Transformations linéaires

GIF-4105/7105 Photographie Algorithmique, Hiver 2017 Jean-François Lalonde Merci à D. Hoiem, A. Efros et S. Seitz

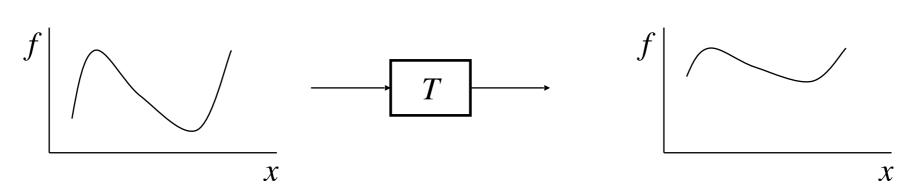
Cette semaine

- Aujourd'hui:
 - Transformations linéaires globales
 - Calculer la transformation à partir d'images
 - Appliquer une transformation à une image
 - Morphage

Transformations d'image

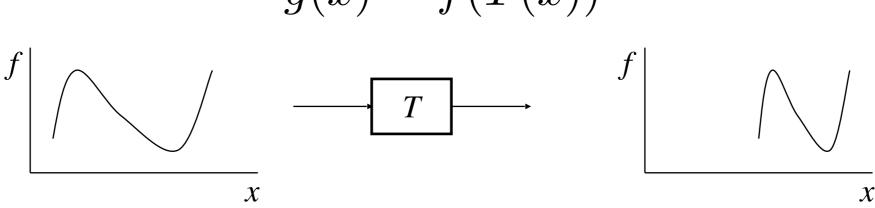
filtrage: modifier l'image du signal

$$g(x) = T(f(x))$$



transformations: modifier le domaine du signal

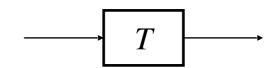
$$g(x) = f(T(x))$$



Transformations d'image

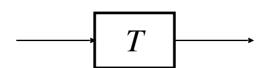
filtrage: modifier l'image du signal

$$g(x) = T(f(x))$$



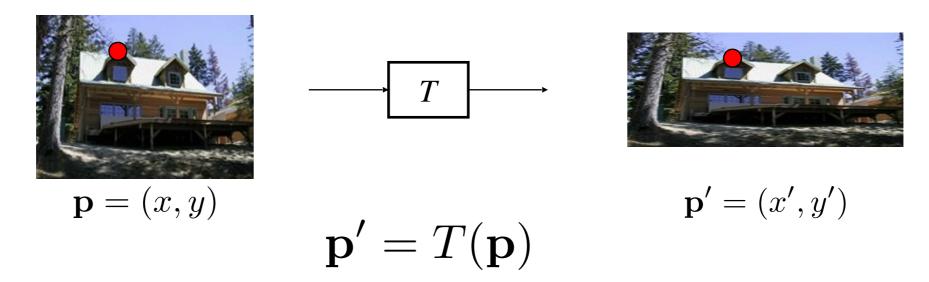
transformations: modifier le domaine du signal

$$g(x) = f(T(x))$$



Transformations globales (paramétriques)

Transformation T modifie les coordonnées:



- Qu'est-ce que "globale" veut dire?
 - La même chose pour chaque point
 - Peut être représentée par un faible nombre de paramètres (paramétrique)
- Pour les transformations linéaires, on peut représenter la transformation par une matrice: $\mathbf{p}' = \mathbf{M}\mathbf{p}$

$$\mathbf{p}' = \mathbf{Mp}$$
 $\begin{vmatrix} x' \\ y' \end{vmatrix} = \mathbf{M} \begin{vmatrix} x \\ y \end{vmatrix}$

Transformations globales (paramétriques)

