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In Defense of the Eight-Point Algorithm
Richard I. Hartley

Abstract —The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point
algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the
advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence
virtually useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple
normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best
iterative algorithms. This improved performance is justified by theory and verified by extensive experiments on real images.

Index Terms —Fundamental matrix, eight-point algorithm, condition number, epipolar structure, stereo vision.

——————————   ✦   ——————————

1 INTRODUCTION

HE eight-point algorithm for computing the essential
matrix was introduced by Longuet-Higgins in a now

classic paper [1]. In that paper the essential matrix is used
to compute the structure of a scene from two views with
calibrated cameras. The great advantage of the eight-point
algorithm is that it is linear, hence fast and easily imple-
mented. If eight point matches are known, then the solution
of a set of linear equations is involved. With more than
eight points, a linear least squares minimization problem
must be solved. The term eight-point algorithm will be
used in this paper to describe this method whether only
eight points, or more than eight points are used.

The essential property of the essential matrix is that it
conveniently encapsulates the epipolar geometry of the
imaging configuration. One notices immediately that the
same algorithm may be used to compute a matrix with this
property from uncalibrated cameras. In this case of uncali-
brated cameras it has become customary to refer to the ma-
trix so derived as the fundamental matrix. Just as in the cali-
brated case, the fundamental matrix may be used to recon-
struct the scene from two uncalibrated views, but in this
case only up to a projective transformation [2], [3]. Apart
from scene reconstruction, the fundamental matrix may
also be used for many other tasks, such as image rectifica-
tion [4], computation of projective invariants [5], outlier
detection [6], [7], and stereo matching [8].

Unfortunately, despite its simplicity the eight-point algo-
rithm has often been criticized for being excessively sensitive
to noise in the specification of the matched points. Indeed
this belief has become the prevailing wisdom. Consequently,
because of its importance, many alternative algorithms have
been proposed for the computation of the fundamental ma-
trix. See [9], [10] for a description and comparison of several
algorithms for finding the fundamental matrix. Without ex-
ception, these algorithms are considerably more complicated

than the eight-point algorithm. Other iterative algorithms
have been described (briefly) in [11], [12].

It is the purpose of this paper to challenge the common
view that the eight-point algorithm is inadequate and
markedly inferior to the more complicated algorithms. The
poor performance of the eight-point algorithm can probably
be traced to implementations that do not take sufficient
account of numerical considerations, most specifically the
condition of the set of linear equations being solved. It is
shown in this paper that a simple transformation
(translation and scaling) of the points in the image before
formulating the linear equations leads to an enormous im-
provement in the condition of the problem and hence of the
stability of the result. The added complexity of the algo-
rithm necessary to do this transformation is insignificant.

It is not claimed here that this modified eight-point algo-
rithm will perform quite as well as the best iterative algo-
rithms. However it is shown by thousands of experiments
on many images that the difference is not very great be-
tween the modified eight-point algorithm and iterative te-
chiques. Indeed the eight-point algorithm does better than
some of the iterative techniques.

2 OUTLINE OF THE EIGHT-POINT ALGORITHM

2.1 Notation
Vectors are represented by bold lower case letters, such as
u, and all such vectors are thought of as being column vec-
tors unless explicitly transposed (for instance, u> is a row
vector). Vectors are multiplied as if they were matrices. In
particular, for vectors u and v, the product u v>  represents
the inner product, whereas uv> is a matrix. The norm of a
vector f is equal to the square root of the sum of squares of
its entries, that is the Euclidean length of the vector. Simi-
larly, for matrices, we use the Frobenius norm, which is
defined to be the square root of the sum of squares of the
entries of the matrix.

0162-8828/97/$10.00 © 1997 IEEE

————————————————

• The author is with G.E. CRD, Schenectady, NY 12301.
 E-mail: hartley@crd.ge.com.

Manuscript received 26 Jan. 1996; revised 11 Apr. 1997. Recommended for accep-
tance by J. Connell.
For information on obtaining reprints of this article, please send e-mail to:
transpami@computer.org, and reference IEEECS Log Number 104913.

T



HARTLEY: IN DEFENSE OF THE EIGHT-POINT ALGORITHM 581

2.2 Linear Solution for the Fundamental Matrix
The fundamental matrix is defined by the equation

¢ =u u>F 0                                       (1)

for any pair of matching points u¢ ´ u in two images.
Given sufficiently many point matches ui¢ ´ ui (at least
eight) this equation (1) can be used to compute the un-
known matrix F. In particular, writing u = (u, v, 1)> and u¢ =

(u¢, v¢, 1)> each point match gives rise to one linear equation

in the unknown entries of F. The coefficients of this equa-
tion are easily written in terms of the known coordinates u
and u¢. Specifically, the equation corresponding to a pair of
points (u, v, 1) and (u¢, v¢, 1) will be

uu F uv F uF vu F vv F

vF u F v F F

¢ + ¢ + + ¢ + ¢ +
+ ¢ + ¢ + =

11 21 31 12 22

32 13 23 33 0 (2)

The row of the equation matrix may be represented as a
vector

(uu¢, uv¢, u, vu¢, vv¢, v, u¢, v¢, 1)                     (3)

From all the point matches, we obtain a set of linear
equations of the form

Af = 0                                              (4)

where f is a nine-vector containing the entries of the matrix
F, and A is the equation matrix. The fundamental matrix F,
and hence the solution vector f is defined only up to an un-
known scale. For this reason, and to avoid the trivial solu-
tion f, we make the additional constraint

i f i = 1                                         (5)

where i f i is the norm of f.1

Under these conditions, it is possible to find a solution to
the system (4) with as few as eight point matches. With
more than eight point matches, we have an overspecified
system of equations. Assuming the existence of a non-zero
solution to this system of equations, we deduce that the
matrix A must be rank-deficient. In other words, although
A has nine columns, the rank of A must be at most eight. In
fact, except for exceptional configurations [13] the matrix A
will have rank exactly eight, and there will be a unique so-
lution for f.

