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Abstract

We present a new geometric calibration method for a

structured light system combining a projector with a cam-

era, using a planar target with circular control points. By

solely exploiting the mapping between projected conics, the

proposed method is strictly geometric and provides unbi-

ased camera to projector correspondences during its ap-

plication. Such a geometric method does not rely on ra-

diometric calibration. Moreover, the method consistently

ensures uniform coverage of the working volume and au-

tomatically avoids interference between both the projected

and the printed patterns on the calibration target.

1. Introduction

Since they can provide full field 3D range images, struc-

tured light systems (SLS) are frequently used for capturing

the 3D shape of static or moving objects [4, 14, 9, 11, 13].

SLS are typically composed of a controllable white light

projector and one or more cameras. When only one camera

is used along with the projector, the ensemble must be geo-

metrically calibrated to provide accurate 3D measurements

from triangulation. Several calibration methods have been

published for that purpose [12, 10, 5]. They mainly differ in

the type of target and procedure, the projected pattern, and

the projector model.

We propose a rigorous method that is easy to apply and

that makes it possible to calibrate using a planar target with

circular control points. For its higher accuracy, camera cal-

ibration based on a target with circular control points is of

common use in photogrammetry [3]. In this context, one

must be aware that the projection of the center of a circle

does not correspond to the center of the resulting ellipse in

the image. In order to avoid such a bias, it is necessary

to model the projection of the conic contour rather than its

center. In a camera-projector pair, although the projector

can be calibrated as a second camera, all observations must

be collected by the camera and thereby, one must determine

(a) (b)

Figure 1. (a) The camera is calibrated from
a planar target printed with circular markers.

(b) The projection of an adapted pattern of
ellipses instantiates the circular markers on
the target without interfering with the printed

markers.

the correspondence between pixels in the camera and pro-

jector. Some methods have been proposed for calibrating

with circular control points [5, 2]. None of these methods

exploits the homography between the ellipses’ contours in

the camera and projector in their optimization. Actually the

correspondence between the camera and the projector pixels

is usually obtained by applying a phase-shift technique to

match the center of the ellipse with its corresponding point

in the projector. It must then be assumed that this point

corresponds to the center of the circle on the calibration tar-

get. Besides introducing the biased center, the phase-shift

approach relies on radiometric calibration for subpixel ac-

curacy.

Alternatively, we propose to use the same target with

black circular points on a light background that is typically

used for camera calibration. From the projector, circular

points are projected between the black points and then ob-

served by the camera. It is therefore possible to exploit the

camera-to-projector homography to map the conic between



the two devices, thus avoiding the biased center. Moreover,

we avoid the explicit calculation of 3D points on the target.

Since it is then possible to rigorously calibrate the projector

as a second camera, the calibration target is displaced in the

working volume and the system is calibrated as a stereo pair.

The intrinsic parameters and the projector-to-camera trans-

formation are finally optimized using bundle adjustment.

During the calibration procedure, one must avoid the

overlap between projected circular points and black points

on the target. Such overlap causes interference between the

two patterns and affects the accuracy of the detected el-

lipses in the image. For this reason, the system automat-

ically adapts the projected control points to interleave be-

tween black circles on the target. Besides avoiding inter-

ference, both printed and projected circular points are dis-

tributed uniformly on the target and thus within the working

volume. Moreover, rather than projecting circles, the cali-

bration system further adapts by projecting ellipses that will

map to circles on the calibration target (see Fig.1). By do-

ing so, we avoid high eccentricity ellipses in the observed

image when the target is rotated.

Since it is automated, the procedure is very simple to ap-

ply and only requires a planar target with dark circular con-

trol points. In the sequel, a review of existing approaches

is presented along with their limitations. The details of the

proposed approach and its implementation follow in section

3 before the results section.

2. Related work

A usual method to reconstruct an object with structured

light consists in projecting multiple stripes on the object.