translation

rotation

aspect

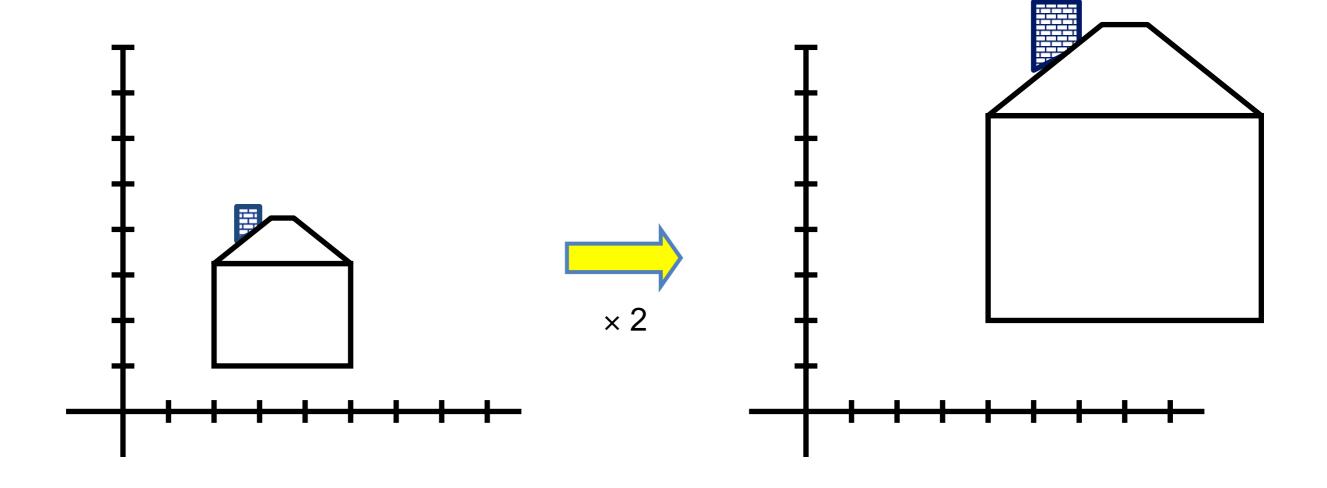
affine

perspective

cylindrique

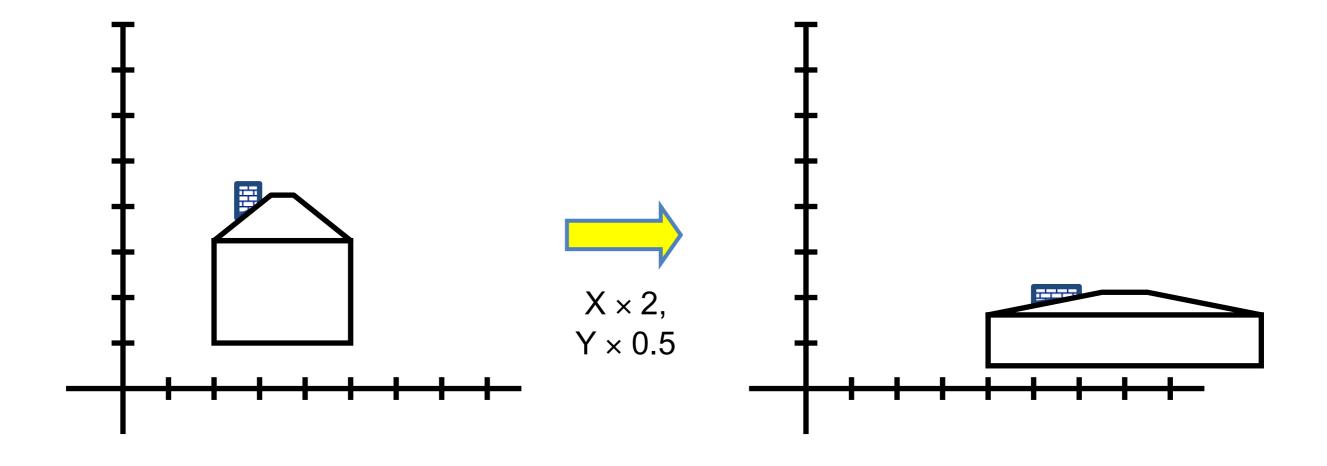
Mise à l'échelle

- Multiplier chaque coordonnée par un scalaire
- Uniforme: le même scalaire pour chaque coordonnées (ici: x et y)



Mise à l'échelle

• Non-uniforme: différent scalaire par coordonnée



Mise à l'échelle

• Opération:

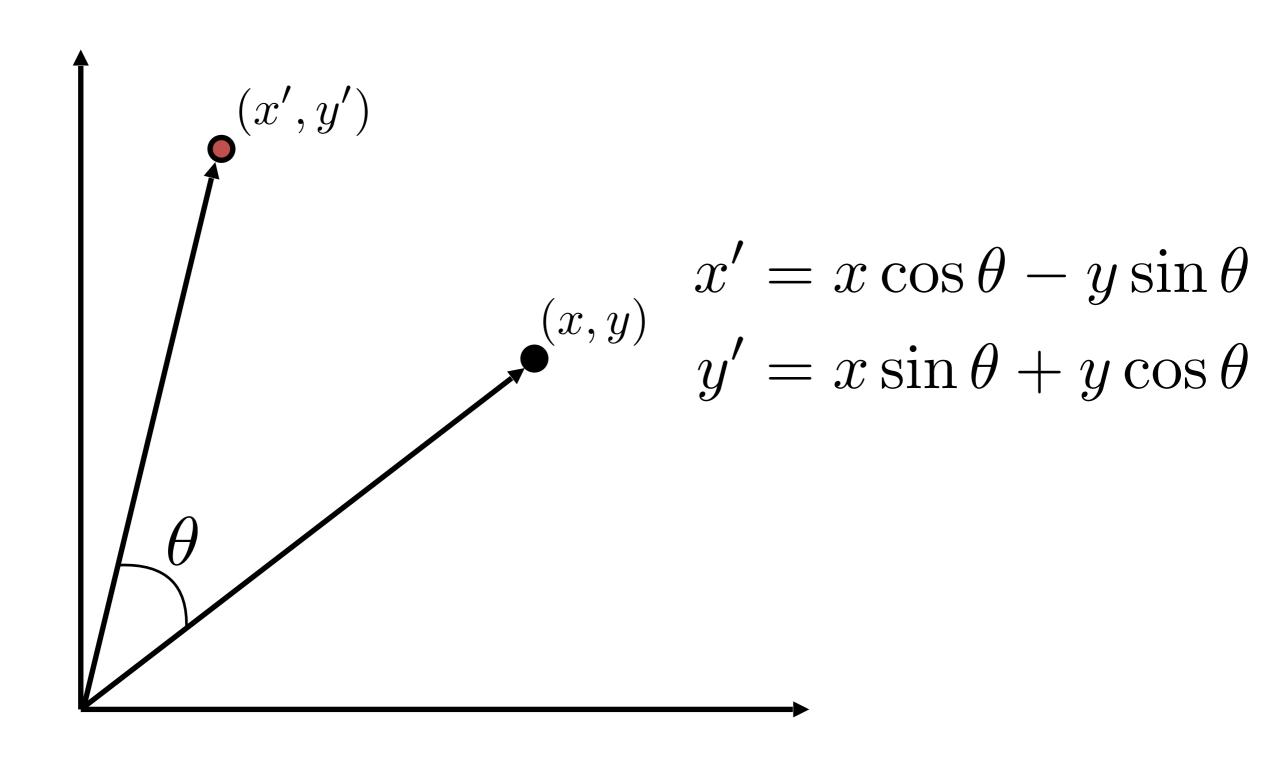
$$x' = ax$$
$$y' = ay$$

• Matrice:

