ = θC, and buffer
size B̃ = θB, where θ < 1, and B is the buffer capac-
ity of the original queue. Whenever the virtual queue
overflows, all packets in the real queue and all future
incoming packets are marked till the virtual queue be-
comes empty again. Note that this scheme cannot be
used in the case where the link drops the packets in-
stead of marking them because the throughput would
be very bad due to aggressive dropping. As in [5],
we will use θ = 0.90 in all our simulations using the
GKVQ.

Experiment 2:
In this experiment, we compare the performance of the var-
ious AQM schemes assuming that the link “marks” packets
and in the presence of long-lived FTP flows only. The queue
size at the link is 100 packets and we let the desired average
queuing delay be between 30ms and 60ms. As a result, the
desired queue length for the REM scheme and the PI scheme
is set at 50 packets and the minthresh and the maxthresh
for the RED (with gentle turned on) scheme is set at 37 and
75 packets respectively. Recall that the desired utilization
of the link was set to be 0.98 for the AVQ scheme.

Since we use an average queue length of 50 packets for
REM and the PI controller, it is natural to attempt to regu-

late the queue length to 50 for the AVQ scheme also. How-
ever, the AVQ does not directly attempt to control queue
size. Thus, for the AVQ scheme, we drop every packet that
arrives when there are already 50 packets in the real queue.
Note that this is the worst-case scenario for the AVQ scheme,
since when ECN marking is used, the natural primary mea-
sure of performance is packet loss.

We summarize our simulation results below:

• Packet Losses and Link Utilization: The losses incurred
by all the schemes are shown in Figure 3 as a function
of the number of FTP flows. The AVQ scheme has
fewer losses than any other scheme except the GKVQ
even at high loads. The loss rate for GKVQ and AVQ
are comparable; however, the GKVQ marks packets
more aggressively than any other scheme and thus has
lower utilization. Figure 4 shows the utilization of the
link for all the AQM schemes. Note that, the utiliza-
tion of GKVQ is as low as 75%. This can once again
be attributed to the aggressive marking strategy of
GKVQ. RED also results in a poor utilization of the
link. We could have got a higher utilization with RED
if we had increased the minthresh to a larger value, but
we would have increased the packet drops at the link.
REM and PI has an utilization of 1.0 as the queue is
always non-empty. For the AVQ scheme, we required
a desired utilization of 0.98 and we can see that the
AVQ scheme tracks the desired utilization quite well.
Thus, the main conclusion from this experiment is that
the AVQ achieves low loss with high utilization.

• Responsiveness to changing network conditions: We mea-
sure the response of each AQM scheme to different
numbers of FTP flows, by letting the number of flows
be constant over a 100 second interval and then in-
creasing it. The average queue length (over each 100
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second interval) of each scheme as the number of users
increase is shown in Figure 5. We see from the figure
that PI and REM have higher average queue lengths
than the desired queue length. On the other hand,
AVQ, GKVQ and RED has smaller queue sizes. This
is due to the fact that it takes REM and PI have
a long transient period before the queue length con-
verges. The average queue length over each 100 second
interval does not delete any transients since one of our
goals in this experiment is to study the responsiveness
of the AQM scheme to load changes.

Experiment 3:
In this section, we will compare the responsiveness of the
AQM schemes when flows are dropped and then introduced
later on. Specifically, we only compare REM and the PI
controller (since these are only ones among those that we
have discussed that attempt to precisely regulate the queue
length to a desired value) with the AVQ controller. Unless
otherwise stated, all the system parameters are identical to
Experiment 2. The number of FTP connections is 140 at
time 0.0 At time 100, 105 FTP connections are dropped and
at time 150 another 105 FTP connections are established.
We will plot the evolution of the queue size for each of the
AQM scheme. Figure 6 shows the evolution of the queue size
for PI as the flows depart and come. Note that the desired
queue length is 50 packets. We can see that the system takes
some time to respond to either the departure of the flows
or to the new arrivals. On the other hand, the queue in the
AVQ scheme in Figure 7 responds quickly to the removal of
flows at time t = 100, and to the addition of flows at time
150. Figure 8 gives the evolution of the queue sizes for REM.
The desired queue level in the REM scheme is 50 packets
and REM is very slow to bring the queue level to 50 packets.
On removing flows, the queue level drops, but on addition
of new flows, there is a large overshoot in REM.
Experiment 4:

Till now we have been comparing AVQ and PI in the absence
of short flows. However, a large part of the connections in
the Internet comprise of short flows. As a result, it is im-
portant to study the performance of an AQM scheme in the
presence short flows. In this experiment, we will start with
40 FTP connections that remain throughout the length of
the experiment. We also allow the AQM schemes to con-
verge to the optimal solution when there are only 40 FTP
connections in the network. We then introduce short flows
and study the performance of the AQM scheme as the num-
ber of short flows increases. We start with a short-flow ar-
rival rate of 10 per second and gradually increase it to 50
short flows per second. Each short flow transfers 20 packets
using TCP/Reno. The round-trip times of the short flows
are also distributed uniformly between 40ms and 130ms.

We again study the following performance measures:

• Packet losses and Utilization: The losses incurred by
both the schemes are shown in Figure 9. Note that
AVQ has lower drops than the RED, REM and the
PI schemes. GKVQ incurs no significant packet drops
(and hence cannot be seen in the figure) among all
the schemes because of its aggressive marking scheme.
However, as in Experiment 2, the utilization of GKVQ
is poor as seen in Figure 10. We again see that REM
and PI have an utilization of one, while RED and
GKVQ have poor utilization. Once again, the utiliza-

tion of RED can be made higher, but this will come at
the expense of higher average queue lengths and more
packet losses. For the AVQ scheme, the utilization is
actually slightly higher than the desired utilization at
high loads, but this can be attributed to the short-
flows.

• Queue length: The average queue length of each scheme
as the rate of the incoming short-flows short connec-
tions are increased is shown in Figure 11. We see that
the the AVQ controller maintains the smallest queue
length.

Experiment 5:
Till now, we have been assumed that the router marks pack-
ets upon detecting congestion. Instead one can drop pack-
ets when congestion is detected. In this experiment, we use
dropping instead of marking when the links detects an in-
cipient congestion event.

Note that, in the case of marking, the main goal of the
adaptive algorithm was to match the total arrival rate to
the desired utilization of the link. However, in the case of
dropping, the link only serves those packets that are admit-
ted to the real queue. As a result, in the case of dropping,
one adapts the virtual capacity (C̃) only when a packet has
been admitted to the real queue, i.e., only the accepted ar-
rival rate is taken into consideration.

We compare RED, REM and PI controller to the AVQ
scheme. We do not use GKVQ as a dropping algorithm
as the number of packets dropped on detecting congestion
would be very high and it would result in negligible through-
put. The buffer limit at the link is set to 100 packets and
we require the average queueing delay to lie between 30ms
and 60 ms. The users employ TCP NewReno. All the other
parameters are as in Experiment 2. However, in this case we
simulate the AVQ scheme with both γ = 1.0 and γ = 0.98.
The reason for using γ = 0.98 earlier was to have small losses
to get the most benefit from ECN marking. Since marking is
no longer used, we also study the AVQ under full utilization.

We assume that 40 FTP connections use the link for the
entire duration of the simulation. We allow the respective
AQM schemes to converge and then introduce short-flows at
100s. Short-flows introduced are TCP-RENO sources with
20 packets to transmit. The rate at which short flows arrive
at the link is slowly increased. The average queue length,
and the utilization are shown in Figure 12 and Figure 13.
The total goodput is shown in Figure 14. By goodput, we
mean the number of packets successfully delivered by the
link to the TCP receivers. In general, this could be different
from the throughput (which is the total number of packets
processed by the link) due to TCP’s retransmission mecha-
nism. Note that the average queue length, the goodput of
each flow and fairness are the three performance objectives
that one would use to compare different AQM schemes when
dropping is employed as a congestion notification mecha-
nism. In practice, we would like an AQM scheme that
maintains a small average queue length with high utiliza-
tion. However, the AQM scheme should not introduce any
additional bias in the rates towards smaller round-trip flows
(TCP by itself introduces a bias towards smaller round-trip
flows and we do not want to add it). In this experiment,
we compared the average queue length and the utilization
at the link of AVQ, RED, REM and PI.
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Figure 3: Experiment 2. Losses at the link
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lization at the link for the different AQM
schemes
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the link for varying number of FTP connec-
tions for the different AQM schemes
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Figure 11: Experiment 4. Average queue
length at the link for various AQM schemes
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The fairness measures of the AVQ algorithm are not shown
here due to space limitations.
Note: Instead of marking or dropping a packet in the