Triangulation is then performed between the ray cast from

the edge points of the deformed stripe in the camera image

and its corresponding plane cast from the projector image.

In [12], it is proposed to model each projected stripe indi-

vidually with four parameters describing the stripe plane in

the camera reference frame. To accomplish this, the camera

is first calibrated from the printed pattern of a 3D target. The

target consists of two perpendicular planes and it is oriented

such that the projection of a stripe illuminates both planes.

The points of an imaged stripe are back-projected from the

camera to the target and its corresponding plane parameters

are estimated from the 3D points. Although being intuitive,

this model quickly becomes inadequate and over parame-

terized when each column or line of the projector image are

to be modeled.

Instead of modeling each stripe individually, in [11, 4]

it is proposed to estimate a global 2x4 transformation ma-

trix describing the relationship between the 3D world points

and the 1D stripe coordinates of the projector. This model

is a 1D camera pinhole and it gathers all the planes in a

single representation. To recover the 1D pinhole parame-

ters, the camera is first calibrated from a 3D target. The

target consists of two perpendicular planes printed with a

checkerboard pattern. Then, stripes are projected on the

target and their corresponding 3D points are obtained by

back-projection from the camera image. The 1D to 3D cor-

respondences provide enough constraints to calibrate the 1D

pinhole. It is interesting to notice that in [4], interfering

stripe points that were projected over the printed pattern are

not considered for the calibration. Still, the accuracy of the

calibration method relies on the accuracy of the stripe local-

ization in the camera image.

In [10], a checkerboard pattern is projected on the tar-

get instead of stripes. The localization of such calibration

markers is more accurate than the edges of a stripe. The

projector is calibrated as a 2D pinhole. The target consists

in a plane where the first half is printed with the calibration

pattern and the second half is white. This white section of

the target is placed in front of the projector while the pattern

is projected. The pose of the pre-calibrated camera is com-

puted from the printed pattern, which allows the projected

pattern to be back-projected from the camera to the target.

This process is repeated for three or more views of the tar-

get, gathering enough 2D-3D correspondences to recover

the projector parameters with a standard camera calibration

method [15]. This method exhibits an important issue; the

projected markers should be localized accurately and free

from interference with the printed pattern. However, the

recovered parameters are optimized only in the calibration

volume of the projector, which is different from the com-

bined working volume with the camera. A small error in

the camera pose will result in a larger error in the recovered

3D marker coordinates. This motivates the projection of an

adapted calibration pattern directly in the printed region of

the target while covering the working volume.

The methods proposed in [2, 5] attempt to eliminate the

latter problem by exploiting the same markers to calibrate

both the camera and projector. They use white circular con-

trol points printed on a dark planar target. After project-

ing light on the target, circular points are extracted in the

camera image. Then, a phase-shift technique is applied to

match the center of the ellipse with its corresponding point

in the projector. The center of the detected ellipses are as-

sumed to correspond to the 3D center of the target circles.

This allows the projector to be calibrated as a 2D pinhole

from the correspondences between the 3D markers and the

projector coordinates obtained from the phase-shift. How-

ever, due to projective deformation, the detected ellipse cen-

ters in the camera image do not correspond to the 3D cir-

cle centers. The phase-shift algorithm wrongly associates

the 3D marker centers thus introducing a bias. The bias

can be eliminated in the case of camera calibration by pro-

jecting the conic equation of the circular contour instead of

the marker center [3]. However, the phase-shift algorithm
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cannot yield the corresponding ellipse center coordinates in

the projector image since it is not directly observable in the

camera image. Under these circumstances, it would be ad-

vantageous to project black circular points on a white planar

target, interleaved with the printed pattern. A homography

could then be exploited to map the observed ellipses be-

tween the camera and the projector, thus calibrating the 2D

pinhole model of the projector.