This previous discussion assumes that the data is perfect,
and without noise. In fact, because of inaccuracies in the
measurement or specification of the matched points, the
matrix A will not be rank-deficient—it will have rank nine.
In this case, we will not be able to find a non-zero solution
to the equations Af = 0. Instead, we seek a least-squares
solution to this equation set. In particular, we seek the vec-
tor f that minimizes iAfi subject to the constraint ifi = f>f =
1. It is well known (and easily derived using Lagrange
multipliers) that the solution to this problem is the unit ei-

1. An alternative is to set F33 = 1 and solving a linear least squares mini-
mization problem. The general conclusions of this paper are equally valid
for this version of the algorithm.

genvector corresponding to the smallest eigenvalue of A>A.
Note that since A>A is positive semi-definite and symmet-
ric, all its eigenvectors are real and positive, or zero. For
convenience, (though somewhat inexactly), we will call this
eigenvector the least eigenvector of A>A. An appropriate al-
gorithm for finding this eigenvector is the algorithm of Ja-
cobi [14] or the Singular Value Decomposition [14], [15].

2.3 The Singularity Constraint
An important property of the fundamental matrix is that it
is singular, in fact of rank two. Furthermore, the left and
right null-spaces of F are generated by the vectors repre-
senting (in homogeneous coordinates) the two epipoles in
the two images. Most applications of the fundamental ma-
trix rely on the fact that it has rank two. The matrix F found
by solving the set of linear equations (4) will not in general
have rank two, and we should take steps to enforce this
constraint. The most convenient way to enforce this con-
straint is to correct the matrix F found by the solution of (4).
Matrix F is replaced by the matrix F¢ that minimizes the
Frobenius norm i F - F¢i subject to the condition det F¢ = 0.
A convenient method of doing this is to use the Singular
Value Decomposition (SVD). In particular, let F = UDV> be
the SVD of F, where D is a diagonal matrix D = diag(r, s, t)
satisfying r ≥ s ≥ t. We let F¢ = Udiag(r, s, 0)V>. This method
was suggested by Tsai and Huang [16] and has been proven
to minimize the Frobenius norm of F - F¢, as required.

Minimizing the difference between F and F¢ in Fro-
benius norm has little theoretical justification, and in fact
there are other methods of enforcing the singularity con-
straint a posteriori which have more theoretical basis (for
instance, [17]). However, as will be seen this method gives
good results.

Thus, the eight-point algorithm for computation of the
fundamental matrix may be formulated as consisting of two
steps, as follows:

1) Linear solution: Given point matches ui¢ ´ ui, solve
the equations ui¢

>Fui = 0 to find F. The solution is the
least eigenvector, f of A>A, where A is the equation
matrix.

2) Constraint enforcement: Replace F by F¢, the closest
singular matrix to F under Frobenius norm. This is
done using the Singular Value Decomposition.

The algorithm thus stated is extremely simple and rapid
to implement, assuming the availability of a suitable linear
algebra library (for instance, [14]).

3 TRANSFORMATION OF THE INPUT

Image coordinates are sometimes given with the origin at
the top-left of the image, and sometimes with the origin at
the center. The question immediately occurs whether this
makes a difference to the results of the eight-point algo-
rithm for computing the fundamental matrix. More gener-
ally, to what extent is the result of the eight-point algorithm
dependent on the choice of coordinates in the image. Sup-
pose, for instance the image coordinates were changed by
some affine or even projective transformation before run-
ning the algorithm. Will this materially change the result?
That is the question that we will now consider.
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Suppose that coordinates u in one image are replaced by
$u u= T , and coordinates u¢ in the other image are replaced
by $ ¢ = ¢ ¢u uT . Substituting in the equation u¢>Fu = 0, we

derive the equation $ $¢ ¢ =- -u u> >T FT 1 0 , where ¢-T > is the
inverse transpose of T¢. This relation implies that ¢- -T FT> 1

is the fundamental matrix corresponding to the point corre-
spondences $ $¢ ´u u . An alternative method of finding the
fundamental matrix is therefore suggested, as follows.

1) Transform the image coordinates according to trans-
formations $u ui iT=  and $ ¢ = ¢ ¢u ui iT .

2) Find the fundamental matrix $F  corresponding to the
matches $ $¢ ´u ui i .

3) Set F T FT= ¢> $ .

The fundamental matrix found in this way corresponds
to the original untransformed point correspondences
ui¢ ´ ui. What choice should be made for the transforma-

tions T and T¢ will be left unspecified for now. First, we
need to determine whether carrying out this transformation
has any effect whatever on the result.

As verified above, ¢ = ¢u u u u> >F F$ $ $ , where $F  is defined
by $F T FT= ¢- -> 1. Thus, if u¢>Fu = e, then also $ $ $¢ =u u>F e .

