
Les textures
Représentations, synthèse et transfert

GIF-4105/7105 Photographie Algorithmique, Hiver 2017
Jean-François Lalonde

Merci à Derek HoiemCrédit photo: Enchantedgal-Stock, deviantart.com

Qu’est-ce qu’une texture?

source: deco.fr

http://deco.fr

Qu’est-ce qu’une texture?

source: heifer12x12.com

http://heifer12x12.com

Qu’est-ce qu’une texture?

Source: Forsyth

“stuff” vs “things”
Thing (chose): Objet qui
possède une taille et une

forme spécifiques

Stuff (?): Matériau défini par
une distribution relativement

homogène de propriétés, sans
toutefois posséder de forme ou

de taille spécifique

Forsyth et al., 1996
Source: Heitz et Koller, 2008

Textures et matériels

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Textures et orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Textures et échelle

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

La texture

Source: Hoiem

Régulières Quasi-régulières Irrégulières Quasi-stochastiques Stochastiques

Comment peut-on la représenter?
• Calculer les caractéristiques des arêtes à

différentes orientations, et à différentes échelles

• Calculer statistiques simples (e.g. moyenne, écart-
type, etc.) des réponses

Source: Hoiem

“sur-représentation”

Banque de filtres

Source: Hoiem

Associez les textures aux filtres

A

B

C

Réponse (valeur absolue)

Filtres

1

2

3

Source: Hoiem

Associez les textures aux filtres
Filtres

Source: HoiemRéponse (valeur absolue)

1

2

3

Synthèse de texture & le remplissage de trous

Texture
• Représente des formes qui se répètent

• Les textures sont très fréquentes!

radis roches yogourt

Plusieurs slides proviennent de James Hays

Synthèse de textures
• But: répliquer la texture sur une plus grande surface

• Beaucoup d’applications: environnements virtuels,
remplir les trous

Le défi

• Il existe une grande variété de textures, de
régulières à stochastiques, alors comment les
modéliser adéquatement?

Régulières Quasi-régulières Irrégulières Quasi-stochastiques Stochastiques

Idée 1: distribution de probabilités
• Calculer les statistiques de la texture

• Histogramme des banques de filtre de détection d’arêtes

• Générer une nouvelle texture qui préserve ces
statistiques

D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH ’95.
E. P. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet coefficient magnitudes. In ICIP 1998.

Démonstration
demo.m

Idée 1: distribution de probabilités
• Ça ne fonctionne pas (la plupart du temps)!
• Problème: les distributions de probabilités sont difficiles à

modéliser adéquatement

Entrée

Sortie

Autre idée: échantillonner l’image

• Faisons l’hypothèse (Markovienne) que la valeur d’un
pixel ne dépend que de celles de ses voisins

• Calculons la distribution de probabilité P(p | N(p))
• Trouvons la valeur qui maximise P(p | N(p))
• Est-ce que c'est possible?

Efros and Leung 1999 SIGGRAPH

p

Autre idée: échantillonner l’image

• À la place de calculer P(p | N(p)), cherchons dans
l'image des endroits semblables à N(p)

• C’est une approximation pour P(p | N(p))!
• Au lieu de trouver le maximum, sélectionner un pixel

aléatoirement

Efros and Leung 1999 SIGGRAPH

p

Synthétiser un pixel à la fois

échantillonnage
non-paramétrique

Image

Cette idée vient de loin…
• Shannon et la théorie de l’information (1948)

• Générer des phrases (en anglais) en modélisant la
probabilité de chaque mot étant donné les n mots
précédents:

• P(mot | n mots précédents) — ça vous rappelle quelque
chose?

• Valeur de n plus grande = phrases plus structurées

“I spent an interesting evening recently with a grain of
salt.”

(exemple du faux utilisateur Mark V Shaney sur net.singles)

http://en.wikipedia.org/wiki/Mark_V_Shaney
http://en.wikipedia.org/wiki/Mark_V_Shaney
http://en.wikipedia.org/wiki/Mark_V_Shaney

Détails
• Comment apparier les voisinages?

• Somme des différences au carré (avec pondération
gaussienne pour donner plus d’importance aux pixels
plus proches)

• Dans quel ordre?

• Pixels qui ont le plus de voisins en premier

• Si on part de 0, commencer avec un endroit
sélectionné aléatoirement

• De quelle taille devraient être les fenêtres?