real queue when the virtual queue overflows, one can mark
or drop packets in the real queue by applying RED (or any
other AQM algorithm) in the virtual queue. Thus, if there
are desirable features in other AQM schemes, they can be
easily incorporated in the AVQ algorithm. When marking
is employed, our experience is that a simple mark-tail would
be sufficient as shown in Experiments 1 through 4. In the
case when the link drops the packets, many successive packet
drops from the same flow could cause time-outs. To avoid
this, one could randomize the dropping by using a mech-
anism like RED in the virtual queue to prevent bursts of
packets of the same flow to be dropped. Our experience
has been that, if RED is employed in the virtual queue, the
performance of the AQM scheme is not very sensitive to the
choice of the RED parameters.

4. STABILITY ANALYSIS OF THE AVQ
SCHEME

In this section, we will prove the main result of the paper
which was stated in Theorem 1. The starting point of the
analysis is the linearized version of the TCP/AQM model
derived in (4) and (5). We summarize the main ideas behind
the proof:

• The stability of a linear delay-differential equation can
be analyzed using its characteristic equation. The
characteristic equation of the linear delay-differential
equation can be obtained by taking its Laplace Trans-
form. For the linearized system to be stable, its charac-
teristic equation should have all its roots in the left-half
plane (i.e., if σ is a root of the characteristic equation,
then Re[σ] < 0).

• We will first show that for α, N, and γ fixed the system
is stable in the absence of feedback delays, i.e., d =
0. This implies that all the roots of the characteristic
equation lie in the left-half plane. The roots of the
characteristic equation are continuous functions of its
parameters. Therefore, the roots of the characteristic
equation are continuous function of the feedback delay
d. By increasing d, one can find the smallest feedback
delay d∗ at which one of the roots hits the imaginary
axis (if there is no such d, then the system is stable
for all d.). Hence, for all d < d∗, the system has all its
roots in the left-half plane and hence it is stable. This
is the key idea and we will be using this idea frequently
throughout this section.

Recall that the linearized TCP/AQM system was given in
(4) and (5). For analytical tractability, we assume that

p(λ, C̃) =
(λ− C̃)+

λ
. (7)

Note that, while this is not differentiable everywhere in λ
or C̃, it is differentiable in the region λ > C̃. Substitut-

ing for ∂p(γC,C̃∗)
∂λ

, and ∂p(γC,C̃∗)

∂C̃
and using the fact that

p(γC, C̃∗) = N2

β(dγC)2
, we find that

K11 =
N

γCd2
K12 = K2 = β

γC

N
. (8)

Note that K12 > K11. Let Λ(s) denote the Laplace-Transform

of δλ(t) and let Ψ(s) denote the Laplace-transform of δC̃(t).
Taking the Laplace-transforms of (4) and (5), we get:

sΛ(s) = −K11Λ(s)−K12e
−sdΛ(s) + K2e

−sdΨ(s) (9)

sΨ(s) = −αΛ(s). (10)

Substituting (10) in (9), we get the so-called characteristic
equation

s + K11 + e−sd

(
K12 + α

K2

s

)
= 0. (11)

Once again, the key idea in this approach is that roots are
continuous functions of the round-trip delay d. As a result,
if the system is stable with d = 0 for a fixed value of α, then
the roots are strictly in the left-half plane. Therefore, we
can choose d small enough such that the roots still remain
in the left-half plane. This will help us to find the maximum
feedback delay for which the system is stable for a given α.
We will then show that we can use the same technique to
show that given a feedback delay d, one can find the maxi-
mum value of α for which the system is stable. We will then
discuss the impact of the number of users on the stability of
the system. We will formalize these ideas in this section.

When d = 0, i.e., there is no feedback delay in the system,
the characteristic equation reduces to:

s + K11 + K12 + α
K2

s
= 0. (12)

Solving the quadratic equation, we get:

s =
−(K11 + K12)±

√
(K11 + K12)2 − 4αK2

2
.

If 4αK2 ≤ (K11 + K12)2, then the system has all real roots
which lie strictly in the left half-plane. If 4αK2 > (K11 +
K12)2, then the system has complex roots that also lie strictly
in the left half-plane. Thus, for all values of α > 0, the sys-
tem is stable.

The following theorem gives the necessary condition on
the RTT for the stability of the system given by (4) and (5).

