Learning to Predict Indoor Illumination from a Single Image

Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gambaretto, Christian Gagné, Jean-François Lalonde

Université Laval, Québec, Canada Adobe Systems Inc., San Jose, USA

Illumination is key

Illumination is key

Calibration objects

[Debevec, 1998]

Calibration objects

Specialized hardware

[Debevec, 1998]

[Tocci, 2011], [Manakov, 2013]

Calibration objects

Specialized hardware

Scene knowledge

[Debevec, 1998]

[Tocci, 2011], [Manakov, 2013]

[Rematas, 2015]

Our approach

No calibration

Specialized hardware

Scene knowledge

[Tocci, 2011], [Manakov, 2013]

[Rematas, 2015]

Our approach

No calibration

Any camera

Scene knowledge

[Rematas, 2015]

Our approach

No calibration

Any camera

No prior knowledge

Our goal

Given a single indoor LDR image, recover a whole HDR environment map

Spatially-varying lighting

Spatially-varying lighting

Actual lighting

Spatially-varying lighting

Panorama lighting

Spatially-varying lighting: the *warp* operator

Actual lighting

Panorama lighting

Actual lighting

Estimated lighting

Panorama lighting

Actual lighting

Estimated lighting

Panorama lighting

• Automatic approach (no user intervention needed)

Given a single indoor LDR image, recover a whole HDR environment map

Recovering light positions: dataset creation

SUN360 dataset

- SUN360 dataset
- No HDR!

- SUN360 dataset
- No HDR!
- HOG+SVM+CRF light mask detector

Recovering light positions: dataset creation

Panorama Detection Light mask SUN360 dataset • No HDR! HOG+SVM+CRF light mask detector

Given a single indoor LDR image, recover a whole HDR environment map

Spatially-varying lighting

Light mask creation

End-to-end deep neural network

- End-to-end deep neural network
 - Takes a picture as input

Input image (LDR)

- End-to-end deep neural network
 - Takes a picture as input
 - Encodes it

Input image (LDR)

- End-to-end deep neural network
 - Takes a picture as input
 - *Encodes* it
 - Decodes to get:
 - 1. Light mask

- End-to-end deep neural network
 - Takes a picture as input
 - Encodes it
 - Decodes to get:
 - 1. Light mask
 - 2. RGB panorama

- End-to-end deep neural network
 - Takes a picture as input
 - Encodes it
 - Decodes to get:
 - 1. Light mask
 - 2. RGB panorama
- In more details:
 - Encoder: ResNet blocks
 - Decoders: deconv layers
 - No pooling (striding)
 - Adam optimizer
 - 38M parameters

Our goal

Given a single indoor LDR image, recover a whole HDR environment map

Spatially-varying lighting

Light mask creation

Network architecture

Training		
	Light probability	

• L2 loss on the RGB, cross-entropy on the light mask

Training (loss function)

- We introduce a tunable render loss function
- L2 loss on the filtered masks

$$\mathcal{F}(\mathbf{p}, i, e) = \frac{1}{K_i} \sum_{\omega \in \Omega_i} \mathbf{p}(\omega) \mathbf{s}(\omega) (\omega \cdot n_i)^{\alpha e}$$

Training (loss function)

- We introduce a tunable render loss function
- L2 loss on the *filtered* masks

$$\mathcal{F}(\mathbf{p}, i, e) = \frac{1}{K_i} \sum_{\omega \in \Omega_i} \mathbf{p}(\omega) \mathbf{s}(\omega) (\omega \cdot \mathbf{n}_i)^{\alpha e}$$

Training (loss function)

Our goal

Given a single indoor LDR image, recover a whole HDR environment map

Spatially-varying lighting

Light mask creation

Network architecture

LOW LIGHT PRODADITIES INGI		Light probability	
----------------------------	--	-------------------	--

Low Light probability	
-----------------------	--

Light probability	
Light probability	

Low Light probability Hig

Light probability	

Low Light probability Hig

Light probability	
Light probability	

Low Light probability	
-----------------------	--

Lighte probability (inght		Light probability	
---------------------------	--	-------------------	--

Low Light probability	
-----------------------	--

Our goal

Given a single indoor LDR image, recover a whole HDR environment map

Spatially-varying lighting

Light mask creation

Network architecture

Adding HDR data

- New HDR panorama dataset: indoor.hdrdb.com
 - 2100 indoor scenes, fully HDR, high-res

Categories:

- bedroom
- living room
- machine shop
- church
- elevator
- bathroom
- lobby
- laboratory
- auditorium
- hallway
- classroom
- kitchen

- basement
- kids room
- museum
- grocery store
- factory
- storage room
- sports facility
- tunnel
- staircase
- office lobby
- conference room
- etc...

Towards light intensity recovery

Towards light intensity recovery

- Fine-tuning on HDR data
 - RGB head → idem (ambient term)
 - Light mask \rightarrow *log-intensity*

Towards light intensity recovery

- Fine-tuning on HDR data
 - RGB head \rightarrow idem (ambient term)
 - Light mask \rightarrow *log-intensity*
- Render loss used for log-intensity head

Results (light intensity and RGB)

Results (light intensity and RGB)

Results (light intensity and RGB)

Our goal

Given a single indoor LDR image, recover a whole HDR environment map

Spatially-varying lighting

Light mask creation

Network architecture

Ground truth

Render results

Ground truth

Ground truth

Prediction

Render results

Ground truth

Prediction

Ground truth

Prediction

User study

• A/B comparison against ground truth lighting

User study

- A/B comparison against ground truth lighting
- 105 users, 20 scenes

Pair #3

Which image from Pair #3 looks MORE realistic? *

The left one

The right one

They both look equally plausible

Pair #4

Which image from Pair #4 looks MORE realistic? *

The left one

The right one

They both look equally plausible

User study

- A/B comparison against ground truth lighting
- 105 users, 20 scenes
- Our approach outperforms state-of-the-art methods

Pair #3

Which image from Pair #3 looks MORE realistic? *

- The left one
- The right one
- They both look equally plausible

Pair #4

Which image from Pair #4 looks MORE realistic? *

- The left one
- The right one
- They both look equally plausible

Main contribution: framing lighting estimation as end-to-end learning

New HDR panorama dataset

Main contribution: framing lighting estimation as end-to-end learning

- New HDR panorama dataset
- Novel warping operator and render loss function

Main contribution: framing lighting estimation as end-to-end learning

- New HDR panorama dataset
- Novel warping operator and render loss function

Main contribution: framing lighting estimation as end-to-end learning

- New HDR panorama dataset
- Novel warping operator and render loss function

Thank you!

More info: jflalonde.ca/projects/deepIndoorLight HDR dataset: indoor.hdrdb.com