Taille de la fenêtre

image

Taille de la fenêtre

Taille

Algorithme

• Tant que l’image n’est pas remplie:

• Trouver le pixel inconnu qui a le plus de voisins;

• Trouver les N pixels dans l’image original dont le
voisinage est le plus similaire à celui du pixel inconnu
• Somme des différences au carré, pondérée par gaussienne

• Sélectionner aléatoirement parmi les pixels semblables,
et copier sa valeur dans l’image.

Résultats

Résultats
pain briques

En hommage à Shannon

Remplissons les trous

Extrapolation

Résumé

• La synthèse de texture selon “Efros & Leung”

• Simple

• Résultats surprenants

• … mais extrêêêêêêmement lent!

Faire de la courtepointe: “Image Quilting”

• Observation: les pixels voisins sont fortement corrélés

• Idée: remplacer un pixel par un bloc de pixels

• Exactement pareil qu’avant, sauf que maintenant on veut modéliser
P(B | N(B))

• Beaucoup plus rapide: on synthétise plusieurs pixels à la fois

[Efros & Freeman 2001]

p

Synthétiser un pixel à la fois

Texture initiale

bloc

B1 B2

Blocs voisins se
chevauchent

B1 B2

Coupure minimisant
les discontinuités

B1 B2

Placement des blocs
aléatoire

Coupure minimisant les discontinuités

erreur minimale

blocs se chevauchant discontinuité verticale

_ =
2

erreur de
chevauchement

Trouver le chemin au coût minimum

1

2

4

3

1

2

4

2

1

3

1

2

Coût de passer par ce pixel

Trouver le chemin au coût minimum

1

2

4

3

1

2

4

2

1

3

1

2

l1

l2

l3

source: l1
coût: 4

source: l2
coût: 4

source: l1
coût: 2

so
urc

e:
l2

co
ût:

 6

source: l2
coût: 4

source: l2
coût:3

4

2

4

6

4

3

so
urc

e:
l2

co
ût:

 7

so
urc

e:
l3

co
ût:

4

source: l3
coût:5

7

4

5

Trouver le chemin au coût minimum

1

2

4

3

1

2

4

2

1

3

1

2

l1

l2

l3

Trouver le chemin au coût minimum

1

2

4

3

1

2

4

2

1

3

1

2

Région 1

Région 2

Synthèse de texture politique!

Transfert de textures
• Représenter un objet à partir d’un autre

+ =

Transfert de textures
Contrainte

Exemple de texture

Transfert de textures
• Prendre la texture d’une image et la “peinturer” sur une autre image

• Identique à la synthèse de texture, excepté qu’on rajoute une
contrainte additionnelle:

• Consistence de la texture (les blocs de texture devraient être
similaire à l’image (e.g. SDC sur la luminance)

=+

Le Pain Sacré

+

http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/

Figure 7. Examples of distractor removal results. Each quadruplet shows (from left to right): (1) Original image. (2) Normalized average
ground-truth annotation. (3) Order of segments as predicted by our algorithm. (4) Distractor removal result. We urge the reader to zoom
in or to look at the full resolution images available as supplementary material. The number of segments to remove was manually selected
for each image. Segments are shown on a green-to-yellow scale, green being a lower score. Segment selected for removal are shown on an
orange-to-red scale, red being a higher score. Notice how the red segments correlate with the ground-truth annotation. Also notice that we
manage to detect a variety of distracting elements (a sign, a person, an abstract distractor in the corner, etc.)

Image from [Fried et al. 2015]

Figure 7. Examples of distractor removal results. Each quadruplet shows (from left to right): (1) Original image. (2) Normalized average
ground-truth annotation. (3) Order of segments as predicted by our algorithm. (4) Distractor removal result. We urge the reader to zoom
in or to look at the full resolution images available as supplementary material. The number of segments to remove was manually selected
for each image. Segments are shown on a green-to-yellow scale, green being a lower score. Segment selected for removal are shown on an
orange-to-red scale, red being a higher score. Notice how the red segments correlate with the ground-truth annotation. Also notice that we
manage to detect a variety of distracting elements (a sign, a person, an abstract distractor in the corner, etc.)