Thus, there is a one-to-one correspondence between F and
$F  giving rise to the same error. It may appear therefore that

the matrices F and $F  minimizing the error e (or more ex-
actly, the sum of squares of errors corresponding to all
points) will be related by the formula $F T FT= ¢- -> 1, and
hence one may retrieve F as the product ¢T FT> $ . This con-
clusion is false however. For, although F and $F  so defined
give rise to the same error e, the condition i F i = 1, imposed
as a constraint on the solution, is not equivalent to the con-

dition $F = 1. In particular, there is no one-to-one corre-

spondence between F and $F  giving rise to the same error e,

subject to the constraint F F= =$ 1.

This is a crucial point, and so we will look at it from a
different point of view. A set of point correspondences
ui¢ ´ ui give rise to a set of equations of the form Af = 0. If
now we make the transformation $u ui iT=  and $ ¢ = ¢ ¢u ui iT ,
then the set of equations will be replaced by a different set
of equations of the form $ $Af = 0 . One may verify, in par-
ticular that the matrix $A  may be written in the form
$A AS=  where S is a 9 ¥ 9 matrix that may be written ex-

plicitly in terms of the entries of T and T¢ (but it is not very
important exactly how). Therefore one is led to consider the
two sets of equations Af = 0 and AS$f = 0 . One may guess
that the least-squares solutions to these two sets of equa-
tions will be related according to $f f= -S 1 . If this were so,
then replacing $f  by S$f  one once more retrieves the original
solution f. The mapping $ $f fa S  corresponds precisely to
the matrix mapping $ $F T FTa ¢> .

However, things are not that simple. Perhaps the least-
squares solutions to the two sets of equations Af = 0 and

AS$f = 0  are not so simply related. The solution f to the
system Af = 0 is the least eigenvector of the matrix A>A. Is

it so that $f f= -S 1  is the least eigenvector of (AS)>(AS)? Let-

ting l be the least eigenvalue of A>A, we verify:

S A AS S A ASS
S A A
S

S S

> > > >

> >

>

>

$

$

$

f f
f

f
f

f

=
=
=
=
π

-1

l
l
l

Thus, in fact, S-1f is not the least eigenvector of (AS)>AS.
In fact it is not an eigenvector at all.

Let us see how significant this effect is. We take the ex-
ample that T and T¢ are simply scalings of the coordinates,
in fact, multiplication of the coordinates by a factor of 10.
These transformations are represented by diagonal matrices
of the form T = T¢ = diag(10, 10, 1) acting on homogeneous
coordinates. In this case, the matrix S is also a diagonal
matrix of the form S = diag(102, 102, 10, 102, 102, 10, 10, 10,
1), assuming that the vector f represents the elements of F
in the row-major order f11, f12, f13, f21, f22, f23, f31, f32, f33. The
matrix S>S equals diag(104, 104, 102, 104, 104, 102, 102, 102, 1).

In this case, we see AS AS S Sa f> >$ $f f= l , and so $f  is very far
from being an eigenvector of (AS)>AS.

We conclude that the method of transformation leads to
a different solution for the fundamental matrix. This is a
rather undesirable feature of the eight-point algorithm as it
stands, that the result is changed by a change of coordi-
nates, or even simply a change of the origin of coordinates.
A similar problem was observed by Bookstein [18] in the
problem of fitting conics to sets of points. To correct this, it
seems advisable to normalize the coordinates of the points
in some way by expressing them in some fixed canonical
frame, as yet unspecified.

4 CONDITION OF THE SYSTEM OF EQUATIONS

The linear method consists in finding the least eigenvector
of the matrix A>A. This may be done by expressing A>A as

a product UDU> where U is orthogonal and D is diagonal.

We assume that the diagonal entries of D are in non-
increasing order. In this case, the least eigenvector of A>A is

the last column of U. Denote by k the ratio d1/d8 (recalling

that A>A is a 9 ¥ 9 matrix). The parameter k is the condition

number2 of the matrix A>A, well known to be an important

factor in the analysis of stability of linear problems [19]. Its
relevance to the problem of finding the least eigenvector is

2. Strictly speaking, d1/d9 is the condition number, but d1/d8 is the pa-
rameter of importance here.
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briefly explained next.
The bottom right hand 2 ¥ 2 block of matrix D is of the

form 
d8 0
0 0

F
HG

I
KJ , assuming that d9 = 0, which ideally will be

the case. Now, suppose that this block is perturbed by the

addition of noise to become 
d8

0
e

e

F
HG

I
KJ . In order to restore this

matrix to diagonal form we need to multiply left and right
by V> and V, where V is a rotation through an angle q =

(1/2)arctan(2e/d8) (as the reader may verify). If e is of the
same order of magnitude as d8 then this is a significant ro-
tation. Looking at the full matrix, A>A = UDU>, we see that

the perturbed matrix will be written in the form

UVD V U¢ > > where V
I

V= F
HG

I
KJ

¥7 7 0
0 . Multiplying by V  re-

places the last column of U by a combination of the last two
columns. Since the last column of U is the least eigenvector
of the matrix, this perturbation will drastically alter the
least eigenvector of the matrix A>A. Thus, changes to A>A

of the order of magnitude of the eigenvalue d8 cause signifi-
cant changes to the least eigenvector. Since multiplication
by an orthogonal matrix does not change the Frobenius

norm of a matrix, we see that A A dii
> = FH IK=Â 2

1

9 1 2/
. If the

ratio k = d1/d8 is very large, then d8 represents a very small
part of the Frobenius norm of the matrix. A perturbation of
the order of d8 will therefore cause a very small relative
change to the matrix A>A, while at the same time causing a

very significant change to the least eigenvector. Since A>A

is written directly in terms of the coordinates of the points u
´ u¢, we see that if k is large, then very small changes to
the data can cause large changes to the solution. This is ob-
viously very undesirable. The sensitivity of invariant sub-
spaces is discussed in greater detail in [19, p. 413], where
more specific conditions for the sensitivity of invariant sub-
spaces are given.