Theorem 2. Fix α = α̂, the number of TCP users, N
and the utilization γ. Find the smallest d = d̂ such that

ω(α̂, d,N, γ) =
1√
2

√
(K2

12 −K2
11) +

√
(K2

12 −K2
11)2 + 4K2

2 α̂
2

(13)
satisfies

ωd + arctan

(
α̂

ω

)
+ arctan

(
ω

K11

)
= (2k + 1)π, (14)

for some k = 0, 1, 2, · · · . Then, the TCP/AQM system given

in (4) and (5) is stable for all values of d < d̂.

Proof: The characteristic equation of the TCP/AQM system
(11) can be rewritten as:

1 +
e−sd

(
K12 + αK2

s

)
s + K11

= 0. (15)

Let jω be one of the roots of the characteristic equation at
the smallest d = d∗ such that the roots hits the imaginary
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axis. Since the roots on the imaginary axis are complemen-
tary, we will concern ourselves only with ω ≥ 0. From (15),
we get:

e−jωd
(
K12 + αK2

jω

)
jω + K11

= −1.

To satisfy the last condition, the following conditions must
be met simultaneously:
Condition on magnitude:∣∣∣∣∣∣

e−jωd
(
K12 + αK2

jω

)
jω + K11

∣∣∣∣∣∣ = 1

Condition on angles:

∠
e−jωd

(
K12 + αK2

jω

)
jω + K11

= (2k + 1)π k = 0,±1,±2.

From the condition on magnitude, we get
√

K2
12+

K2
2 α̂2

ω2

ω
√

K2
11+ω2

= 1

⇒ ω(α̂, d, N, γ) =

√√√√ (K2
12 − K2

11) +
√

(K2
12 − K2

11)2 + 4K2
2 α̂2

2
.

From the condition on angles, we get:

ωd + arctan

(
α̂

ω

)
+ arctan

(
ω

K11

)
= (2k + 1)π,

for k = 0, 1, 2, · · · . Since K11 is a decreasing function of d,
and K12 and K2 are independent of d, we have ω(α̂, d,N, γ)

as an increasing function of d. Therefore, the smallest d = d̂
that solves (14) gives the first time that at least one of the

roots hit the imaginary axis. Therefore, for all d < d̂, the
system is locally asymptotically stable.
REMARK: Although the above theorem provides a neces-
sary and sufficient condition, it is hard to verify the condi-
tions of the theorem numerically due to the following issues:

• What value of k will yield the smallest d?

• If d̂ solves (14), how can we be sure that there exists

no d̃, such that d̃ solves (14) and d̃ < d̂?

The following theorem solves these issues by giving an
easily verifiable sufficient condition for stability.

Theorem 3. Fix α = α̂, the number of TCP users, N
and the utilization γ. Find any d∗ > 0, such that

ωd∗ + arctan

(
ω

K11

)
=

π

2
, (16)

where ω is as given in (13). Then for all d < d∗ the system
is stable. Moreover, d∗ is unique.

Proof: Note that K12 and K2 do not depend on d. Therefore,
as d increases, K11 decreases and ω increases.

Let d̂ solve (14) for some k. Then, we claim that

d∗ < d̂. (17)

Suppose not. Since

arctan(
α̂

ω
) ≤ π

2
,

ω(α̂, d̂, N, γ)d̂+arctan(
ω(α̂, d̂, N)

K11(d̂)
) ≥ 4k + 1

2
π, k = 0, 1, 2 . . .

(18)

Also, since d̂ < d∗, ω(α̂, d̂, N, γ) < ω(α̂, d∗, N, γ) and K11(d̂) >
K11(d∗). Therefore,

arctan(
ω(α̂, d̂, N, γ)

K11(d̂)
) < arctan(

ω(α̂, d∗, N, γ)

K11(d∗)
).

Thus,{
ω(α̂, d̂, N, γ)d̂+

tan−1( ω(α̂,d̂,N,γ)

K11(d̂)
)

}
<

{
ω(α̂, d∗, N, γ)d∗+

tan−1( ω(α̂,d∗,N,γ)
K11(d∗)

)

}
=

π

2
.

But this contradicts (18). Hence d∗ < d̂. Thus, any d < d∗

also satisfies d < d̂, and therefore, for any d < d∗, the system
is stable from theorem 2.

