

Learning High Dynamic Range from Outdoor Panoramas

Jinsong Zhang and Jean-François Lalonde Université Laval http://www.jflalonde.ca/projects/learningHDR

Motivation Outdoor lighting Low Dynamic Range (LDR) vs. High Dynamic Range (HDR) Render with Outdoor scene LDR lighting Render with our HDR lighting

Challenge

Hard to capture outdoor lighting with conventional cameras.

- Extremely high dynamic range
- Absolute intensity

Goal

Directly learn the extremely high dynamic range of outdoor lighting from a single, LDR 360° panorama.

Project page

Contributions

- Regress HDR instead of capturing it
- Novel LDR/HDR dataset
- Three novel applications

Approach

Synthetic Data Generation & Result

From synthetic to Real

Experiments on Real Data

Generalizing the model trained on synthetic data

- Modeling white balance
- Modeling camera response function
- Domain adaptation

Improving the model trained on synthetic data

• Finetuning the model with a small amount of labelled real data.

Adapting the input LDR panorama

- Applying simple gamma function
- Applying inverse response function
- + white balance transformation

Applying inverse response function

Results

Applications

2. Making Google Street View HDR

3. Image matching