We now consider how the condition number of the ma-
trix A>A may be made small. We consider two sorts of
transformation, translation and scaling. These methods will
be given only an intuitive justification, since a complete
analysis of the condition number of the matrix is too com-
plex to undertake here.

The major reason for the poor condition of the matrix
A>A is the lack of homogeneity in the image coordinates. In
an image of dimension 200 ¥ 200, a typical image point will
be of the form (100, 100, 1). If both u and u¢ are of this form,
then the corresponding row of the equation matrix will be
of the form r>= (104, 104, 102, 104, 104, 102, 102, 102, 1). The
contribution to the matrix A>A is of the form rr>, which will
contain entries ranging between 108 and one. For instance,
the diagonal entries of A>A will be (108, 108, 104, 108, 108,
104, 104, 104, 1). Summing over all point correspondences
will result in a matrix A>A for which the diagonal entries
are approximately in this proportion.

We may now use the Interlacing Property [19, p. 411] for
the eigenvalues of a symmetric matrix to get a bound on the
condition number of the matrix. Suppose that the diagonal
entries of X = A>A are equal to (108, 108, 104, 108, 108, 104,

104, 104, 1). We denote by Xr the trailing r ¥ r principal sub-
matrix (that is, the last r columns and rows) of the matrix
A>A, and by li(Xr) its ith largest eigenvalue. Thus, X9 = A>A

and k = l1(X9)/l8(X9). First we consider the eigenvalues of
X2. Since the sum of the two eigenvalues is trace(X2) = 104 +

1, we see that l1(X2) + l2(X2) = 104 + 1. Since the matrix is
positive semi-definite, both eigenvalues are non-negative,
so we may deduce that l1(X2) £ 104 + 1. From the interlacing

property, we deduce that l8(X9) £ l7(X8) £ º l1(X2) £ 104+1.
On the other hand, also from the interlacing property, we
know that the largest eigenvalue of A>A is not less than the

largest diagonal entry. Thus, l1(X9) ≥ 108. Therefore, the

ratio k = l1(X9)/l8(X9) ≥ 108/(104 + 1). Usually, in fact l8(X9)
will be much smaller than 104 + 1 and the condition number
will be far greater.

This analysis shows that scaling the coordinate so that
the homogeneous coordinates are on the average equal to
unity will improve the condition of the matrix A>A.

4.1 Translation
Consider a case where the origin of the image coordinates is
at the top left hand corner of the image, so that all the im-
age coordinates are positive. In this case, an improvement
in the condition of the matrix may be achieved by translat-
ing the points so that the centroid of the points is at the ori-
gin. This claim will be verified by experimentation, but can
also be explained informally by arguing as follows. Sup-
pose that the first image coordinates (the u-coordinates) of a
set of points are {1001.5, 1002.3, 998.7, º}. By translating by
1,000, these numbers may be changed to {1.5, 2.3, -1.3}.
Thus, in the untranslated values, the significant values of
the coordinates are obscured by the coordinate offset of
1,000. The significant part of the coordinate values is found
only in the third or fourth significant figure of the coordi-
nates. This has a bad effect on the condition of the corre-
sponding matrix A>A. A more detailed analysis of the effect
of translation is not provided here.

5 NORMALIZING TRANSFORMATIONS

The previous sections concerned with the condition number
of the matrix A>A indicate that it is desirable to apply a
transformation to the coordinates before carrying out the
eight-point algorithm for finding the fundamental matrix.
This normalization has been implemented as a prior step in
the eight-point algorithm with excellent results.

5.1 Isotropic Scaling
As a first step, the coordinates in each image are translated
(by a different translation for each image) so as to bring the
centroid of the set of all points to the origin. The coordi-
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nates are also scaled. In the discussion of scaling, it was
suggested that the best results will be obtained if the coor-
dinates are scaled, so that on the average a point u is of the
form u = (u, v, w)>, with each of u, v, and w having the same

average magnitude. Rather than choose different scale fac-
tors for each point, an isotropic scaling factor is chosen so
that the u and v coordinates of a point are scaled equally.
To this end, we choose to scale the coordinates so that the
average distance of a point u from the origin is equal to 2 .
This means that the “average” point is equal to (1, 1, 1)>. In

summary the transformation is as follows:

1) The points are translated so that their centroid is at
the origin.

2) The points are then scaled so that the average distance
from the origin is equal to 2 .

3) This transformation is applied to each of the two im-
ages independently.

5.2 Non-Isotropic Scaling
In non-isotropic scaling, the centroid of the points is trans-
lated to the origin as before. After this translation the points
form a cloud about the origin. Scaling is then carried out so
that the two principal moments of the set of points are both
equal to unity. Thus, the set of points will form an ap-
proximately symmetric circular cloud of points of radius
one about the origin.