Suppose that d∗ is not unique. Let d∗1 and d∗2 be two
values that satisfy (16). Without loss of generality, let us
assume d∗1 < d∗2. Therefore,{

ω(α̂, d∗1, N, γ)d∗1+

tan−1(
ω(α̂,d∗

1 ,N,γ)

K11(d∗
1)

)

}
<

{
ω(α̂, d∗2, N, γ)d∗2+

tan−1(
ω(α̂,d∗

2 ,N,γ)

K11(d∗
2)

)

}
=

π

2
.

But this is a contradiction. Hence, d∗ is the unique solution
to (16).

Example 1. Consider a single link with 10Mbps capacity
and let there be 180 users accessing it. Let the average packet
size be 1000 bytes and γ = 1.0. The capacity of the link can
be written as 1250 packets per second. Let α̂ = 0.1. We are
interested in finding d∗ such that the system is stable for
all d < d∗. Using (16) to solve for d∗, we get d∗ = 0.210.
Therefore, for all d < 0.210 seconds, the system is locally
stable.

Till now, we have been given a fixed α and a fixed N and
we were interested in finding the largest feedback delay for
which this system is stable. But, a more practical question is
the following: given a feedback delay d̃, and number of users
N, how can one design α such that the system is stable? The
next theorem gives a method by which one can design α such
that system is stable. Note that this theorem is the main
result of the paper and is also stated in Section 2. We state
it again for convenience.

Theorem 4. Fix the feedback delay d̃, the number of users
N and the utilization γ. Find α∗ satisfying:

ωd̃ + arctan

(
ω

K11

)
=

π

2
, (19)

where ω is as given in (13). Then, for all α < α∗, the system
is stable.

Proof: Fix any α̂ < α∗. Let τ(α) be the d satisfying (16).

We have to show that, τ(α∗) > d̃. We know that τ(α∗) = d̃.
For any fixed d, we know that ω(α, d,N, γ) decreases as α
decreases. Therefore,{

ω(α̂, d̃, N, γ)d̃+

tan−1
(

ω(α̂,d̃,N,γ)
K11

) }
<

{
ω(α∗, d̃, N, γ)d̃+

tan−1
(

ω(α∗,d̃,N,γ)
K11

) }
=

π

2
.

Since ω(α, d,N, γ) is an increasing function of d, we have,

τ(α̂) > d̃.

Therefore, for all α < α∗, the system is locally stable.
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Example 2. Consider the same setting as in Example 1.
Let d̃ = 0.21. We are interested in finding α∗ such that the
system is stable for all α < α∗. Using (19) to solve for α∗,
we get α∗ = 0.10. Therefore, for all α < 0.10, the system is
locally stable.

Another important design aspect is how stability is af-
fected as the number of users changes. In general, given an α̂
and d̂, can one find the number of users required to make the
system stable. The following theorem gives a lower bound
on the number of users required to make the system stable.

Theorem 5. Fix the feedback delay d̂, the smoothing pa-
rameter α̂ and the utilization γ. Find N̂ satisfying:

ωd̂ + arctan

(
ω

K11

)
=

π

2
, (20)

where ω is as given in (13). Then, for all N > N̂, the system
is stable.

Proof: Note that in this case, K11, K12, and K2 are all
functions of N. We can easily show that as N increases, K11

increases, K12 decreases, K2 decreases and ω(α, d,N, γ) de-
creases. Using this and following along the lines of the proof
for Theorem 4, we can show that for all N > N̂, the system
is stable.
Remarks: One of the most important applications of The-
orem 5 comes in the design of α. The system is initially
designed for a low value of N = N̂ , and a particular d. We
can now use Theorem 4 to find the value of α∗ that will lead
to stability. However, Theorem 5 assures us that the system
will still be stable when the number of users increases be-
yond N̂ . We can state a similar theorem for the utilization
γ of the link.

Theorem 6. Fix the feedback delay d̂, number of users N̂
and the smoothing parameter α̂. Find γ̂ satisfying:

ωd̂ + arctan

(
ω

K11

)
=

π

2
, (21)

where ω is as given in (13). Then, for all γ < γ̂, the system
is stable.

5. CONCLUSIONS
In this paper, we presented an easily implementable AQM

called the Adaptive Virtual Queue and provided simple de-
sign rules to choose its parameters. We then showed through
simulations that the AVQ controller performs better than a
number of other well-known AQM schemes.
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