3. SLS calibration

In this section, we first describe the projection model of

the camera and projector, before explaining the procedure to

recover their parameters. The superscript ’c’ and ’p’ will be

added to discriminate between the parameters of the cam-

era and projector respectively. By the same token, the sub-

scripts ’c’, ’p’ and ’w’ (world-target) will be used to specify

the reference frame when necessary.

3.1. Camera model

The projection model of the camera is a pinhole with

lens distortion compensation. The pinhole model describes

the relationship between a 3D point P̃w = [X,Y,Z, 1]T

in the world reference frame and the corresponding image

point ã = [u, v, 1]T . Here, the tilde superscript indicates

homogeneous coordinates. The relation is a projection de-

fined as λã = K
[

R t
]

P̃. In this equation, the matrix

K =




α 0 u0

0 β v0

0 0 1


 includes the camera intrinsic para-

meters, where (u0, v0) are the coordinates of the principal

point, α and β are the scale factors of the image horizontal

and vertical axes. In the equation, (R, t) are the 3x3 rotation

matrix and 3x1 translation vector describing the transforma-

tion from the world to the camera reference frame, and λ is

an arbitrary scale factor. To calibrate the model, we use a

planar target assumed to lie on the plane Z = 0. Thus, the

3x4 projection matrix reduces to a 3x3 homography. If we

denote the ith column of the rotation matrix R by ri, the

reduced transformation is given by [15]:

K [r1 r2 r3 t]




X

Y

0
1


 = K [r1 r2 t]




X

Y

1


 , (1)

with the homography H = K [r1 r2 t] . In practice, due

to the distortion of the camera lens, a point is not imaged

at coordinates a predicted by the projection, but at distorted

coordinates ad. To compensate for the lens distortion, the

projection model is augmented with two radial (k1, k2) and

two tangential distortion terms (p1, p2). These four addi-

tional intrinsic parameters are represented in a vector d. The

coordinates ad can then be corrected using the following re-

lation a = ad − δ(ad, d) where

δ(ad, d) =[
xd(k1r

2
d + k2r

4
d) + 2p1xdyd + p2(r

2
d + 2x2

d)
yd(k1r

2
d + k2r

4
d) + 2p2xdyd + p1(r

2
d + 2y2

d)

]
,

(2)

and [xd, yd, 1]T = K−1[ud, vd, 1]T and r2
d = x2

d+y2
d. Com-

puting the distortion in normalized coordinates improves

the conditioning of the system when solving for the para-

meters of the model. During the calibration process, dis-

tortion must also be added to points, but there are no direct

methods to inverse the distortion function. In [3], an in-

verse model based on a Taylor series approximation is pro-

posed. However, for short focal lens with significant distor-

tion, the method complexifies significantly due to the need

of additional terms in the series development. An alterna-

tive method, simple and very accurate, is to recursively ap-

proximate the inverse solution. The additional calculation

is not problematic in the context of offline calibration. The

recursion equations are:

ad ≈ a + δ(ad, d) ≈ a + δ(a + δ(ad, d), d) ≈ · · · . (3)

In our implementation, we use 10 iterations to generate the

inverse mapping.

To lighten the notation in the next sections, we group

the camera intrinsic parameters in a single vector θc =
{α, β, u0, v0, k1, k2, p1, p2}, and the extrinsic parameters in

Θc = {rxyz, t}. Here, rxyz is a three element vector of a

minimal representation for the rotation R. We have chosen

to use the canonical exponential coordinates given by Ro-

drigues’ formula [6]; quaternions are also adequate.

