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Photometric Stereo

…

Surface normalsImages of object under 
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Images: Neel Joshi, Ira Kemelmacher, Ian Simon (CSE 455, Winter 2010)
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Outdoor Photometric Stereo

• Cannot control the sun! 
• Sun moves on a plane during the course of a day



Solution #1 Months

F. Shen et al. / Time-Lapse Photometric Stereo and Applications

(a) Sample frame (b) Our method (c) Abrams et al. [AHP12] (4 months)

(d) Our results (e) [AHP12] (1 month) (f) [AHP12] (1.5 months) (g) [AHP12] (2 months) (h) [AHP12] (4 months)

Figure 5: We compare our results computed from a single day’s data (b) with those reported by Abrams et al. [AHP12] from
many months of data (c) on a dataset from the AMOS time-lapse archive. The detail images in the second row show close-ups
of the results. While our results (d) are noisier in regions that are in/out of shadows in very few frames (for e.g., the red roofs),
qualitatively they capture as much detail as the results from Abrams et al. [AHP12] that computed from 2-4 months of data
(g/h). To make this comparison, we show our estimated normals using the same color map defined in their paper.

(a) Sample frame (b) Estimated shadow mask (c) Estimated normals

Figure 6: Normal estimation on a webcam sequence. From this time-lapse sequence captured in Trutnov (a), we are also to
estimate shadow masks (b), and per-pixel surface normals (c).

sky out while computing the normals and editing the images;
the sky is reproduced from the original image.

Limitations The quality of the normal reconstruction from
our technique is closely related to the variation in the lighting
in the input time-lapse sequence. In particular, our method
depends on a sufficient number of observations of the scene
both in and out of shadow. As a result, we are not able to
reliably reconstruct surface normals at pixels that are almost
always lit by the sun (because we can not disambiguate the
contribution of the the sky illumination to the intensity), or
are almost always in shadow (because the variation in the

sun position at these pixels is not sufficient to make normal
recovery robust). This is reflected in the erroneous normals
estimated at these pixels in our results.

Our method assumes that the scene is static and Lamber-
tian, and deviations from these assumptions (for e.g., specu-
lar reflections from windows, moving people and cars, etc.)
introduce errors to the profiles of these pixels. Our shadow
refinement algorithm often classifies these outliers as uncer-
tain, therefore not using them in curve fitting, but they can
corrupt the normal estimates we get. More robust algorithms

c� 2014 The Author(s)
Computer Graphics Forum c� 2014 The Eurographics Association and John Wiley & Sons Ltd.

F. Shen et al. / Time-Lapse Photometric Stereo and Applications

(a) Sample frame (b) Our method (c) Abrams et al. [AHP12] (4 months)

(d) Our results (e) [AHP12] (1 month) (f) [AHP12] (1.5 months) (g) [AHP12] (2 months) (h) [AHP12] (4 months)

Figure 5: We compare our results computed from a single day’s data (b) with those reported by Abrams et al. [AHP12] from
many months of data (c) on a dataset from the AMOS time-lapse archive. The detail images in the second row show close-ups
of the results. While our results (d) are noisier in regions that are in/out of shadows in very few frames (for e.g., the red roofs),
qualitatively they capture as much detail as the results from Abrams et al. [AHP12] that computed from 2-4 months of data
(g/h). To make this comparison, we show our estimated normals using the same color map defined in their paper.

(a) Sample frame (b) Estimated shadow mask (c) Estimated normals

Figure 6: Normal estimation on a webcam sequence. From this time-lapse sequence captured in Trutnov (a), we are also to
estimate shadow masks (b), and per-pixel surface normals (c).

sky out while computing the normals and editing the images;
the sky is reproduced from the original image.

Limitations The quality of the normal reconstruction from
our technique is closely related to the variation in the lighting
in the input time-lapse sequence. In particular, our method
depends on a sufficient number of observations of the scene
both in and out of shadow. As a result, we are not able to
reliably reconstruct surface normals at pixels that are almost
always lit by the sun (because we can not disambiguate the
contribution of the the sky illumination to the intensity), or
are almost always in shadow (because the variation in the

sun position at these pixels is not sufficient to make normal
recovery robust). This is reflected in the erroneous normals
estimated at these pixels in our results.

