Learning to Estimate Indoor Lighting from 3D Objects

Henrique Weber*, Donald Prévost†, Jean-François Lalonde*
Université Laval*, Institut National d’Optique†

GOALS

1) From a picture of an object (known pose and geometry),
2) We learn to estimate the lighting conditions,
3) Then, we can render other objects with the estimated light.

DATASET GENERATION

1) We have selected 1600 images from the Laval Indoor HDR Database.
2) For each panorama, we manually labelled the approximate 3D geometry.
3) Each panorama can then be warped in a geometrically-consistent way, which effectively generates new lighting environment maps.

APPROACH

1) From a picture of an object (known pose and geometry),
2) We learn to estimate the lighting conditions,
3) Then, we can render other objects with the estimated light.

RESULTS

AUTOENCODER REPRESENTATION OF ENVIRONMENT MAPS

NETWORK ARCHITECTURE

INDOOR LIGHTING ESTIMATION RESULTS

Code available!

jflalonde.ca/projects/illumPredict

Input panorama
Approximate 3D geometry

Autoencoder loss: \(\mathcal{L}_{AE} = || c - c_{AE} ||_1 \)
Illumination predictor loss: \(\mathcal{L}_{c} = || z - z_{c} ||_2 \)