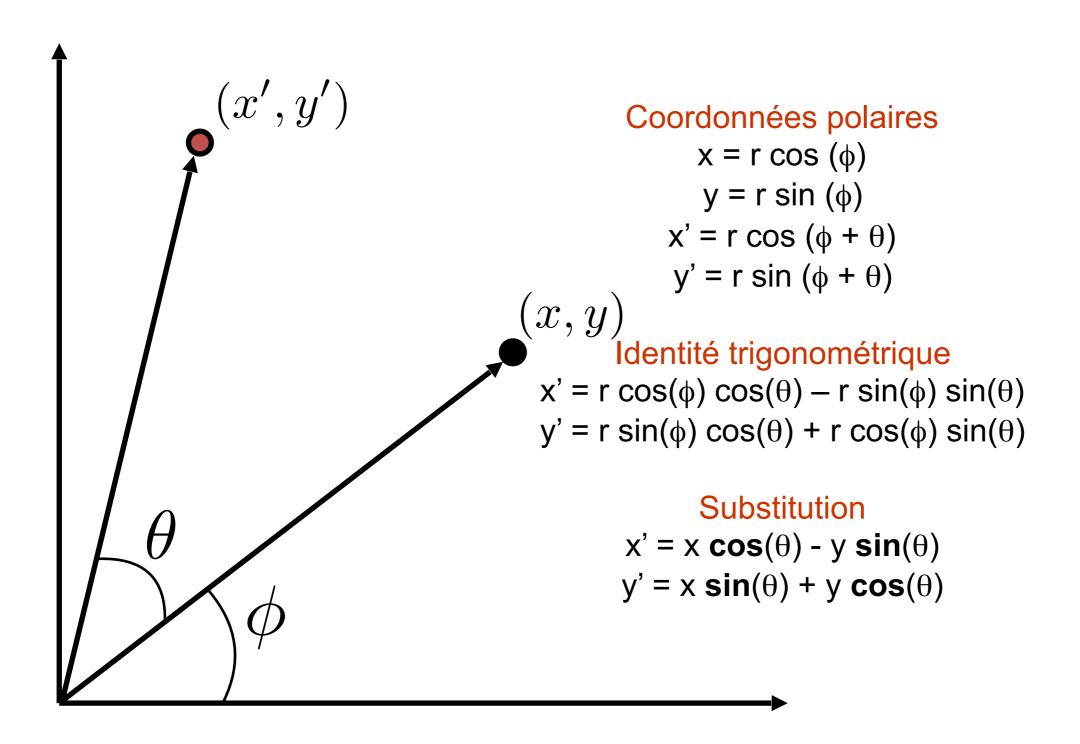
$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

matrice **S**

Rotation 2D



Rotation 2D



Rotation 2D

Forme matricielle:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Même si sin(θ) et cos(θ) sont des fonctions non-linéaires en θ,
 - x' et y' sont des combinaisons linéaires de x et y
- Quelle est la transformation inverse?
 - Rotation par –θ
 - Pour les matrices de rotation:

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

 Quelles transformations peuvent être représentées par des matrices 2x2?

Identité?

$$\begin{aligned}
 x' &= x \\
 y' &= y
 \end{aligned}
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} = \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix} \begin{bmatrix}
 x \\
 y
 \end{bmatrix}$$

Facteur d'échelle autour de (0,0)?

$$\begin{aligned}
 x' &= s_x x \\
 y' &= s_y y
 \end{aligned}
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} = \begin{bmatrix}
 s_x & 0 \\
 0 & x_y
 \end{bmatrix} \begin{bmatrix}
 x \\
 y
 \end{bmatrix}$$

 Quelles transformations peuvent être représentées par des matrices 2x2?

Réflexion en x?

$$\begin{aligned}
 x' &= -x \\
 y' &= y
 \end{aligned}
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} = \begin{bmatrix}
 -1 & 0 \\
 0 & 1
 \end{bmatrix} \begin{bmatrix}
 x \\
 y
 \end{bmatrix}$$

Réflexion par rapport à l'origine?

$$x' = -x$$

$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 Quelles transformations peuvent être représentées par des matrices 2x2?

Rotation?

Étirement (shear)?

$$x' = x + k_x y$$

$$y' = y + k_y x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & k_x \\ k_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 Quelles transformations peuvent être représentées par des matrices 2x2?

Translation?

$$x' = x + t_x$$

$$y' = y + t_y$$
NON!

Seulement les fonctions linéaires en x et y peuvent être représentées par des matrices 2x2

Transformations linéaires

- Toutes les transformations linéaires sont des combinaisons de:
 - échelle, rotation, étirement, réflexion

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

- Propriétés
 - Origine ne change pas
 - Sont préservés:
 - Lignes, lignes parallèles, ratios
 - Composition est aussi une transformation linéaire

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} e & f \\ g & h \end{array}\right] \left[\begin{array}{cc} i & j \\ k & l \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

Translations?