Our method assumes that the scene is static and Lamber-
tian, and deviations from these assumptions (for e.g., specu-
lar reflections from windows, moving people and cars, etc.)
introduce errors to the profiles of these pixels. Our shadow
refinement algorithm often classifies these outliers as uncer-
tain, therefore not using them in curve fitting, but they can
corrupt the normal estimates we get. More robust algorithms

c� 2014 The Author(s)
Computer Graphics Forum c� 2014 The Eurographics Association and John Wiley & Sons Ltd.

[Abrams et al., ECCV’12]

Figure 6. One input image, detected shadow regions, selected
points for intensity estimation and the recovered object albedo.

Figure 7. The initial normal map, the final normal map, and the
four recovered BRDFs with corresponding material map.

Figure 8. Left: Scanline through a cylindrical section of the tower
showing the x (red), y (green), and z (blue) components of the
normal vectors. Solid lines show normals from a reference cylin-
der and dots show the reconstruction of our algorithm. Center:
The region used for the scanline marked in red. Right: Recovered
contribution of the skylight.

The central part of the tower can be well approximated
by a cylinder. Thus, to evaluate the performance of our
technique, we rendered the normal map of a cylinder with
corresponding radius and height as seen from a perspective
camera . Figure 8 shows normals for one scanline from our
reconstruction and the reference which we reproduce quite
accurately. Most deviations occur at the far right and left
where the surface is seen at gracing angles. In Figure 8 we
also visualize the recovered sky term that shows the tower
as seen without direct sun light.

The church dataset shows overall a similar behavior as
demonstrated in Figure 10. While the initial normal map,
reconstructed using the diffuse photometric stereo from
Section 6.1, looks already promising, the final normal map
exhibits more pronounced y directions of the normals in the
dome region. The church is almost completely built from
yellow sandstone which is also reflected in the three re-

Figure 9. Some input images of the church dataset, and one input
image for the castle dataset (scanline region marked in red).

Figure 10. The initial normal map, the final normal map, and the
three recovered BRDFs with corresponding material map.

Figure 11. The final normal map, and a scanline showing the x
(red), y (green), and z (blue) components of the normal vectors for
the castle dataset. See Figure 9 for scanline position.

covered material maps. Note that our method fits a fixed
number of basis BRDFs that optimally explain the scene
appearance. Since most scene points in this example have a
similar albedo, the recovered materials essentially represent
the specular variations.

Figure 11 presents the results on the castle dataset. The
scanline through the towers shows a slightly flattened cylin-
drical shape on the left. The tower on the right shows a
sharp corner with the x-component jumping approximately
90 degrees. The base of the tower is occluded by a tree and
was therefore excluded from the object mask.

8. Conclusion

We presented a method that recovers shape and re-
flectance information from outdoor webcams. Such re-
constructions have so far only been studied in controlled
settings. In practice, some unique challenges such as un-
known lighting, uncontrolled cameras, and strongly varying
scene appearance have to be addressed. To make process-
ing tractable, we developed an image selection technique

Figure 6. One input image, detected shadow regions, selected
points for intensity estimation and the recovered object albedo.

Figure 7. The initial normal map, the final normal map, and the
four recovered BRDFs with corresponding material map.
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showing the x (red), y (green), and z (blue) components of the
normal vectors. Solid lines show normals from a reference cylin-
der and dots show the reconstruction of our algorithm. Center:
The region used for the scanline marked in red. Right: Recovered
contribution of the skylight.

The central part of the tower can be well approximated
by a cylinder. Thus, to evaluate the performance of our
technique, we rendered the normal map of a cylinder with
corresponding radius and height as seen from a perspective
camera . Figure 8 shows normals for one scanline from our
reconstruction and the reference which we reproduce quite
accurately. Most deviations occur at the far right and left
where the surface is seen at gracing angles. In Figure 8 we
also visualize the recovered sky term that shows the tower
as seen without direct sun light.

The church dataset shows overall a similar behavior as
demonstrated in Figure 10. While the initial normal map,
reconstructed using the diffuse photometric stereo from
Section 6.1, looks already promising, the final normal map
exhibits more pronounced y directions of the normals in the
dome region. The church is almost completely built from
yellow sandstone which is also reflected in the three re-

Figure 9. Some input images of the church dataset, and one input
image for the castle dataset (scanline region marked in red).

Figure 10. The initial normal map, the final normal map, and the
three recovered BRDFs with corresponding material map.