During the calibration process, the camera model will

be used to project ellipses Ew from the target to the cam-

era image as well as to add distortion to the coordinates of

the resulting ellipses’ centers to obtain the distorted point

ad. For this purpose, we introduce the function Gc such

that ad = Gc(Ew, θ,Θ). In the function, an ellipse is pro-

jected using a homography H constructed from the reduced

projective transformation in Eq.1. A homography H trans-

forms a 3x3 ellipse E to E′ as follows:

E′ = H−T EH−1. (4)

The distortion is added to the ellipse center which is ex-

tracted by the multiplication of the ellipse inverse E−1 with

the vector [0 0 1]T [3]. The following expression of the

3x3 conic matrix of a circular marker E of radius r centered

at coordinates (x, y) will also be required by the calibration

procedure:

E =




−1
r2 0 x

r2

0 −1
r2

y
r2

x
r2

y
r2

r2
−(x2+y2)

r2


 . (5)
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3.2. Projector model

The projector is modeled as an inverse pinhole camera

with lens distortion. Therefore, the model developed in the

previous section applies and one obtains the projector in-

trinsic parameters θp = {αp, βp, u
p
0, v

p
0 , k

p
1 , k

p
2 , p

p
1, p

p
2} and

extrinsic parameters ΘP = {r
p

xyz(c), tpc}. The extrinsic pa-

rameters describe the pose of the projector in the camera

reference frame.

In order to obtain the projector model parameters, ob-

served ellipses are projected from the camera to the projec-

tor and the relation between both images is a homography

induced by the target plane. This homography involves the

intrinsic and extrinsic parameters of both, the camera and

the projector, as well as the plane orientation with respect

to the camera. The homography is recovered from the fol-

lowing relation [6]:

Hcp = Kp

[
Rp

c − tpc
1

d
NT

]
(Kc)−1, (6)

where (N, d) are the target plane parameters expressed in

the camera reference frame. The parameters of the plane

are obtained from the camera pose with respect to the target

reference frame (Rc
w, tcw), where the plane normal vector is

N = [rc
13, r

c
23, r

c
33]

T and d = −[rc
31 rc

32 rc
33]t

c
w. Under this

notation, a 3D point P on the plane verifies NT P + d = 0.

During the calibration process, the projector model will

be exploited to project ellipses from the distorted camera

image to the undistorted projector image. More precisely,

the ellipses observed in the camera image are first undis-

torted with the camera parameters1, then transferred to the

projector with the homography from Eq.6. Finally, the re-

sulting ellipses are undistorted with the projector parame-

ters and their center is extracted to obtain the points ap.

We summarize these steps with the function Gp such that

ap = Gp(Ec, θ
c,Θc, θp,Θp).

3.3. Calibration target

The calibration target consists in a white diffuse plane

printed with dark circular markers, as displayed in Fig.1(a).

The size of the printed markers is chosen such that their di-

ameter typically vary between 20-40 pixels in the image.

The notable characteristic of the target is the presence of

virtual circular control points, depicted as dotted circles in

Fig.2. These markers are part of the target model but are not

visible on the actual target. As it is displayed in Fig.1(b)),

they will be instantiated by the projector during the calibra-

tion procedure. In the pattern, the three large circles define

an affine basis that is easy to recognize from any view of the

1Two approaches to remove distortion from an ellipse are discussed in

section 4.

Figure 2. Pattern of the calibration target. The

virtual control points, shown as dotted cir-
cles, are not visible on the actual target and

will be instantiated by the projector.

target. The control points are then progressively matched

from these three ellipses toward the border of the image.

3.4. Calibration procedure

3.4.1 Data acquisition

The calibration of the SLS requires observations from three

or more views of the planar target. For each image, we

need to extract the two series of ellipses corresponding to

the printed and virtual markers. The ellipses corresponding

to the printed markers are easily extracted under the projec-

tion of uniform white light (see Fig.3). However, to obtain

an image in which the virtual markers are visible, we need

to synthesize an image of the virtual markers as they would

be seen by the projector and then reproject them. This is

made possible by recovering the approximate homography

between the target and projector. In this context, an ap-

proximation of the homography is sufficient since we aim

mainly to avoid interference of the projected pattern with

the printed markers. Still, since the camera can exhibit sig-

nificant radial lens distortion, we also estimate first order ra-

dial distortion. The three steps that are necessary to recover

the target-to-projector homography are now described.