 Comment pouvons-nous représenter les translations sous forme matricielle?

$$x' = x + t_x$$
$$y' = y + t_y$$

Coordonnées homogènes

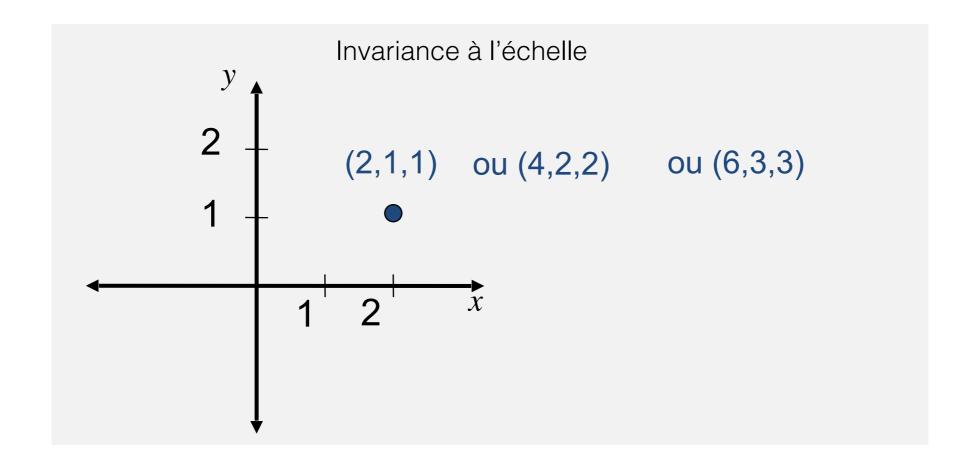
 Représente des coordonnées 2-D avec un vecteur à 3 éléments

$$\left[\begin{array}{c} x \\ y \end{array}\right] \qquad \xrightarrow{\text{Coordonn\'ees homog\`enes}} \qquad \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \qquad \xrightarrow{\text{Point 2D}} \qquad \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

Coordonnées homogènes

- Propriétés:
 - Invariance au facteur d'échelle
 - (x, y, 0) représente un point à l'infini
 - (0, 0, 0) n'est pas permis



 $\left|\begin{array}{c|c} x \\ y \\ w \end{array}\right| = k \left[\begin{array}{c} x \\ y \\ w \end{array}\right]$

Translations?

 Comment pouvons-nous représenter les translations sous forme matricielle?

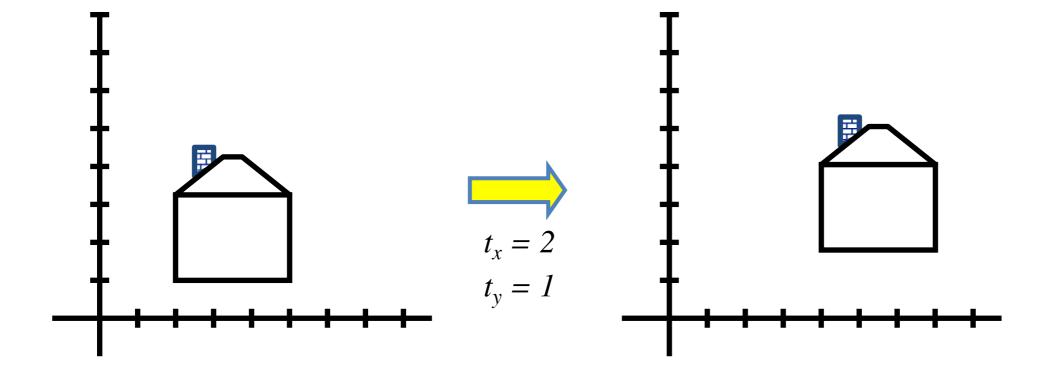
$$x' = x + t_x$$
$$y' = y + t_y$$

En utilisant une troisième colonne!

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Exemple de translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



Transformations 2D en matrices 3x3

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Échelle

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & k_x & 0 \\ k_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

Étirement

Composition

 Les transformations peuvent être composées en multipliant les matrices

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & x_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Est-ce que l'ordre est important?

Démonstration

transformations.m

Transformations affines

- Transformées affines sont des combinaisons de:
 - Transformées linéaires; et
 - Translations
- Propriétés

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- L'origine n'est pas nécessairement préservée
- Sont préservées: les lignes, lignes parallèles, ratios
- Composition est aussi une transformée affine

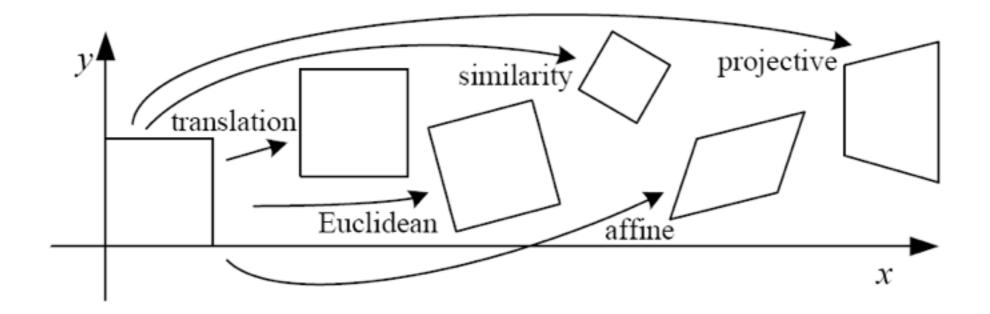
Transformations projectives

- Transformées affines sont des combinaisons de:
 - Transformées affines; et
 - Projections
- Propriétés

