What Is a Good Day for Outdoor Photometric Stereo?

Yannick Hold-Geoffroy (Laval), Jinsong Zhang (Laval) Paulo Gotardo (Disney Research, Pittsburgh), Jean-François Lalonde (Laval)

Photometric Stereo

Images of object under different light directions

Surface normals

Photometric Stereo in the lab

Non-parametric, spatially-varying reflectance

[Alldrin et al., CVPR '08]

[Basri et al., IJCV '07]

Unknown (smooth) lighting

Robust under specularities, shadows, and noise

[Ikehata et al., CVPR '12]

scaled surface normal

$\mathbf{n} = L\mathbf{n}$

Outdoor Photometric Stereo

- Cannot control the lighting! lacksquare
- Sun moves on a plane during the course of a day

Outdoor Photometric Stereo

Uncontrolled illumination!

Months of data

[Abrams et al., ECCV'12]

[Ackermann et al., CVPR'12]

Wait for a particular day

[Shen et al., Pacific Graphics '14]

Richer lighting models

[Yu et al., ICCP'13]

The quality of their results were degraded outdoors

When does Photometric Stereo work outdoors?

Summary of our findings

- Best stability is obtained when:
- 1) the sky is partially cloudy throughout the day 2) surface patches are pointing south, above the horizon 3) the sun path is low in the sky

Outline

- theoretical analysis
- data
- results

Photometric stereo — environment map lighting

Point light source vs environment map lighting

Matrix of light directions

Matrix of mean light vectors

How well does Photometric Stereo work? $\delta_k = 1.96 \frac{\sigma \lambda_k}{\rho}$

- Assume Gaussian noise on observations
- Reconstruction quality linked to: lacksquare
 - noise variance \bullet
 - albedo of surface
 - related to the conditioning of matrix I
- Intuitive measure: 95% confidence interval in normal estimation error

Example of confidence interval sphere

Run this analysis on real-world illumination conditions.

Over 3800 captures

23 days

10 months

Sun visibility throughout the day (%)

Confidence interval (degrees)

Sun visibility throughout the day (%)

Confidence interval (degrees)

Sun visibility throughout the day (%)

Sun visibility throughout the day (%)

Influence of cloud cover

Real data

Owl statuette

Corresponding Sky Capture

Normal map

Results on real data

Error with ground truth

When will Photometric Stereo work outdoors?

- Reconstruction stability is a function of :
- Best to use mixed skies

SAT Apr 25	*	90°	70°	Scattered Thunderstorms	1/50%	SW 8 mph	-
SUN Apr 26	*	90°	73°	Mostly Cloudy	/ 10%	S 10 mph	-
MON Apr 27	-	83°	66°	Heavy Thunderstorms	///80%	E 11 mph	

- Noise, surface albedo and lighting conditions

http://vision.gel.ulaval.ca/~jflalonde/projects/outdoorPS/index.html

Thank you!