Image from [Fried et al. 2015]Image from [Fried et al. 2015]

Figure 7. Examples of distractor removal results. Each quadruplet shows (from left to right): (1) Original image. (2) Normalized average
ground-truth annotation. (3) Order of segments as predicted by our algorithm. (4) Distractor removal result. We urge the reader to zoom
in or to look at the full resolution images available as supplementary material. The number of segments to remove was manually selected
for each image. Segments are shown on a green-to-yellow scale, green being a lower score. Segment selected for removal are shown on an
orange-to-red scale, red being a higher score. Notice how the red segments correlate with the ground-truth annotation. Also notice that we
manage to detect a variety of distracting elements (a sign, a person, an abstract distractor in the corner, etc.)

Image from [Fried et al. 2015]

Patch-based hole filling [Barnes et al. 2009]

Image from [Fried et al. 2015]

PatchMatch [Barnes et al. 2009]

 CMU 15-869, Fall 2013

Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

 CMU 15-869, Fall 2013

Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

Image originale

Région masquée

 CMU 15-869, Fall 2013

Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

Résultat (agrandi)

image: [Barnes et al. 2009]

PatchMatch [Barnes et al. 2009]

• Algorithme semi-aléatoire pour trouver
les correspondances entre les blocs
d’une image de façon très rapide

• Définition du problème:

• Nous avons deux images, A et B.

• Pour chaque bloc dans l’image A,
calculer la translation (tx,ty) qui entre ce
bloc et son plus proche voisin dans
l’image B

• Nous avons donc une translation (tx,ty)
pour chaque pixel

Crédit: Kayvon Fatahalian

in one image region for the most similar patch
in another image region. In other words, given
images or regions A and B, find for every
patch in A the nearest neighbor in B under a
patch distance metric such as Lp. We call this
mapping the Nearest-Neighbor Field (NNF),
illustrated schematically in the inset figure.
Approaching this problem with a naı̈ve brute
force search is expensive – O(mM2) for image
regions and patches of size M and m pixels,
respectively. Even using acceleration methods
such as approximate nearest neighbors [Mount
and Arya 1997] and dimensionality reduction,
this search step remains the bottleneck of non-
parametric patch sampling methods, preventing them from attain-
ing interactive speeds. Furthermore, these tree-based acceleration
structures use memory in the order of O(M) or higher with rela-
tively large constants, limiting their application for high resolution
imagery.

To efficiently compute approximate nearest-neighbor fields our new
algorithm relies on three key observations about the problem:

Dimensionality of offset space. First, although the dimensional-
ity of the patch space is large (m dimensions), it is sparsely pop-
ulated (O(M) patches). Many previous methods have accelerated
the nearest neighbor search by attacking the dimensionality of the
patch space using tree structures (e.g., kd-tree, which can search
in O(mM logM) time) and dimensionality reduction methods (e.g.,
PCA). In contrast, our algorithm searches in the 2-D space of pos-
sible patch offsets, achieving greater speed and memory efficiency.

Natural structure of images. Second, the usual independent
search for each pixel ignores the natural structure in images. In
patch-sampling synthesis algorithms, the output typically contains
large contiguous chunks of data from the input (as observed by
Ashikhmin [2001]). Thus we can improve efficiency by performing
searches for adjacent pixels in an interdependent manner.

The law of large numbers. Finally, whereas any one random
choice of patch assignment is very unlikely to be a good guess,
some nontrivial fraction of a large field of random assignments will
likely be good guesses. As this field grows larger, the chance that
no patch will have a correct offset becomes vanishingly small.

Based on these three observations we offer a randomized algorithm
for computing approximate NNFs using incremental updates (Sec-
tion 3). The algorithm begins with an initial guess, which may be
derived from prior information or may simply be a random field.
The iterative process consists of two phases: propagation, in which
coherence is used to disseminate good solutions to adjacent pixels
in the field; and random search, in which the current offset vector
is perturbed by multiple scales of random offsets. We show both
theoretically and empirically that the algorithm has good conver-
gence properties for tested imagery up to 2MP, and our CPU im-
plementation shows speedups of 20-100 times versus kd-trees with
PCA. Moreover, we propose a GPU implementation that is roughly
7 times faster than the CPU version for similar image sizes. Our
algorithm requires very little extra memory beyond the original im-
age, unlike previous algorithms that build auxiliary data structures
to accelerate the search. Using typical settings of our algorithm’s
parameters, the runtime is O(mM logM) and the memory usage is
O(M). Although this is the same asymptotic time and memory as
the most efficient tree-based acceleration techniques, the leading
constants are substantially smaller.

In Section 4, we demonstrate the application of this algorithm in the
context of a structural image editing program with three modes of
interactive editing: image retargeting, image completion and image

reshuffling. The system includes a set of tools that offer additional
control over previous methods by allowing the user to constrain the
synthesis process in an intuitive and interactive way (Figure 1).

