As opposed to traditional means of energy production, solar
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Motivation

energy depends on the varying illumination conditions.

e Short term photovoltaic (PV) forecasting is critical to the

operation of the smart grid
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Challenge

e Solar power at ground level is intermittent which highly depends on
cloud cover.

e Short term cloud changes such as velocity, direction, formation and
destruction are very difficult to predict.

e Solar ener lobal ity, 2007-2017 .
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2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Time 11.57 11:58 11:59 12:00 12:01 12:02
RENEWABLES 2018 GLOBAL STATUS REPORT PV power 2093.0 888.0 527.0 667.0 646.0 2161.5
Performance on the test dataset
HEQI‘ESSDI’S Prediction for 1-min future. All metrics are reported in watts.
Model clear partially cloudy overcast all
0Ce MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Persistence 8.4 18.3 144.2 257.6 ol.7 94.2 81.6 177.5
MLP 6.7 15.6 1:31.5 238.6 45.8 85.4 73.4 163.7
Imaae CNN 6.1 16.4 123.5 227.9 41.2 83.6 68.6 156.4
| g : LSTM 9.5 15.9 107.2 200.6 40.8 82.8 61.1 139.3
Encoder LSTM-Full 56  15.3  109.2 2031 36.1 76.9 60.7  140.5
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[ . A Prediction for different horizons. All metrics are reported in watts.
latentvectors = = """ i Predictors i Tothron clear partially cloudy overcast all
L v MAE RMSE MAE RMSE MAE RMSE MAE RMSE SS-MAE SS-RMSE
r
PV | ! 1-min 5.6 15.3 109.3 203.5 36.4 76.5 60.7 140.5 25.5% 20.8%
{tK, ..., -1, § H PV Concatenator 2min 9.1 20.6 160.7 2632 546 926 90.2 181.5 16.4%  11.5%
f A 5-min 15.2 304 203.0 2924 87.4 126.5 120.7 206.3 14.4% 10.4%
PV, e PV, 10-min  21.4 36.8 239.1 321.8 133.7 183.9 153.8 2385 121%  7.7%
Lower is better for the tables
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Higher is better for the plots

Data

90 days in total: captured sky image along with its PV energy
e PV energy is recorded at PV cells
e 4 images are captured with different exposures
o SKy camera is mounted close to the PV panel equipped
with a fisheye lens pointing to zenith

Data are splitted according to days
e 80%/(72 days) for training
e 20%(18 days) for test
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Results
Forecasting result for a typical day
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