Both translation and scaling can be done in one step as
follows. Let ui = (ui, vi, 1)> for i = 1, º, N and form the ma-

trix Âiuiui
>. Since this matrix is symmetric and positive

definite, we may take its Choleski factorization [15], [14] to

get u ui ii

N
NKK> >

=Â =
1

, where K is upper triangular. It fol-

lows that ÂiK
-1uiui

>K-> = NI, where I is the identity matrix.

Setting $u ui iK= -1 , we have $ $u ui ii
NI>Â = . Consequently,

the set of points $ui  have their centroid at the origin and the
two principal moments are both equal to unity, as desired.

Note that K-1 is upper triangular, and so it represents an
affine transformation.

To summarize, the points are transformed so that

1) Their centroid is at the origin.
2) The principal moments are both equal to unity.

6 SCALING IN STAGE 2
So far we have discussed the effect of a normalizing trans-
formation on the first stage of the eight-point algorithm,
namely the solution of the set of linear equations to find F.
The second step of the algorithm is to enforce the singular-
ity constraint that det F = 0.

The method described above of enforcing the singularity
constraint gives the singular matrix $F  nearest to F in Fro-
benius norm. The trouble with this method is that it treats
all entries of the matrix equally, regardless of their magni-

tude. Thus, entries of F small in absolute value may be ex-
pected to undergo a perturbation much greater relative to
their magnitude than the large entries.

Suppose that a set of matched points is normalized so
that on the average all three homogeneous coordinates
have the same magnitude. Thus, a typical point will look
like (1, 1, 1)>. The fundamental matrix computed from
these normalized coordinates may be expected to have all
its entries approximately of the same magnitude. This may
not be true if applied to specific classes of cameras, but it
will be true for fundamental matrices computed from arbi-
trarily selected matched points, as the following argument
shows.

A permutation of the three homogeneous coordinates in
either or both the images will result in another set of realiz-
able matched points. The corresponding fundamental ma-
trix will be obtained from the original one by permuting the
corresponding rows and/or columns of the matrix. In do-
ing this, any entry of F may be moved to any other position.
This means that no entry of the fundamental matrix is
qualitatively different from any other, and hence on the
average (over all possible sets of matched points) all entries
of F will have the same average magnitude.

Now, consider what happens if we scale the coordinates
of points ui and ui¢ by a factor which we will assume is
equal to 100. Thus, a typical coordinate will be of the order
of (100, 100, 1)>. The corresponding fundamental matrix F
will be obtained from the original one by multiplying the
first two rows, and the first two columns by 10-2. Entries in
the the top left 2 ¥ 2 block will be multiplied by 10-4. We
conclude that a typical fundamental matrix derived from
coordinates of magnitude (100, 100, 1)> will have entries of
the following order of magnitude:

F =
F

H
GG

I

K
JJ

- - -

- - -

- -

10 10 10
10 10 10
10 10 1

4 4 2

4 4 2

2 2
                               (6)

To verify this conclusion, below is the fundamental ma-
trix for the pair of house images in Fig 1.3

F =
- - - - -
- - - -

- - - - -

F
HG

I
KJ

9 796 08 1 473 06 6 660 04
6 346 07 1 049 08 7 03

9 107 04 7 739 03 2 364 02

. . .

. . .536
. . .

e e e
e e e

e e e
        (7)

In comparing (7) with (6), one must bear in mind that F
is defined only up to nonzero scaling. The imbalance of the
matrix (7) is even worse than predicted by (6) because the
image has dimension 512 ¥ 512. Now, in taking the closest
singular matrix, all entries will tend to be perturbed by ap-
proximately the same amount. However, the relative per-
turbation will be greatest for the smallest entries. The ques-
tion arises whether the small entries in the matrix F are im-
portant. Consider a typical point u < (100, 100, 1)>. In com-
puting the corresponding epipolar line Fu, we see that the
largest entries in the vector u are multiplied by the smallest,
and hence least relatively stable entries of the matrix F.
Thus, for computation of the epipolar line, the smallest en-
tries in F are the most important. We have the following
undesirable condition: The most important entries in the fun-

3. The notation -9.766e-08 means -9.766 ¥ 10-8.
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damental matrix are precisely those that are subject to the largest
relative perturbation when enforcing the singularity constraint
without prior normalization.

This condition is corrected if normalization of the image
coordinates is carried out first, for then all entries of the
fundamental matrix will be treated approximately equally,
and none is more important than another in computing
epipolar lines.

7 EXPERIMENTAL EVALUATION

The eight-point algorithm with prior transformation of the
coordinates, as described here will be called the normalized
eight-point algorithm. This algorithm was tested on a large
number of real images to evaluate its performance. In car-
rying out these tests, the eight-point algorithm with pre-
normalization as described above was compared with sev-
eral other algorithms for finding the fundamental matrix.
For the most part the implementations of these other algo-
rithms were provided by other researchers, whom I will
acknowledge later. In this way the results were not biased
in any way by my possibly inefficient implementation of
competing algorithms. In addition, the images and matched
points that I have tested the algorithms on have been sup-
plied to me. Methods of obtaining the matched points
therefore varied from image to image, as did methods for
eliminating bad matches (outliers). In all cases, however,
the matched points were found by automatic means, and
usually some sort of outlier detection and removal was car-
ried out, based on least-median squares techniques (see [6],
[7], [8]).