Figure 11. The final normal map, and a scanline showing the x
(red), y (green), and z (blue) components of the normal vectors for
the castle dataset. See Figure 9 for scanline position.

covered material maps. Note that our method fits a fixed
number of basis BRDFs that optimally explain the scene
appearance. Since most scene points in this example have a
similar albedo, the recovered materials essentially represent
the specular variations.

Figure 11 presents the results on the castle dataset. The
scanline through the towers shows a slightly flattened cylin-
drical shape on the left. The tower on the right shows a
sharp corner with the x-component jumping approximately
90 degrees. The base of the tower is occluded by a tree and
was therefore excluded from the object mask.

8. Conclusion

We presented a method that recovers shape and re-
flectance information from outdoor webcams. Such re-
constructions have so far only been studied in controlled
settings. In practice, some unique challenges such as un-
known lighting, uncontrolled cameras, and strongly varying
scene appearance have to be addressed. To make process-
ing tractable, we developed an image selection technique

[Ackermann et al., CVPR’12]



Solution #2

Yu et al., ICCP’13

Months
Day

Jung et al., CVPR’15



Solution #2

Hold-Geoffroy et al., ICCP’15

Months
Which day?



Months
Day

Hour(s) ?



Perform PS on small time intervals

1. Why does outdoor PS work?

2. Can it work in x hours? (x ≤ 6)



Environment maps
11/06/2013 

mixed 
41% sun visibility

11/08/2014 
overcast 

16% sun visibility

08/24/2013 
light clouds 

85% sun visibility

Online database: hdrdb.com

Changer les envmaps pour 
angular avec sol

http://hdrdb.com


What are we going to see?
Environment maps Lighting model Fine grained analysis

1h 2h 3h 4h 5h 6h
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PS - environment map lighting
Integration hemisphere
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Key points about MLVs
• An MLV is a virtual point light
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• But, it depends on the surface normal



Mean Light Vector shifts - sunny day



Mean Light Vector shifts - sunny day



Mean Light Vector shifts

solar 
plane

ill-conditioned



Mean Light Vector shifts - overcast day

ill-conditioned

solar 
plane



Mean Light Vector shifts

solar 
plane



Mean Light Vector shifts - partly cloudy day

Better behaved
out-of-plane shifts

solar 
plane



Normal
MLVs

Sun position



Normal
MLVs

Sun position



Measure: maximum 
         uncertainty
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Uncertainty is higher for nearly horizontal normals



Is MLV shifting observable 
within    hours?x
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How often does it happen?

50% half days < 2x full day



PS reconstruction on synthetic images
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Real sky probes, no inter-reflections, highlights or cast shadows
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Real data—setup



Analysis of the real owl images
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Recap

• What needs to happen for PS to work? 
• Mean Light Vector shifts 

• Can it happen during less than a day? 
• Yes, MLV shifts happen in small time intervals (i.e., < 6 hours) 

• 50% of the time, 3 hours intervals have similar performance



Want to perform PS in Lyon?
W

ed
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sd
ay



Thank you! hdrdb.com
http://vision.gel.ulaval.ca/~jflalonde/projects/xHourPS

http://hdrdb.com
http://vision.gel.ulaval.ca/~jflalonde/projects/xHourPS


Extra slides



PS reconstruction on synthetic images
Real sky probes, no inter-reflections, highlights or cast shadows
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Real data
Owl statuette Normal map3D scan



Results on synthetic bunny images
Real sky probes, with inter-reflections, highlights and cast shadows



Metric: maximum uncertainty

• We now focus on the conditioning of matrix L (noise gain factor) 
• Independent of albedo and sensor noise





11/06/2013 
mixed 

41% sun visibility

11/08/2014 
overcast 

16% sun visibility

08/24/2013 
light clouds 

85% sun visibility



How?

• Online database: hdrdb.com

pixel 
intensity

light 
direction scaled 

surface 
normal

bj = l̄Tj n

http://hdrdb.com


Mean Light Vector shifts

Overcast Partly cloudy



Photometric Stereo in the lab

Non-parametric, 
spatially-varying reflectance

[Alldrin et al., CVPR ’08]

Basri, Jacobs and Kemelmacher

Figure 5. Top row: Five (of 11) images used for reconstruction. Second row: ground truth obtained with a laser scanner (surface, albedo, and
albedo painted surface) and an image taken from roughly the same view (right). Third row: reconstruction using the 4D method (including shape,
albedo, albedo painted shape and difference from ground truth surface). Bottom row: reconstruction using the 9D method.