The contributions of our work include a fast randomized approxi-
mation algorithm for computing the nearest-neighbor field between
two disjoint image regions; an application of this algorithm within a
structural image editing framework that enables high-quality inter-
active image retargeting, image completion, and image reshuffling;
and a set of intuitive interactive controls used to constrain the opti-
mization process to obtain desired creative results.

2 Related work

Patch-based sampling methods have become a popular tool for
image and video synthesis and analysis. Applications include
texture synthesis, image and video completion, summarization and
retargeting, image recomposition and editing, image stitching and
collages, new view synthesis, noise removal and more. We will next
review some of these applications and discuss the common search
techniques that they use as well as their degree of interactivity.

Texture synthesis and completion. Efros and Leung [1999] in-
troduced a simple non-parametric texture synthesis method that
outperformed many previous model based methods by sampling
patches from a texture example and pasting them in the synthe-
sized image. Further improvements modify the search and sam-
pling approaches for better structure preservation [Wei and Levoy
2000; Ashikhmin 2001; Liang et al. 2001; Efros and Freeman 2001;
Kwatra et al. 2003; Criminisi et al. 2003; Drori et al. 2003]. The
greedy fill-in order of these algorithms sometimes introduces incon-
sistencies when completing large holes with complex structures, but
Wexler et al. [2007] formulated the completion problem as a global
optimization, thus obtaining more globally consistent completions
of large missing regions. This iterative multi-scale optimization
algorithm repeatedly searches for nearest neighbor patches for all
hole pixels in parallel. Although their original implementation was
typically slow (a few minutes for images smaller than 1 MP), our
algorithm makes this technique applicable to much larger images
at interactive rates. Patch optimization based approaches have now
become common practice in texture synthesis [Kwatra et al. 2005;
Kopf et al. 2007; Wei et al. 2008]. In that domain, Lefebvre and
Hoppe [2005] have used related parallel update schemes and even
demonstrated real-time GPU based implementations. Komodakis
and Tziritas [2007] proposed another global optimization formu-
lation for image completion using Loopy Belief Propagation with
an adaptive priority messaging scheme. Although this method pro-
duces excellent results, it is still relatively slow and has only been
demonstrated on small images.

Nearest neighbor search methods. The high synthesis quality
of patch optimization methods comes at the expense of more
search iterations, which is the clear complexity bottleneck in all
of these methods. Moreover, whereas in texture synthesis the
texture example is usually a small image, in other applications
such as patch-based completion, retargeting and reshuffling, the
input image is typically much larger so the search problem is even
more critical. Various speedups for this search have been proposed,
generally involving tree structures such as TSVQ [Wei and Levoy
2000], kd-trees [Hertzmann et al. 2001; Wexler et al. 2007; Kopf
et al. 2007], and VP-trees [Kumar et al. 2008], each of which
supports both exact and approximate search (ANN). In synthesis
applications, approximate search is often used in conjunction with
dimensionality reduction techniques such as PCA [Hertzmann et al.
2001; Lefebvre and Hoppe 2005; Kopf et al. 2007], because
ANN methods are much more time- and memory-efficient in low
dimensions. Ashikhmin [2001] proposed a local propagation
technique exploiting local coherence in the synthesis process by

PatchMatch [Barnes et al. 2009]

• Idée #1: une translation aléatoire (une devinette!)
sera bonne pour un certain nombre de pixels

• Initialisons avec une translation aléatoire

 CMU 15-869, Fall 2013

Patch match: key idea one
▪ Law of large numbers: a non-trivial fraction of a large field of random

offset assignments are likely to be good guesses
▪ Initialize f with random values

Visualization of f:

Saturation = magnitude of match offset
(gray is matching patch in B is at same
pixel location as match patch in A)

Hue = direction of offset
offset X = red-cyan axis
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]

Légende

Crédit: Kayvon Fatahalian

translation (tx,ty) pour chaque pixel

PatchMatch [Barnes et al. 2009]

• Idée #2: les voisins sont cohérents

• Le plus proche voisin d’un bloc centré à (x, y) devrait être un
bon indice pour trouver le plus proche voisin du bloc à (x+1,
y)

• Boucler sur chaque pixel:

• Regarder si le voisin à gauche: si le bloc à sa droite est un
meilleur candidat pour le bloc courant, alors remplacer le
voisin du bloc courant. Sinon, garder le résultat précédent.