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- L'origine n'est pas nécessairement préservée
- Sont préservées: les lignes, lignes parallèles, ratios
- Composition est aussi une transformée affine
- Définies jusqu'à un facteur d'échelle (8 DDL)

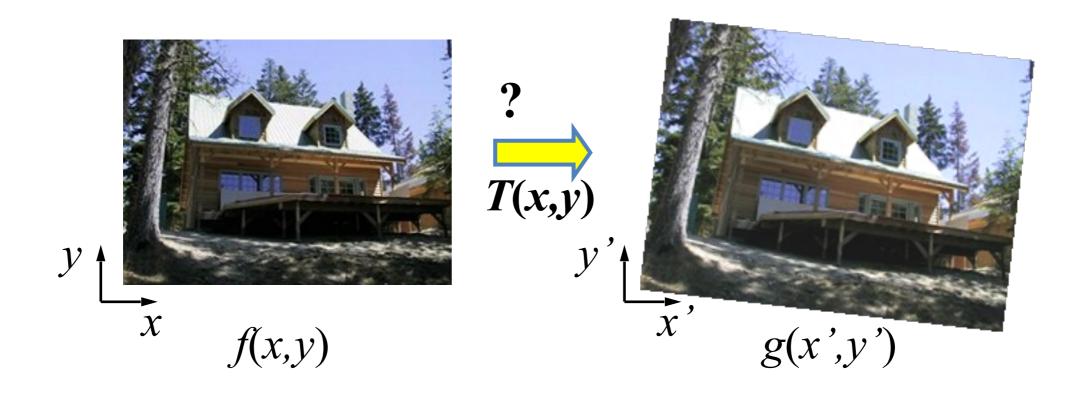
Transformations en 2D



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\left[egin{array}{c c} I & t\end{array} ight]_{2 imes 3}$		_	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$			\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$			\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$			
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$			

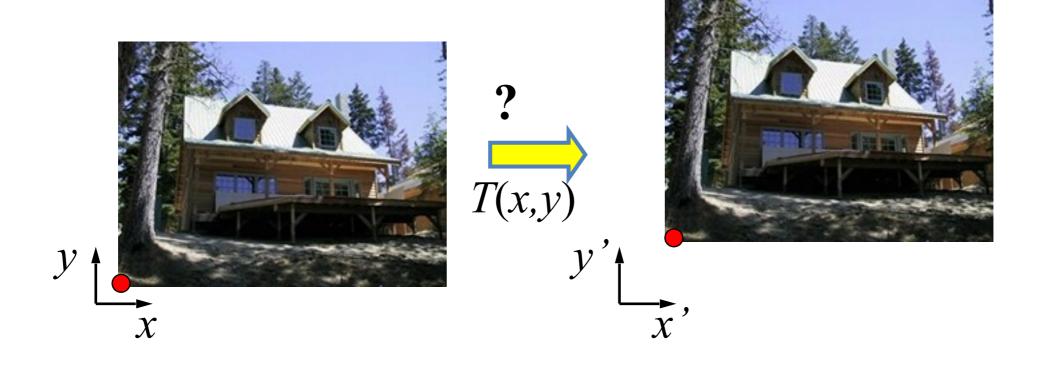
Composition et inverse font aussi parties du groupe

Estimer les transformations



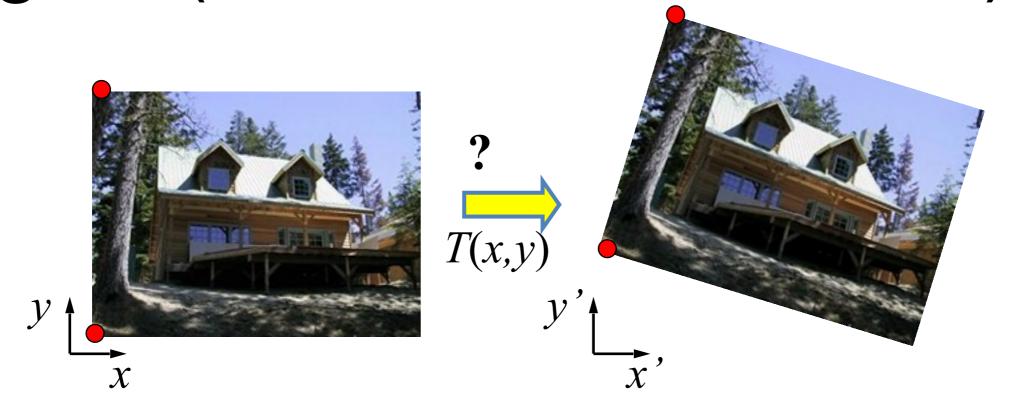
- Admettons que nous connaissons deux images (f et g).
 Comment faire pour estimer leur transformation?
- Demandons à un utilisateur de nous donner des correspondences
 - Combien en avons-nous besoin?

Translation



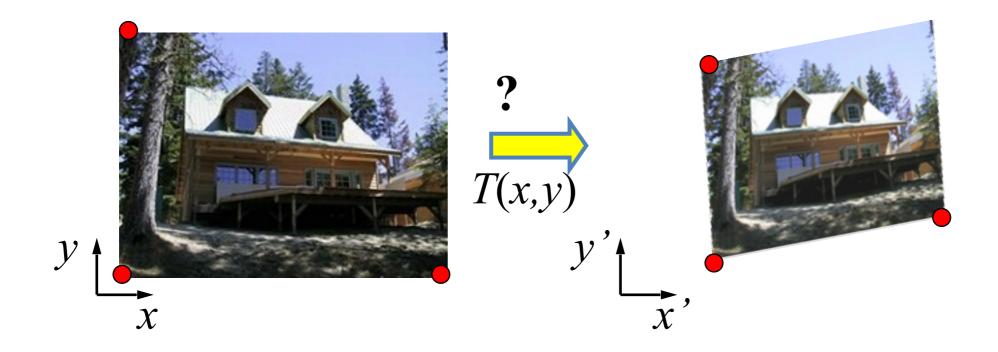
- Combien de degrés de liberté (DDL)?
- Combien de correspondences?