The general procedure for evaluation was as follows:

1) Matching points were computed by automatic tech-
niques, and outliers were detected and removed.

2) The fundamental matrix was computed using a sub-
set of all points.

3) In the case of algorithms, such as the eight-point algo-
rithm, that do not automatically enforce the singular-
ity constraint (that is the constraint that det F = 0) this
constraint was enforced a posteriori by finding the
nearest singular matrix to the computed fundamental
matrix. This was done using the Singular Value De-
composition (as in [16], [20]).

4) For each point ui, the corresponding epipolar line Fui

was computed and distance the line Fui from the
matching point ui¢ was calculated. This was done in
both directions (that is, starting from points ui in the
first image and also from ui¢ in the second image). The
average distance of the epipolar line from the corre-
sponding point was computed, and used as a meas-
ure of quality of the computed Fundamental matrix.
This evaluation was carried out using all matched
points, except outliers, and not just the ones that were
used to compute F.

7.1 Other Algorithms
A brief description of the algorithms tested follows, but first
some notation.

Given fundamental matrix F and point ui, the epipolar

line in the second image corresponding to point ui is Fui.

Similarly, F>u¢i is the epipolar line corresponding to u¢i.

Point ui¢ lies on epipolar line Fui if and only if ¢ =u ui iF> 0.

However, the quantity ui¢
>Fui does not correspond to any

meaningful geometric quantity, certainly not to distance
between the point ui¢ and the epipolar line Fui. Writing Fui

= (l, m, n)>, the distance d(ui¢, Fui) is equal to

¢ +u ui iF> / l n2 2 , provided ui¢ = (ui¢, vi¢, 1)>. Similarly, de-

noting F>u¢i by (l¢, m¢, n¢), one has

d F Fi i i iu u u u, /> >¢ = ¢ ¢ + ¢e j l n2 2 .

7.1.1 The Eight-Point Algorithm
In this algorithm, the points were used as is, without pre-
transformation to compute the fundamental matrix. The

algorithm minimizes the quantity ¢Â u ui ii
F>e j

2
. The singu-

larity constraint was enforced.

7.1.2 The Eight-Point Algorithm With Isotropic Scaling
The eight-point algorithm was used with the translation
and isotropic scaling method described in Section 5.1. The
singularity constraint was enforced.

7.1.3 The Eight-Point Algorithm With
Non-Isotropic Scaling

This is the same as the previous method, except that the non-
isotropic scaling method described in Section 5.2 was used.

7.1.4 Minimizing the Epipolar Distances
An implementation by Zhengyou Zhang of an algorithm
described in [9], [6], [10] was used. This is an iterative algo-
rithm that uses a parametrization of the fundamental ma-
trix with seven parameters. Thus the singularity constraint
is enforced as part of the algorithm. The cost function being
minimized is the squared sum of distances of the points
from epipolar lines. The point-line distances in both images
are taken into account. Thus this algorithm minimizes

d F d F

F

i i i i
i

i i
i i i i

¢ + ¢ =

¢
+

+
¢ + ¢

F
HG

I
KJ

Â u u u u

u u

, ,c h e j

e j

2 2

2

2 2 2 2

1 1

>

>

l m l m

Two versions of this algorithm were tested, in which re-
spectively the unnormalized and normalized versions of
the eight-point algorithm were used for initialization.

7.1.5 A Gradient-Based Technique
This algorithm is related to the previous method, but it
minimizes a slightly different cost function, namely

¢

+ + ¢ + ¢Â
u ui i

i i i ii

F>e j
2

2 2 2 2l m l m

This cost function is a first order approximation to the
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point-displacement error discussed in the next method
(below). The implementation tested was by Zhengyou
Zhang, and the algorithm is discussed in [9], [10]. Here also
this algorithm was initialized using either the normalized
or unnormalized eight-point algorithm.

7.1.6 Minimizing Point Displacement
This algorithm (my own implementation) is an iterative
algorithm. It finds the fundamental matrix F and points $ui

and $ ¢ui  such that $ $¢ =u ui iF> 0 exactly, det F = 0 and the

squared pixel error d di i i ii
$ , $ ,u u u uc h c h2 2

+ ¢ ¢Â  is minimized.

The details of how this is done are described in [11], [21].
Under the assumption of gaussian noise in the placement of
the matched points (an approximation to the truth), this
algorithm gives the fundamental matrix corresponding to
the most likely true placement of the matched points (the
estimated points $ $u ui i´ ¢ ). For this reason, I have generally
considered this algorithm to be the best available. The ex-
periments generally bear out this belief, but it is not the
purpose of this paper to justify this point. This algorithm is
referred to as the “optimal algorithm” in this paper.

7.1.7 Approximate Calibration
The results of an algorithm of Beardsley and Zisserman [12]
were provided for comparison. This algorithm does an ap-
proximate normalization of the coordinates by selecting the
origin of coordinates at the centre of the image, and by
scaling by division by the approximate focal length of the
camera (measured in pixels—that is, the scaling factor in
the calibration matrix). Since this method employs a nor-
malization similar to the isotropic scaling algorithm, one
expects it to give similar results. It does, however rely on
some approximate knowledge of camera calibration.