The first step consists in recovering the target-to-camera

homography Hwc. This homography is directly estimated

from the centers of the printed markers on the target ac
w and

their corresponding centers in the camera image ac
c. At this

point, it is not necessary to consider the projection asym-

metry of ellipses. However, to compensate for the radial

distortion of the camera, we also estimate a single radial

distortion term kc
1 expressed with respect to the image cen-

ter. The homography and distortion term are obtained with

a standard non-linear optimization [15].

Once the homography Hwc is obtained, the second step

consists in approximating the camera-to-projector homog-

raphy Hcp. This is done by projecting a regular grid of black

disks on the target as shown in Fig.4. The projected mark-

ers are identified in the camera image by background sub-

traction from the initial image. The centroid points of the
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Figure 3. Data acquisition (1/3): a) A white

image is projected on the target to recover
a first estimate of the target-to-camera ho-
mography Hwc. The camera image is in the

top-left, the projector image in the bottom-left
and a view of the calibration target is on the
right. The printed pattern is depicted in gray.

identified regions are then extracted and undistorted with

kc
1. A coarse estimate of the camera-to-projector homog-

raphy Hcp is computed from the correspondence between

the undistorted centroid points in the camera image and the

circle centers in the projector image.

In the third step, the target-to-projector homography

Hwp is computed by combining the previous homographies

as Hwp = HcpHwc. It allows the virtual circular markers

to be projected from the target to the projector image. An

image of the desired ellipses is synthesized and reprojected

on the target (see Fig.5). The ellipses corresponding to the

virtual markers in the camera image are finally extracted

and matched with the ellipse centers in the projector image.

To precalibrate the projector in the same reference frame

as that of the camera, the ellipses corresponding to the vir-

tual markers on the target will also be required. They are

�

� �

�
��

�
�

�
Figure 4. Data acquisition (2/3): A regular
grid of circles is projected on the target to
recover the homography between the camera

and projector Hcp. (See Fig.3 for more details)

�
��

�

� �

�
��

�
��

Figure 5. Data acquisition (3/3): The virtual
markers are transferred to the projector im-

age using an estimate of target-to-projector
homography Hwp. The corresponding image
is synthesized and reprojected, which instan-

tiates the virtual markers. (See Fig.3 for im-
age details)

obtained by backprojecting the corresponding ellipses from

the camera to the target with the homography Hcw. After

repeating these steps for each view of the target, the acqui-

sition is completed. Table 1 summarizes the information

extracted for each view.

Table 1. Information extracted for each view
of the target

Description

Camera
Ec

w Printed markers on the target

ac
c Corresponding center coordi-

nates in the camera image

Projector

Ep
c Virtual markers in the camera

image

Ep
w Corresponding ellipses on the

target

ap
p Corresponding center coordi-

nates in the projector image

3.4.2 Initialization

To initialize the parameter optimization, the camera and

projector are calibrated separately with the method pro-

posed in [3]. The camera is pre-calibrated from the cor-

respondences between the printed ellipses of the target Ec
w

and their centers in the camera image ac
c whereas the projec-

tor is pre-calibrated from the correspondences between the

virtual markers of the target Ep
w and their centers in the pro-

jector image ap
p. Note that the initial principal point of the

projector required by the routine in [3] should be shifted up-

ward from the optical axis of the lens to reflect the position
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of the projector image with respect to the lens. The shift is

usually available from the projector specifications. The ini-

tialization yields the intrinsic parameters of the camera and

projector along with their poses relative to the target.

3.4.3 Optimization

The optimization finds the parameters of the SLS model

ϕSLS = {θc, θp,Θp,Θc
1, . . . ,Θ

c
M} that minimize simul-

taneously the projection error in the camera and projector

image for the O views of the target. The error to minimize

is summarized by the following objective function:

J(ϕSLS) =

O∑

k

( ∑M

i ‖ac
c(ik) − Gc(Ec

w(ik), θ
c,Θc

k)‖2+
∑N

j ‖a
p

p(jk) − Gp(Ep

c(jk), θ
c,Θc

k, θp,Θp)‖2

)
,

(7)

for M printed markers and N virtual markers in each image.