Rigide (translation + rotation)



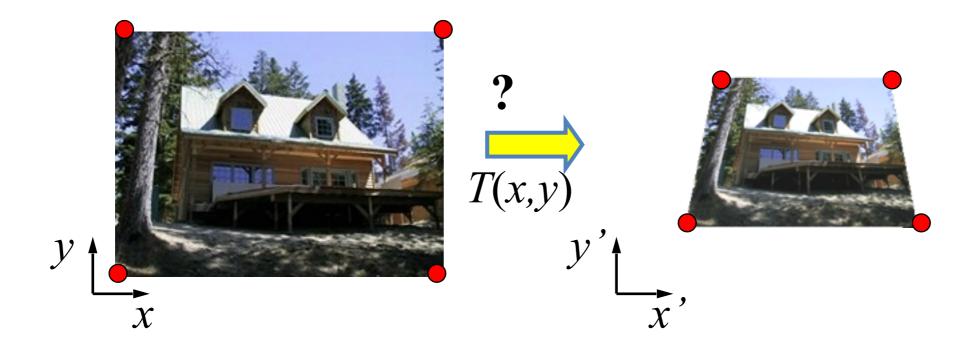
- Combien de degrés de liberté (DDL)?
- Combien de correspondences?

Affine



- Combien de degrés de liberté (DDL)?
- Combien de correspondences?

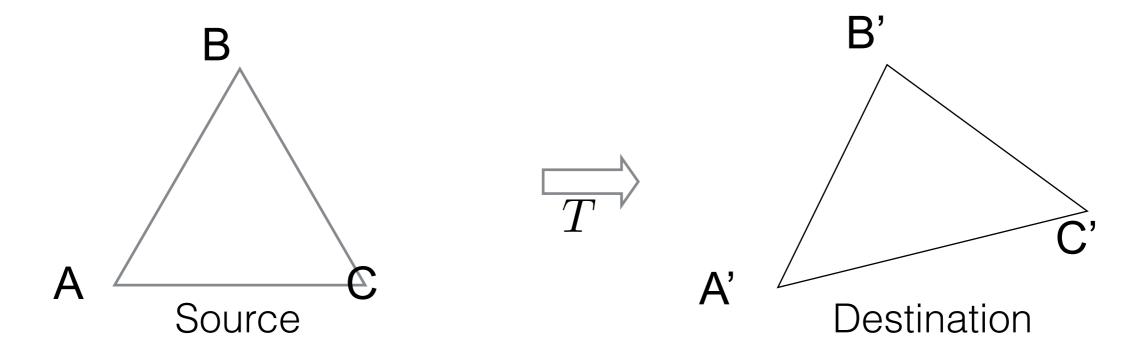
Projective



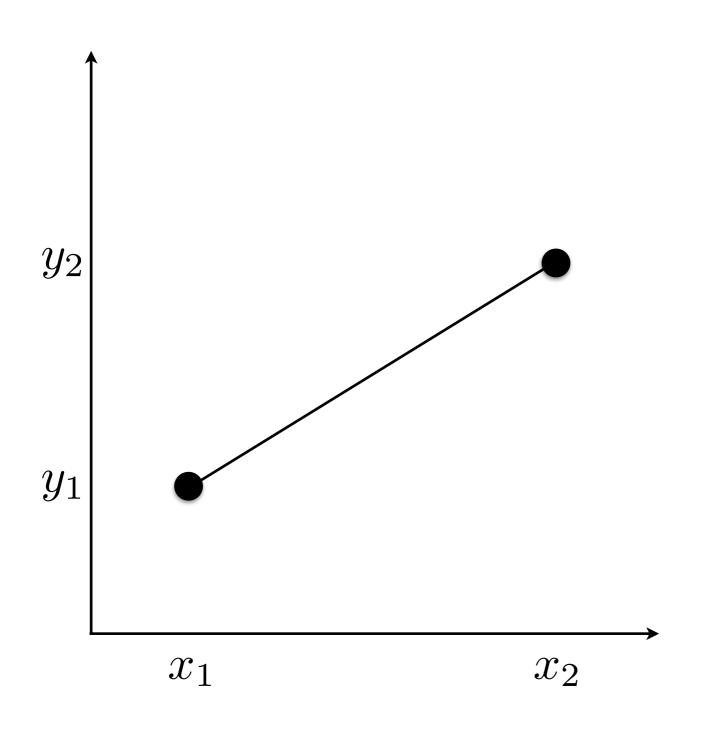
- Combien de degrés de liberté (DDL)?
- Combien de correspondences?

Questions

- Supposons que nous avons deux triangles:
 - ABC et A'B'C'
- Quelle est la transformation qui passe de ABC vers A'B'C'?
- Comment pouvons-nous estimer ses paramètres?