• Répéter l’opération avec le voisin en haut.

• À la prochaine itération, utiliser les voisins en bas et à
droite

Crédit: Kayvon Fatahalian

Étapes principales
limiting the search space for a patch to the source locations of its
neighbors in the exemplar texture. Our propagation search step
is inspired by the same coherence assumption. The k-coherence
technique [Tong et al. 2002] combines the propagation idea with a
precomputation stage in which the k nearest neighbors of each patch
are cached, and later searches take advantage of these precomputed
sets. Although this accelerates the search phase, k-coherence still
requires a full nearest-neighbor search for all pixels in the input,
and has only been demonstrated in the context of texture synthesis.
It assumes that the initial offsets are close enough that it suffices to
search only a small number of nearest neighbors. This may be true
for small pure texture inputs, but we found that for large complex
images our random search phase is required to escape local minima.
In this work we compare speed and memory usage of our algorithm
against kd-trees with dimensionality reduction, and we show that
it is at least an order of magnitude faster than the best competing
combination (ANN+PCA) and uses significantly less memory. Our
algorithm also provides more generality than kd-trees because it
can be applied with arbitrary distance metrics, and easily modified
to enable local interactions such as constrained completion.

Control and interactivity. One advantage of patch sampling
schemes is that they offer a great deal of fine-scale control. For ex-
ample, in texture synthesis, the method of Ashikhmin [2001] gives
the user control over the process by initializing the output pixels
with desired colors. The image analogies framework of Hertz-
mann et al. [2001] uses auxiliary images as “guiding layers,” en-
abling a variety of effects including super-resolution, texture trans-
fer, artistic filters, and texture-by-numbers. In the field of image
completion, impressive guided filling results were shown by an-
notating structures that cross both inside and outside the missing
region [Sun et al. 2005]. Lines are filled first using Belief Propa-
gation, and then texture synthesis is applied for the other regions,
but the overall run-time is on the order of minutes for a half MP
image. Our system provides similar user annotations, for lines and
other region constraints, but treats all regions in a unified iterative
process at interactive rates. Fang and Hart [2007] demonstrated a
tool to deform image feature curves while preserving textures that
allows finer adjustments than our editing tools, but not at interac-
tive rates. Pavic et al. [2006] presented an interactive completion
system based on large fragments that allows the user to define the
local 3D perspective to properly warp the fragments before corre-
lating and pasting them. Although their system interactively pastes
each individual fragment, the user must still manually click on each
completion region, so the overall process can still be tedious.

Image retargeting. Many methods of image retargeting have ap-
plied warping or cropping, using some metric of saliency to avoid
deforming important image regions [Liu and Gleicher 2005; Setlur
et al. 2005; Wolf et al. 2007; Wang et al. 2008]. Seam carving [Avi-
dan and Shamir 2007; Rubinstein et al. 2008] uses a simple greedy
approach to prioritize seams in an image that can safely be removed
in retargeting. Although seam carving is fast, it does not preserve
structures well, and offers only limited control over the results.
Simakov et al. [2008] proposed framing the problem of image and
video retargeting as a maximization of bidirectional similarity be-
tween small patches in the original and output images, and a similar
objective function and optimization algorithm was independently
proposed by Wei et al. [2008] as a method to create texture sum-
maries for faster synthesis. Unfortunately, the approach of Simakov
et al. is extremely slow compared to seam carving. Our constrained
retargeting and image reshuffling applications employ the same ob-
jective function and iterative algorithm as Simakov et al., using
our new nearest-neighbor algorithm to obtain interactive speeds. In
each of these previous methods, the principal method of user con-
trol is the ability to define and protect important regions from dis-
tortion. In contrast, our system integrates specific user-directable

(a) Initialization (b) Propagation (c) Search

A A A

B B B

Figure 2: Phases of the randomized nearest neighbor algorithm:
(a) patches initially have random assignments; (b) the blue patch
checks above/green and left/red neighbors to see if they will im-
prove the blue mapping, propagating good matches; (c) the patch
searches randomly for improvements in concentric neighborhoods.

constraints in the retargeting process to explicitly protect lines from
bending or breaking, restrict user-defined regions to specific trans-
formations such as uniform or non-uniform scaling, and fix lines or
objects to specific output locations.