7.1.8 Iterative Linear
Another algorithm provided by Beardsley and Zisserman is
representative of a general approach to improving the per-
formance of linear algorithms. This same approach can be
applied to many different linear algorithms, such as camera
pose and calibration estimation [22], projective reconstruc-
tion from lines [23], and reconstruction of point positions in
space [24]. In this approach, the eight-point algorithm is
run a first time. From this initial solution a set of weights
for the linear equations are computed. The set of linear
equations are multiplied by these weights and the eight-
point algorithm is run again. This may be repeated several
times. The weights are chosen in such a way that the linear

     
Fig. 1. Houses Images. The epipoles are a long way from the image centers.

     
Fig. 2. Statue image. An outdoor scene with the epipoles well away from the center.
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equations express a meaningful measurable quantity. In
this case, to minimize point-epipolar line distance, each
equation ¢ =u ui iF> 0 is multiplied by the weight

wi =
+

+
¢ + ¢

F
HG

I
KJ

1 1
2 2 2 2

1 2

l m l m

/

where the values li, mi, li¢, and mi¢ are computed from the
previous iteration. The advantage of this type of algorithm
is that it is simple to implement compared with iterative
parameter estimation methods, such as Levenberg-
Marquardt [14].

7.2 The Images
The various algorithms were tried with five different pairs
of images. The images are presented in Figs. 1-5 to show the
diversity of image types, and the placement of the epipoles.
A few of the epipolar lines are shown in the images. The
intersection of the pencil of lines is the epipole. There was a
wide variation in the accuracy of the matched points for the
different images, as will be indicated later.

7.3 Graphical Presentation of the Results
Figs. 6-11 show the results of several runs of the algorithms,
with different numbers of points being used. The number
of points used to compute the fundamental matrix ranged
from eight up to three-quarters of the total number of
matched points. For each value of N, the algorithms were
run 100 times using randomly selected sets of N matching
points. The average error (point–epipolar line distance) was
computed using all available matched points. The graphs
show the average error over the 100 runs for each value of
N. The error shown is the average point-epipolar line dis-
tance measured in pixels.

7.3.1 Effect of Normalization on the Condition Number
Fig. 6 shows a plot of the base-10 logarithm of the condition
number of the linear equation set in the case of the house
images, for varying numbers of points (the x-axis). The up-
per curve is without normalization, the lower one with
normalization. The improvement is approximately 108.

7.3.2 Effect of Normalization on the Two Stages
of the Algorithm

Fig. 7 shows the effect of normalization in the two stages of
the eight-point algorithm. To explain this, four algorithmic
steps may be identified:

     
Fig. 3. Grenoble museum. The epipoles are close to the image.

     
Fig. 4. Corridor scene. In the corridor scene the epipoles are right in the image.
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• Normalization: Transformation of the image coordi-
nates using transforms T and T¢.

• Solution: Finding matrix F by solving a set of linear
equations.

• Constraint enforcement: Replacing F by the closest
singular matrix.

• Denormalization: Replacing F by T¢>FT.

It is possible to take these steps in a different order to
show the effect of normalization on the Solution (stage 1)
and Constraint enforcement (stage 2) steps of the algorithm.
Thus, the four curves shown correspond to the following
algorithm steps:

1) No normalization: Solution–Constraint enforcement.
2) Stage 1 normalization: Normalization–Solution–De-

normalization–Constraint enforcement.
3) Stage 2 normalization: Solution–Normalization–Con-

straint enforcement–Denormalization.
4) Both stages of normalization: Normalization–

Solution–Constraint enforcement–Denormalization.
As may be seen, normalization has the greatest effect on

stage 1 (the Solution stage), but normalization for stage 2

has a significant effect as well. The best results are had by
doing normalization in both stages.

Note how for N = 8 the normalization has no effect on
stage 1, since in this case we are finding the solution to a set
of equations, and not a least-squares solution to a redun-
dant set. This explains why the two pairs of curves show
the same results for N = 8.

For these experiments, the house images were used.

7.3.3 Comparison of Normalized and Unnormalized
Eight-Point Algorithms

Fig. 8 shows the improvement achieved by normalization.
The images used are: house, statue, museum, calibration,
and corridor. Note the differences in Y-scale for the differ-
ent plots. For some of the images the matched points were
known with extreme accuracy (calibration image, corridor
scene), whereas for others, the matches were less accurate
(museum image). In all cases the normalized algorithm per-
forms better than the unnormalized algorithm. In the cases
of the statue and corridor images the effect is not so great.
In the case of the images with less accurate matches, the
advantage of normalization is dramatic.

     
Fig. 5. Calibration jig. In this calibration jig, the matched points were known extremely accurately.

     

Fig. 6. Effect of normalization on the condition number.        Fig. 7. Effect of normalization on the two stages of the algorithm.
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7.3.4 Comparison of the Eight-Point Algorithm With the
Optimal Algorithm

Fig. 9 is the same as Fig. 8, except that it compares the nor-
malized eight-point algorithm with the optimal (minimized
point displacement) algorithm. In all cases the normalized
eight-point algorithm performs almost as well as the opti-
mal algorithm.

7.3.5 Isotropic vs. Non-Isotropic Scaling
The eight-point algorithm with isotropic and non-isotropic
scaling was compared in Fig. 10. The two variables are al-
most indistinguishable.