Estimation de paramètres

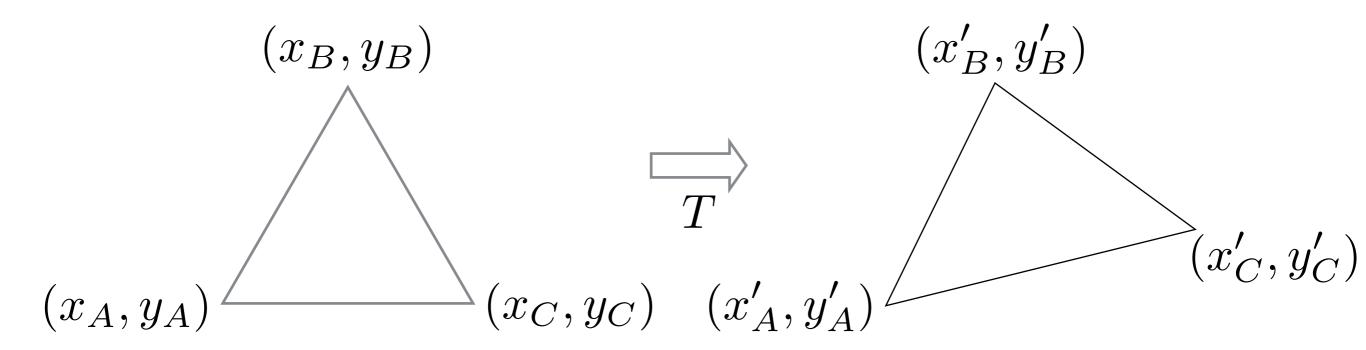


$$y = ax + b$$

Démonstration

lls.m

Estimation de paramètres

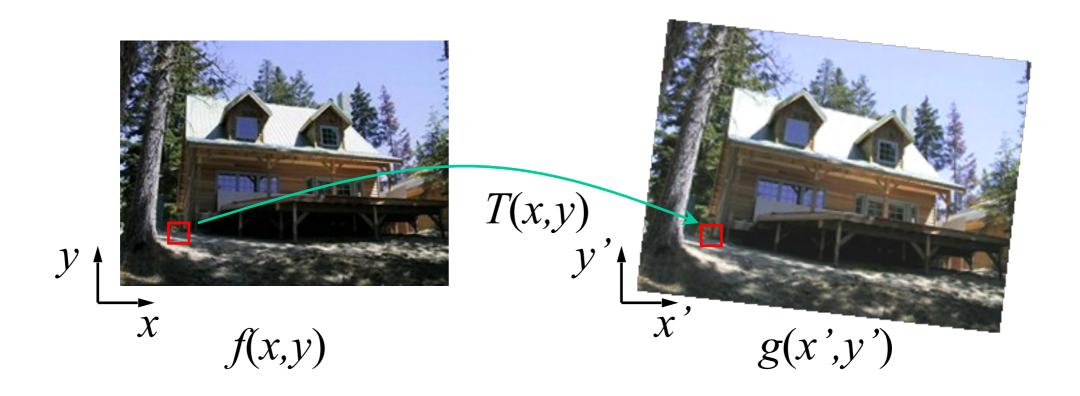


Source

Destination

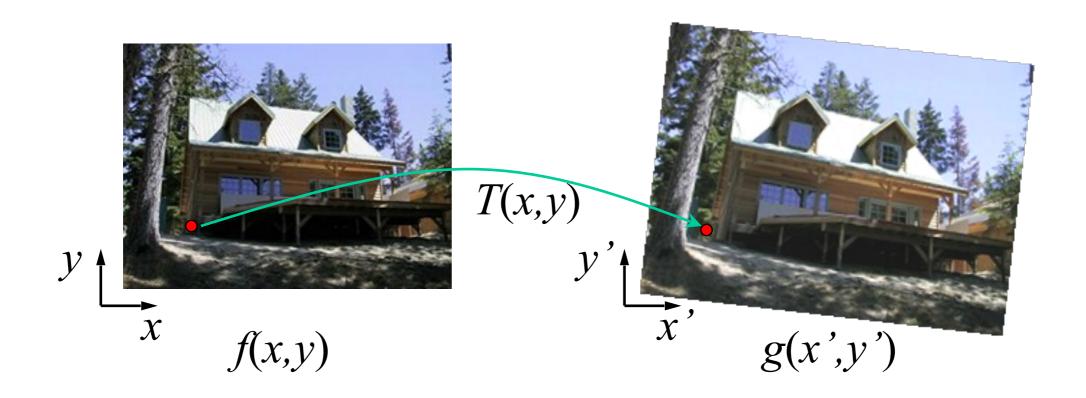
$$T = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

Déformation d'image



• Étant données une image f et une transformation T, comment calculer l'image déformée g?

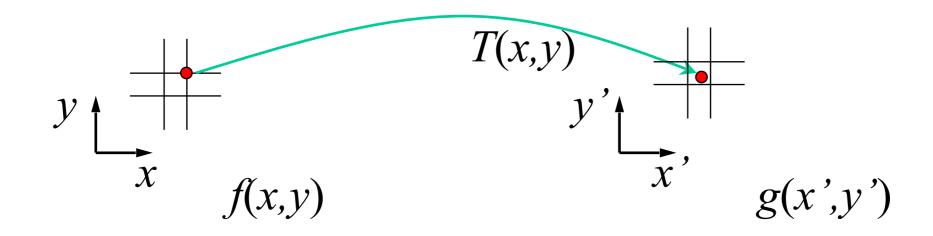
Idée 1: transformée directe



- Pour chaque pixel dans f
 - Calculer sa nouvelle position, et "copier-coller" sa couleur

