Learning High Dynamic Range from Outdoor Panoramas

Jinsong Zhang and Jean-François Lalonde

Université Laval Québec City, Canada

Outdoor lighting

Image credit: Barrett&MacKay | Getty Images

Stumpfel, et al. Direct HDR capture of the sun and sky. AFRIGRAPH, 2004.

Combine 7 LDR images at different exposures into HDR

Stumpfel, et al. Direct HDR capture of the sun and sky. AFRIGRAPH, 2004.

Combine 7 LDR images at different exposures into HDR Neutral density filter

Stumpfel, et al. Direct HDR capture of the sun and sky. AFRIGRAPH, 2004.

Combine 7 LDR images at different exposures into HDR Neutral density filter *Complicated capture procedure*

Stumpfel, et al. Direct HDR capture of the sun and sky. AFRIGRAPH, 2004.

Key idea: Large dataset of synthetic panoramas lit by real skies

Key idea: Large dataset of synthetic panoramas lit by **real skies** Assumption: Sun is centered in the middle

Hold-Geoffroy, et al. Deep Outdoor Illumination Estimation. CVPR, 2017.

Key idea: Large dataset of synthetic panoramas lit by **real skies** Assumption: Sun is centered in the middle Contributions:

- Frame the LDR to HDR problem as a deep learning problem
- 2 Provide a novel real LDR/HDR panorama dataset
- 3 Introduce three novel applications

Hold-Geoffroy, et al. Deep Outdoor Illumination Estimation. CVPR, 2017.

Synthetic panoramas lit by real skies

Synthetic panoramas lit by real skies

Real sky

Laval HDR Sky Database

- 38,000 images
- 103 days over 3 years

Synthetic panoramas lit by real skies

Real sky

Laval HDR Sky Database

- 38,000 images
- 103 days over 3 years

City model

- Realistic
- Detailed
- Random position
- Different exposures

$\mathcal{L}_{\mathsf{HDR}}(\mathbf{y},\mathbf{t}) = ||\mathbf{y}_{\mathsf{HDR}} - \mathbf{t}_{\mathsf{HDR}}||_1, \mathbf{t}_{\mathsf{HDR}} = \alpha (\mathbf{t}_{\mathsf{HDR}}^*)^{1/\gamma}$

$$\mathcal{L}_{\mathsf{HDR}}(\mathbf{y}, \mathbf{t}) = ||\mathbf{y}_{\mathsf{HDR}} - \mathbf{t}_{\mathsf{HDR}}||_1, \mathbf{t}_{\mathsf{HDR}} = \alpha (\mathbf{t}_{\mathsf{HDR}}^*)^{1/\gamma}$$

$$\begin{split} \mathcal{L}_{\mathsf{HDR}}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{y}_{\mathsf{HDR}} - \mathbf{t}_{\mathsf{HDR}}||_{1}, \mathbf{t}_{\mathsf{HDR}} = \alpha {(\mathbf{t}_{\mathsf{HDR}}^{*})}^{1/\gamma} \\ \mathcal{L}_{\theta}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{y}_{\theta} - \mathbf{t}_{\theta}||_{2} \end{split}$$

$$\begin{split} \mathcal{L}_{\mathsf{HDR}}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{y}_{\mathsf{HDR}} - \mathbf{t}_{\mathsf{HDR}}||_1, \mathbf{t}_{\mathsf{HDR}} = \alpha {(\mathbf{t}_{\mathsf{HDR}}^*)}^{1/\gamma} \\ \mathcal{L}_{\theta}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{y}_{\theta} - \mathbf{t}_{\theta}||_2 \end{split}$$

$$\begin{split} \mathcal{L}_{\text{HDR}}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{y}_{\text{HDR}} - \mathbf{t}_{\text{HDR}}||_1, \mathbf{t}_{\text{HDR}} = \alpha (\mathbf{t}_{\text{HDR}}^*)^{1/\gamma} \\ \mathcal{L}_{\theta}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{y}_{\theta} - \mathbf{t}_{\theta}||_2 \\ \mathcal{L}_{\text{render}}(\mathbf{y}, \mathbf{t}) &= ||\mathbf{T}_{\text{HDR}} - \mathbf{T}_{\text{HDR}}||_2 \end{split}$$

$$\begin{split} \mathcal{L}_{HDR}(\textbf{y},\textbf{t}) &= ||\textbf{y}_{HDR} - \textbf{t}_{HDR}||_1, \textbf{t}_{HDR} = \alpha {(\textbf{t}_{HDR}^*)}^{1/\gamma} \\ \mathcal{L}_{\theta}(\textbf{y},\textbf{t}) &= ||\textbf{y}_{\theta} - \textbf{t}_{\theta}||_2 \\ \mathcal{L}_{render}(\textbf{y},\textbf{t}) &= ||\textbf{T}\textbf{y}_{HDR} - \textbf{T}\textbf{t}_{HDR}||_2 \\ \mathcal{L}_{all}(\textbf{y},\textbf{t}) &= \mathcal{L}_{HDR}(\textbf{y},\textbf{t}) + \lambda_1 \mathcal{L}_{\theta}(\textbf{y},\textbf{t}) + \lambda_2 \mathcal{L}_{render}(\textbf{y},\textbf{t}) \end{split}$$

Results on synthetic data

Results on synthetic data

How well does it work with real images?

