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Outdoor lighting capture

Combine 7 LDR images at different exposures into HDR
Neutral density filter
Complicated capture procedure

Stumpfel, et al. Direct HDR capture of the sun and sky. AFRIGRAPH, 2004.
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Learn to predict the extremely HDR outdoor
lighting from a single, LDR panorama.

Key idea: Large dataset of synthetic panoramas lit by real skies
Assumption: Sun is centered in the middle
Contributions:

1 Frame the LDR to HDR problem as a deep learning problem

2 Provide a novel real LDR/HDR panorama dataset

3 Introduce three novel applications

Hold-Geoffroy, et al. Deep Outdoor Illumination Estimation. CVPR, 2017.
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Synthetic panoramas lit by real skies

Real sky
Laval HDR Sky Database
• 38,000 images
• 103 days over 3 years

City model
• Realistic
• Detailed
• Random position
• Different exposures
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Real sky
Laval HDR Sky Database
• 38,000 images
• 103 days over 3 years

City model
• Realistic
• Detailed
• Random position
• Different exposures

58,000 HDR panoramas



CNN structure

LHDR(y, t) = ||yHDR − tHDR||1, tHDR = α(t∗
HDR)1/γ

Lθ(y, t) = ||yθ − tθ||2
Lrender(y, t) = ||TyHDR − TtHDR||2
Lall(y, t) = LHDR(y, t) + λ1Lθ(y, t) + λ2Lrender(y, t)
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Results on synthetic data
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How well does it work with real images?



Results on synthetic data

Ground truth HDR Render Predicted HDR Render

How well does it work with real images?



Novel real data

LDR panorama HDR sky

Ricoh Theta S Canon 5D Mark III
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Towards a real scenario

Method
Error metrics

HDR Render Sun elevation Sun intensity

LDR 5.30 1.34 0.21 0.54

Baseline
(trained on synthetic) 5.34 1.19 0.10 0.43

No access to camera With access to camera
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Experiments on real data
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HDR Render Sun elev. Sun inten.

LDR 5.30 1.34 0.21 0.54
Baseline

(trained on synthetic) 5.34 1.19 0.10 0.43
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Fine-tuning 2.55 0.64 0.07 0.22Augmenting synthetic dataset

• Camera response function (CRF)
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Single shot outdoor light probe

Render with LDR Render with Ours
Results on the finetune model
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Visualization in Google Street View imagery

Google Street View imagery
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Learn to predict the extremely HDR outdoor lighting from a
single, LDR panorama.

Contributions:
1 Frame the LDR to HDR problem as a deep learning

problem
2 Provide a novel real dataset
3 Introduce several novel applications

Code and data are available on our website:
jflalonde.ca/projects/learningHDR
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