The parameters minimizing Eq.7 are obtained by applying

the Levenberg-Marquardt algorithm [8]. The pose of the

projector relative to the camera Θp is computed from the

initial parameters as

[
Rp

c tpc
0 1

]
=

[
Rp

w tpw
0 1

] [
Rc

w tcw
0 1

]
−1

.

We use the extrinsic parameters from the first view of the

target. It is important to note that a single projector pose will

be estimated for all calibration image pairs. This enforces

the rigidity constraint of the system where the projector is

rigidly fixed to the camera.

4. Results

To validate the calibration method, we first analyze the

residual error after the optimization and the recovered dis-

tortion parameters. Then, a series of 3D reconstructions are

performed to assess the overall accuracy of the system by

comparing the reconstructed objects to precise 3D models

measured with a 3D laser scanner.

The SLS used to generate the following results is

composed of a PointGrey DragonFly2 greylevel camera

mounted with a 12 millimeters (mm) lens and an InFo-

cus LP350 projector. The resolution of both devices is

1024x768 pixels. The baseline of the SLS system is approx-

imately 650mm and the devices are rotated so that their op-

tical axes intersect at approximately 1500mm. The recon-

structions were performed under the same ambient lighting

that was present for the calibration. This is important to pre-

vent any bias caused by chromatic aberration of the camera

lens.

(a) (b)

Figure 6. The calibration target as seen by the

camera from two viewpoints. The top-right
and bottom-right insets are images of a vir-
tual and printed marker respectively.

The calibration is performed from seven images of the

planar target acquired under different viewpoints. The el-

lipse parameters required by the calibration procedure are

estimated with the method presented in [7]. In Fig.6, it

is possible to compare the virtual and printed markers as

seen by the camera from two viewpoints. Although the

virtual markers are slightly blurry, their shape and position

make them almost impossible to distinguish from the actual

printed markers.

When calibrating the system, there are two methods for

processing ellipse distortion and both do not yield exactly

the same ellipse positions. In the first method, a distortion

vector is computed for the current ellipse center and used to

translate the ellipse. This is what is done in [3]. In the sec-

ond method, the distortion is applied to the detected contour

points before the ellipse is fitted. With our system and for an

ellipse having a radius of 20 pixels located near the border

of the camera image, the difference between both methods

is in the order of 0.03 pixel. The small but systematic differ-

ence can be explained with the camera curve in Fig.8 which

shows the distortion magnitude with respect to the distance

from the principal point. The magnitude for radii represent-

ing the two boundaries of an ellipse differs sufficiently to

warp the ellipse along the radial direction and bias the fit-

ting. We have implemented both methods but we did not

observe significant improvement in the results. The preci-

sion of the target model is approximately equivalent to the

bias. The following results were generated with the second

method.

The residual error vectors obtained after optimization are

plotted in Fig.7 for the camera and projector images. The

low RMS error confirms the accuracy of the detection which

benefits from the adapted projected pattern. Interestingly,

the error is smaller for the projector calibration. This is ex-
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Figure 7. Residual error vectors after the SLS
calibration in (a) for the camera and in (b)
for the projector (in pixels). The error vector

mean and max magnitude is (0.08, 0.27) for
the camera, and (0.06, 0.22) for the projector.

plained by the fact that the ellipses used to calibrate the pro-

jector are extracted independently in each images, with high

precision. Conversely, the printed markers used to calibrate

the camera are assumed to lie on a regular grid, which might

not be exactly true depending on the accuracy of the target.

