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Our approach

No calibration Any camera No prior knowledge

[Debevec, 1998] [Tocci, 2011], [Manakov, 2013] [Rematas, 2015]



Our goal

Given a single indoor LDR image, recover a
whole HDR environment map
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Spatially-varying lighting: the warp operator

Sphere Latlong projection Panorama example
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Our goal

Given a single indoor LDR image, recover a
whole HDR environment map

Spatially-varying lighting

Light mask creation



Recovering light positions: network architecture

• End-to-end deep neural network

• Takes a picture as input
• Encodes it
• Decodes to get:

1. Light mask
2. RGB panorama

• In more details:

• Encoder: ResNet blocks
• Decoders: deconv layers
• No pooling (striding)
• Adam optimizer
• 38M parameters
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Given a single indoor LDR image, recover a
whole HDR environment map

Spatially-varying lighting

Light mask creation
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Training

• L2 loss on the RGB, cross-entropy on the light mask
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αe � 1 (diffuse) αe � 10 αe � 80 (glossy)
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Our goal

Given a single indoor LDR image, recover a
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Adding HDR data

• New HDR panorama dataset: indoor.hdrdb.com
• 2100 indoor scenes, fully HDR, high-res Categories:

• bedroom
• living room
• machine shop
• church
• elevator
• bathroom
• lobby
• laboratory
• auditorium
• hallway
• classroom
• kitchen

• basement
• kids room
• museum
• grocery store
• factory
• storage room
• sports facility
• tunnel
• staircase
• office lobby
• conference room
• etc...

indoor.hdrdb.com


Towards light intensity recovery

• Fine-tuning on HDR data

• RGB head → idem (ambient term)
• Light mask → log-intensity

• Render loss used for log-intensity head
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Our goal

Given a single indoor LDR image, recover a
whole HDR environment map

Spatially-varying lighting Loss function

Light mask creation Light position

Network architecture HDR fine-tuning



Render results

Ground truth Prediction
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Results (render)

Ground truth Prediction
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• A/B comparison against ground truth lighting

• 105 users, 20 scenes

• Our approach outperforms state-of-the-art methods
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Conclusion

Main contribution: framing lighting estimation as end-to-end learning

• New HDR panorama dataset

• Novel warping operator and render loss function
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Thank you!

More info: jflalonde.ca/projects/deepIndoorLight
HDR dataset: indoor.hdrdb.com

jflalonde.ca/projects/deepIndoorLight
indoor.hdrdb.com