7.3.6 Comparison With Other Algorithms
The papers [9], [10] give details of several good algorithms,
and the normalized eight-point algorithm was carefully
compared with some of these. Two algorithms were tried:

1) the iterative algorithm, minimizing the symmetric
point-epipolar line distance in the two images

2) the gradient-based method.

See Section 7.1 for more details. For the tests, imple-
mentations of these algorithms supplied by Zhang in ex-
ecutable format were used. These are among the best algo-
rithms available for computing the fundamental matrix.

On theoretical grounds, the second of these methods
may be preferable, but in our experiments they performed

     

     

     
Fig. 8. Comparison of normalized and unnormalized eight-point algorithms.
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almost identically. This is confirmed by [10]. Consequently,
only the results of the comparisons with the gradient-based
method are shown in the following graphs, which compare
the normalized eight-point algorithm with the gradient-
based method (see Fig. 11).

Results are shown in Fig. 11 for three of the data sets. In
the other two cases (statue and corridor), the results of the
two algorithms were almost indistinguishable. In fact, it is a
curious thing that all algorithms (even the unnormalized
eight-point algorithm) give very similar performance on

these two data sets. In the three graphs shown, the nor-
malized eight-point algorithm performs distinctly better
than the iterative algorithms on the house data set, worse
on the museum data set and just slightly worse on the cali-
bration set. In this comparison the iterative algorithms were
initialized using the unnormalized eight-point algorithm.
Comparison with Fig. 9 shows that they do not perform as
well as the optimal algorithm. If the normalized eight-point
algorithm is used for initialization, then the results improve
and are not significantly different from those of the optimal

     

     

Fig. 9. Comparison of the eight-point algorithm with the optimal algorithm.

Fig. 10. Isotropic vs. non-isotropic scaling.
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algorithm. Once more, Zhang’s implementation was used
for this test. Thus, in carrying out an iterative algorithm to
find the fundamental matrix, good initialization seems to be
more important than exactly which cost function is being
minimized.

The normalized eight-point algorithm was also com-
pared with the Least Median of Squares algorithm of
Zhang, but the latter algorithm did not perform so well on
our tests. This is probably because it is weeding out out-
liers. Outlier rejection has already been performed on the
data sets using the techniques of [7] and all remaing points
are used in evaluating the fit, including points that Zhang’s
Least Median of Squares algorithm may have rejected.

The normalized eight-point algorithm was also com-
pared with two algorithms supplied by Andrew Zisserman

and Paul Beardsley. These are, respectively, the algorithms
referred to as “Approximate Calibration” and “Iterative
Linear” in Section 7.1. The results of all three algorithms
were roughly comparable, though insufficiently many tests
were run to reach a firm conclusion. The results of this test
are reported in [25].

7.3.7 Reconstruction Error
To test the performance of the various algorithms for recon-
struction accuracy, experiments were done to measure the
degradation of accuracy as noise levels increase. The Cali-
bration images (5) were used for this purpose. Since recon-
struction error is most appropriately measured in a Euclid-
ean frame, a Euclidean model was built for the calibration
cube, initially by inspection and then by refinement using

     

     
Fig. 11. Comparison with other algorithms.

  
(a)                                                      (b)

Fig. 12. Reconstruction error. (a) A comparison of the unnormalized and the normalized eight-point algorithms. (b) The normalized eight-point and
optimal algorithms.
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the image data. This model served as ground truth. Next,
the image coordinates were corrected (by an average of 0.02
pixel) to agree exactly with the Euclidean model. Varying
amounts of zero-mean Gaussian noise were added to the
image coordinates, a projective reconstruction was carried
out, and a projective transformation was computed to bring
the projective reconstruction most nearly into agreement
with the model. The average 3D displacement of the recon-
structed points from the model was measured. The plotted
values are the result average over all points (128 in all) for 10
trials. The reconstruction error is measured in units equal to
the length of the side of one of the black squares in the image.

In Fig. 12a is a comparison of the unnormalized and the
normalized eight-point algorithms. In Fig. 12b, the normal-
ized eight-point and optimal algorithms are shown. The
result shows that the results of the normalized eight-point
algorithm is almost indistinguishable from the optimal al-
gorithm, but that the unnormalized algorithm performs
very much worse.

8 CONCLUSIONS

With normalization of the coordinates in order to improve
the condition of the problem, the eight-point algorithm per-
forms almost as well as the best iterative algorithms. On the
other hand, it runs about 20 times faster and is far easier to
code. There seems to be little advantage in choosing the
non-isotropic scaling scheme for the normalization trans-
form, since the simpler isotropic scaling performs just as
well. Without normalization of the inputs, however, the
eight-point algorithm performs quite badly, often with er-
rors as large as 10 pixels, which makes it virtually useless. It
would seem to follow that the reason that other researchers
have had such poor results with the eight-point algorithm
is that they have not carried out any preliminary normali-
zation step as discussed here.

Even if extra accuracy is needed and an iterative algo-
rithm is used, it is best to use the normalized, rather than
the unnormalized eight-point algorithm to provide a start-
ing point for iteration. Difficulties with stopping criteria, as
well as the risk of finding a local minimum mean that the
quality of the iteratively estimated result depends on the
initial estimate.

The technique of data normalization described here is
widely applicable to other problems. Among others it is
directly applicable to the following problems: computing
the projective transformations between point sets; estimat-
ing the trifocal tensor [26] and determining the camera ma-
trix of a projective camera using the DLT algorithm [27].
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