Novel real data

LDR panorama

HDR sky

Ricoh Theta S

Canon 5D Mark III

Novel real data

Ricoh Theta S

Towards a real scenario

Method	Error metrics			
	HDR	Render	Sun elevation	Sun intensity
LDR	5.30	1.34	0.21	0.54

Towards a real scenario

Method	Error metrics					
	HDR	Render	Sun elevation	Sun intensity		
LDR	5.30	1.34	0.21	0.54		
Baseline (trained on synthetic)	5.34	1.19	0.10	0.43		

Towards a real scenario

Method	Error metrics					
	HDR	Render	Sun elevation	Sun intensity		
LDR	5.30	1.34	0.21	0.54		
Baseline (trained on synthetic)	5.34	1.19	0.10	0.43		

Towards a real scenario

Method	Error metrics					
	HDR	Render	Sun elevation	Sun intensity		
LDR	5.30	1.34	0.21	0.54		
Baseline (trained on synthetic)	5.34	1.19	0.10	0.43		

With access to camera

	Method	Error metrics			
		HDR	Render	Sun elev.	Sun inten.
	LDR	5.30	1.34	0.21	0.54
No access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43

	Method	Error metrics				
		HDR	Render	Sun elev.	Sun inten.	
	LDR	5.30	1.34	0.21	0.54	
No access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43	

Augmenting synthetic dataset

	Method	dError metrics				
		HDR	Render	Sun elev.	Sun inten.	
	LDR	5.30	1.34	0.21	0.54	
No access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43	

Augmenting synthetic dataset

• Camera response function (CRF)

Grossberg and Nayar. What is the Space of Camera Response Functions? CVPR, 2003

	Method	Error metrics				
		HDR	Render	Sun elev.	Sun inten.	
	LDR	5.30	1.34	0.21	0.54	
No access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43	

Augmenting synthetic dataset

- Camera response function (CRF)
- White balance (WB)

Grossberg and Nayar. What is the Space of Camera Response Functions? CVPR, 2003

	Method		Err	or metrics	
		HDR	Render	Sun elev.	Sun inten.
	LDR	5.30	1.34	0.21	0.54
No access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43
	WB+CRF	3.59	1.06	0.08	0.31

Scene 1

Scene 2

Augmenting synthetic dataset

- Camera response function (CRF)
- White balance (WB) 0

Grossberg and Nayar. What is the Space of Camera Response Functions? CVPR, 2003

	Method	Error metrics			
Allest mark		HDR	Render	Sun elev.	Sun inten.
	LDR	5.30	1.34	0.21	0.54
h access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43
	WB+CRF	3.59	1.06	0.08	0.31

	Method	Error metrics			
Miller		HDR	Render	Sun elev.	Sun inten.
	LDR	5.30	1.34	0.21	0.54
ith access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43
	WB+CRF	3.59	1.06	0.08	0.31

Camera calibration

- Inverse response function
- White balance transformation

	Method	Error metrics			
Miller - male		HDR	Render	Sun elev.	Sun inten.
	LDR	5.30	1.34	0.21	0.54
th access to camera	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43
	WB+CRF	3.59	1.06	0.08	0.31

Camera calibration

- Inverse response function
- White balance transformation

	Method		Error metrics				
		HDR	Render	Sun elev.	Sun inten.		
h access to camera	LDR	5.30	1.34	0.21	0.54		
	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43		
	WB+CRF	3.59	1.06	0.08	0.31		
	Calibration	2.99	1.03	0.08	0.30		

Camera calibration

- Inverse response function
- White balance transformation

W

Vith access to camera	Method	Error metrics				
		HDR	Render	Sun elev.	Sun inten.	
	LDR	5.30	1.34	0.21	0.54	
	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43	
	WB+CRF	3.59	1.06	0.08	0.31	
	Calibration	2.99	1.03	0.08	0.30	

- Inverse response function
- White balance transformation
- Pinetuning with real HDR data

With access to camera	Method	Error metrics				
		HDR	Render	Sun elev.	Sun inten.	
	LDR	5.30	1.34	0.21	0.54	
	Baseline (trained on synthetic)	5.34	1.19	0.10	0.43	
	WB+CRF	3.59	1.06	0.08	0.31	
	Calibration Fine-tuning	2.99 2.55	1.03 0.64	0.08 0.07	0.30 0.22	

- Camera calibration
 - Inverse response function
 - White balance transformation
- Pinetuning with real HDR data

25th

25th

Pred

UNIVERSITÉ

Gnd truth

Gnd truth

Pred

Render with LDR

Render with LDR

Render with Ours

Results on the finetune model

Google Street View imagery

Google Street View imagery

Render with LDR

Google Street View imagery

Render with LDR

Render with Ours

Learn to predict the extremely HDR outdoor lighting from a single, LDR panorama.

Learn to predict the extremely HDR outdoor lighting from a single, LDR panorama.

Contributions:

Frame the LDR to HDR problem as a deep learning problem

Learn to predict the extremely HDR outdoor lighting from a single, LDR panorama.

Contributions:

- Frame the LDR to HDR problem as a deep learning problem
- 2 Provide a novel real dataset

Learn to predict the extremely HDR outdoor lighting from a single, LDR panorama.

Contributions:

- Frame the LDR to HDR problem as a deep learning problem
- 2 Provide a novel real dataset
- 3 Introduce several novel applications

Conclusion

Learn to predict the extremely HDR outdoor lighting from a single, LDR panorama.

Contributions:

- Frame the LDR to HDR problem as a deep learning problem
- 2 Provide a novel real dataset
- 3 Introduce several novel applications

Code and data are available on our website: jflalonde.ca/projects/learningHDR