Idée 1: transformée directe

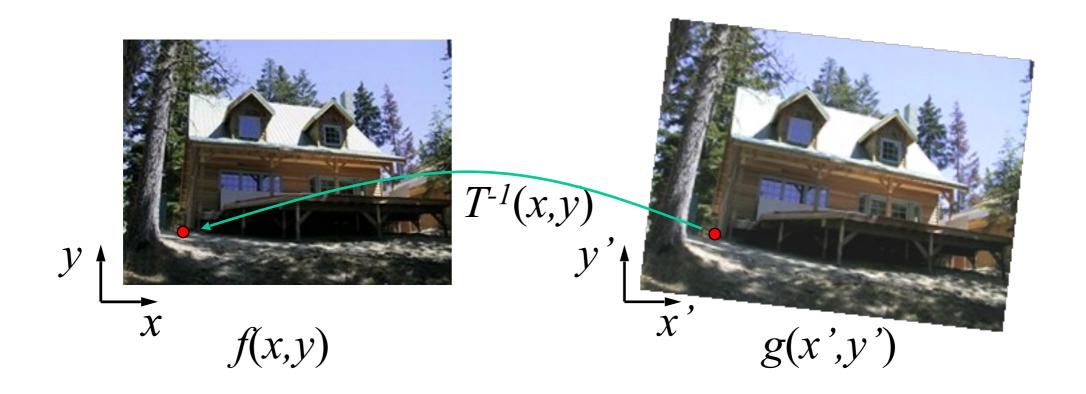
Quel est le problème avec cette approche?



Q: Qu'est-ce qu'on fait si un pixel arrive "entre" deux pixels?

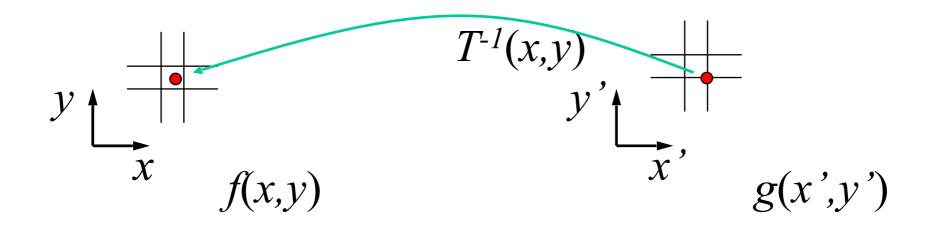
R: distribuer sa couleur sur les pixels avoisinants (comme si on "aplatissait" la couleur)

Idée 2: transformée inverse



- Pour chaque pixel dans g
 - Calculer d'où il vient grâce à l'inverse de T

Idée 2: transformée inverse

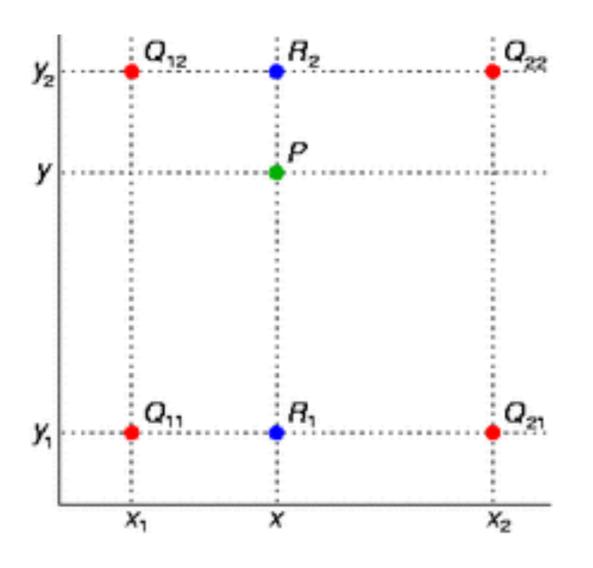


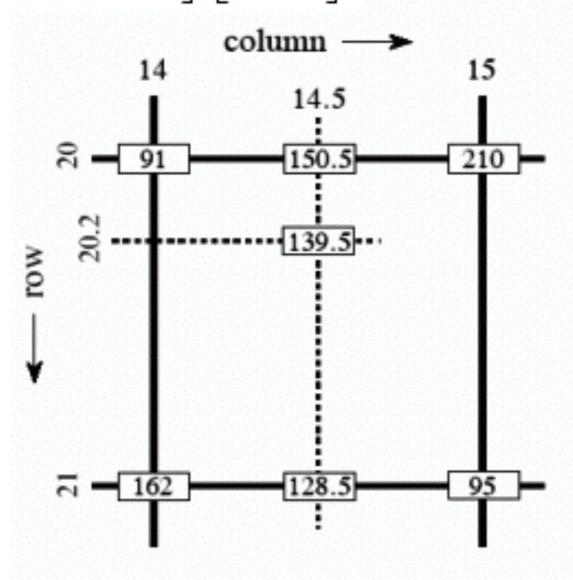
Q: qu'est-ce qu'on fait si un pixel provient "d'entre deux pixels"?

R: Interpolation! plus proche voisin, bi-linéaire, bi-cubique, etc. interp2 dans Matlab

Interpolation bilinéaire

$$f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}.$$





http://en.wikipedia.org/wiki/Bilinear_interpolation

Déformation directe vs inverse

- Laquelle est la meilleure?
- Habituellement, c'est la transformée inverse
 - Garantit qu'on ne génère pas de trou
 - Cependant, il faut que notre transformation puisse être inversée!