Figure 6. Top row: Rendering the reconstructed shape so as to best fit the original images (top row of Fig. 5). Bottom row: difference between
rendered images and the original images.

Unknown, smooth lighting 
(Spherical Harmonics)

[Basri et al., IJCV ’07]

SBL R-PCA LS SBL R-PCA LS SBL R-PCA LS SBL R-PCA LS
(a) Input (b) Normal map (c) Close-up (d) Elevation angle map (e) Azimuth angle map
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Figure 7. Experimental results with real datasets. We used three kind of datasets called Chocolate bear (25 images with 261 ⇥ 421), Fat
guy (40 images with 293 ⇥ 344) and Doraemon (40 images with 269 ⇥ 420). (a) Example of input images (b), (C) Recovered surface
normals and close-up views (d) Elevation angles of recovered surface normals (e) Azimuth angles of recovered surface normals

to handle a wider spectrum of sparse errors (see Fig. 3, Ta-
ble 3, and also Fig. 6 discussed below). Finally, we further
compare estimation properties between SBL and L1 using
a case from Table 3 where the number of images is 5 for
simplicity, and we do not remove shadows. Error maps and
per-pixel numbers of corruptions are displayed in Fig. 6. We
observe that the `1 method typically fails when any shadows
appear while SBL can find the correct solution in most pix-
els as long as the number of corruptions is less than 3. Note
that this is at the theoretical limit given only 5 images.

3.2. Qualitative evaluation with real images

We also evaluate our algorithm (only the SBL imple-
mentation) using real images. We captured RAW images
without gamma correction by Canon 30D camera with a
200[mm] telephotolens and set it 1.5[m] far from target
object. Lighting conditions are randomly selected from a
hemisphere whose radius is 1.5[m] with the object placed at
the center. For calibrating light sources, a glossy sphere was
placed in the scene. We use a set of 25 images of Choco-
late bear (261 ⇥ 421), and 40 images each of Doraemon
(269⇥ 420) and Fat guy (293⇥ 344). We evaluate the per-
formance by visual inspection of the normal maps, elevation
angle maps (orientations between normals and a view di-
rection) and azimuth angle maps (normal orientation on the
x-y plane) that are illustrated in Fig. 7. We observe that our
method can estimate smoother and more reasonable normal
maps in the presence of a large amount of specularities.

3.3. Evaluations with model mismatch errors

To explicitly test how deviations from the ideal Lamber-
tian assumption affect the proposed method, we conducted

two additional experiments with (a) various kinds of ma-
terials with non-Lambertian diffusions and (b) inaccurate
lighting directions. In both cases, the effective corruptions
cannot be completely modeled as sparse errors.
(a) Various kind of non-Lambertian materials

In this experiment, we test our sparse-regression-based
method on 40 sphere images rendered with one hundred
BRDF functions from the MERL database [7] (the image
size is 256 ⇥ 256). From the estimation results illustrated
in Fig. 8, we observe that for materials whose specular re-
flections and diffusive reflections are clearly distinguish-
able (e.g., (10) specular-violet-phenolic), our method out-
performs the other two methods even if the diffusive compo-
nent does not completely obey the Lambertian rule. On the
other hand, in a case where a diffusive component is dom-
inant, our sparse-regression-based method seems to have
limited advantages over other methods (e.g., (40) black-
fabric). We also observe that all methods have difficulty
in handling metallic objects which do not obey both the
Lambertian rule and the sparsity assumption of corruptions
entirely (e.g., (95) black-obsidian), however our method is
consistently the most reliable overall.
(b) Inaccurate lighting directions

For this experiment, we synthesized 40 Bunny images
and then used incorrect lighting directions (five degrees of
angular error in random directions were added) to recover
surface normals. In addition, we also attempt to refine light-
ing directions by iteratively recovering both surface normals
and lighting directions based on the symmetrical structure
of Eq. (4). First, we estimate surface normals using the
given, errant lighting directions. Then, fixing recovered
surface normals, we update the lighting directions using a

7

Robust estimation of  
complex BRDF models 

[Ikehata et al., CVPR ’12]