To assess the projective bias of ellipses’ centers, the residual

error was re-computed with the same calibration parameters

but only considering the centers of the ellipses instead of

projecting the conic. Depending on the orientation of the

target with respect to the camera image, all points were af-

fected by a systematic bias reaching up to 0.1 pixel. This

bias is higher than the mean error and thus not appropriate

for accurate measurements.

The radial distortion magnitude of the camera and pro-

jector are plotted in Fig.8 with respect to the radial distance

from their principal points. The curves show a significant

radial distortion component for both, the camera and pro-

jector. This confirms the importance to compensate lens

distortion for the projector. We have also observed a shift

of nearly 400 pixels for the projector principal point toward

the top of the image. This is due to the upward shift of

the projector image with respect to the optical center of the

lens assembly. In this situation, it is important to include

tangential distortion to compensate for the shift of the prin-

cipal point with respect to the lens distortion center.

In order to assess the overall accuracy of the SLS, two

objects were reconstructed and compared to precise mod-

els. We first evaluated the planarity of the reconstruction

of a perfectly planar surface. The dimensions of the plane

are 405x405mm and it is located at 1500mm in front of the

SLS. To measure the surface, a grid of 20x20 photogram-

metric targets was projected on the plane and triangulated.

They were localized in the camera image with the Forstner

operator [1]. The projection of such targets ensures a purely
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Figure 8. The radial distortion magnitude with
respect to the principal point distance for the

camera and projector.

geometric measure minimizing photometric factors.

The reconstructed surface is displayed in Fig.9(a). A

plane was fitted to the 3D points and the mean and max-

imum value of the Euclidean distance between both is of

0.09mm and 0.33mm respectively. An averaging filter was

then applied to the surface to appreciate its curvature. The

smoothed surface, displayed in Fig.9(b), exhibits a peak to

peak curvature of approximately 0.2mm.

The second object is a resin-plaster head statue of

3003mm3 which is reconstructed at a distance of 1500mm.

We performed two reconstructions and compared the sur-

face with a precise model obtained from a laser range scan-

ner. The SLS was calibrated before each reconstruction.

The correspondence between the camera and projector co-

ordinates was obtained by the projection of a combination

of grey-code pattern followed by a phase-shift method [14].

The procedure returned 70941 points for the first scan and

79427 points for the second scan. The camera view and the

alignment error of the recovered models, in mm, are dis-

played in Fig.10.

The uniform distribution of the error suggests that there

is no systematic bias in the reconstruction. The stronger

(a) (b)

Figure 9. (a) The reconstructed surface of a
plane along with the fitted plane shown in
red. (b) The curvature of the surface obtained

after noise filtering. (The axes are in mm)
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(a) (b)

(c) (d)

Figure 10. The 3D reconstructions of a real

object from two viewpoints. The images on
the left show the viewpoints of the object
under the projection of a full white pattern

whereas the right plots depict the alignment
error of the reconstructed model (in mm).

noise near the nose in Fig.10(b) is caused by the acute angle

of the projector light with the surface. The magnitude of the

error is similar to that observed for the plane reconstruction

in Fig.9 (both are displayed at the same scale). Furthermore,

the two reconstructions exhibit similar error which confirms

the repeatability of the calibration method.

5. Conclusion

We have presented a rigorous and automatic method to

accurately calibrate a SLS from circular control points. The

method differs from previous works in that it is purely geo-

metric and provides unbiased observation for the camera

and projector calibration. Instead of relying on a phase-

shift method, or on the projection of stripes to find the cor-

respondence between the camera and projector, we directly

project calibration markers on the target. This is made pos-

sible by adapting the projected pattern to interleave between

the printed markers. Furthermore, the projection maps el-

lipses to circles on the target, creating optimal conditions

for the localization in the camera image. This resulted in a

RMS calibration residual error of 0.06 and 0.08 pixel for the

projector and camera respectively. Finally, we have demon-

strated the accuracy and unbiasedness of the recovered pa-

rameters by comparing the reconstructed surface of a plane

and of a head statue with precise models.
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