Image “reshuffling” is the rearrangement of content within an
image, according to user input, without precise mattes. Reshuffling
was demonstrated simultaneously by Simakov et al. [2008] and
by Cho et al. [2008], who used larger image patches and Belief
Propagation in an MRF formulation. Reshuffling requires the
minimization of a global error function, as objects may move
significant distances, and greedy algorithms will introduce large
artifacts. In contrast to all previous work, our reshuffling method
is fully interactive. As this task might be particularly hard and
badly constrained, these algorithms do not always produce the
expected result. Therefore interactivity is essential, as it allows the
user to preserve some semantically important structures from being
reshuffled, and to quickly choose the best result among alternatives.

3 Approximate nearest-neighbor algorithm

The core of our system is the algorithm for computing patch
correspondences. We define a nearest-neighbor field (NNF) as
a function f : A 7! R2 of offsets, defined over all possible patch
coordinates (locations of patch centers) in image A, for some
distance function of two patches D. Given patch coordinate a in
image A and its corresponding nearest neighbor b in image B, f (a)
is simply b�a. We refer to the values of f as offsets, and they are
stored in an array whose dimensions are those of A.

This section presents a randomized algorithm for computing an
approximate NNF. As a reminder, the key insights that motivate
this algorithm are that we search in the space of possible offsets,
that adjacent offsets search cooperatively, and that even a random
offset is likely to be a good guess for many patches over a large
image.

The algorithm has three main components, illustrated in Figure 2.
Initially, the nearest-neighbor field is filled with either random
offsets or some prior information. Next, an iterative update process
is applied to the NNF, in which good patch offsets are propagated
to adjacent pixels, followed by random search in the neighborhood
of the best offset found so far. Sections 3.1 and 3.2 describe these
steps in more detail.

limiting the search space for a patch to the source locations of its
neighbors in the exemplar texture. Our propagation search step
is inspired by the same coherence assumption. The k-coherence
technique [Tong et al. 2002] combines the propagation idea with a
precomputation stage in which the k nearest neighbors of each patch
are cached, and later searches take advantage of these precomputed
sets. Although this accelerates the search phase, k-coherence still
requires a full nearest-neighbor search for all pixels in the input,
and has only been demonstrated in the context of texture synthesis.
It assumes that the initial offsets are close enough that it suffices to
search only a small number of nearest neighbors. This may be true
for small pure texture inputs, but we found that for large complex
images our random search phase is required to escape local minima.
In this work we compare speed and memory usage of our algorithm
against kd-trees with dimensionality reduction, and we show that
it is at least an order of magnitude faster than the best competing
combination (ANN+PCA) and uses significantly less memory. Our
algorithm also provides more generality than kd-trees because it
can be applied with arbitrary distance metrics, and easily modified
to enable local interactions such as constrained completion.

Control and interactivity. One advantage of patch sampling
schemes is that they offer a great deal of fine-scale control. For ex-
ample, in texture synthesis, the method of Ashikhmin [2001] gives
the user control over the process by initializing the output pixels
with desired colors. The image analogies framework of Hertz-
mann et al. [2001] uses auxiliary images as “guiding layers,” en-
abling a variety of effects including super-resolution, texture trans-
fer, artistic filters, and texture-by-numbers. In the field of image
completion, impressive guided filling results were shown by an-
notating structures that cross both inside and outside the missing
region [Sun et al. 2005]. Lines are filled first using Belief Propa-
gation, and then texture synthesis is applied for the other regions,
but the overall run-time is on the order of minutes for a half MP
image. Our system provides similar user annotations, for lines and
other region constraints, but treats all regions in a unified iterative
process at interactive rates. Fang and Hart [2007] demonstrated a
tool to deform image feature curves while preserving textures that
allows finer adjustments than our editing tools, but not at interac-
tive rates. Pavic et al. [2006] presented an interactive completion
system based on large fragments that allows the user to define the
local 3D perspective to properly warp the fragments before corre-
lating and pasting them. Although their system interactively pastes
each individual fragment, the user must still manually click on each
completion region, so the overall process can still be tedious.

Image retargeting. Many methods of image retargeting have ap-
plied warping or cropping, using some metric of saliency to avoid
deforming important image regions [Liu and Gleicher 2005; Setlur
et al. 2005; Wolf et al. 2007; Wang et al. 2008]. Seam carving [Avi-
dan and Shamir 2007; Rubinstein et al. 2008] uses a simple greedy
approach to prioritize seams in an image that can safely be removed
in retargeting. Although seam carving is fast, it does not preserve
structures well, and offers only limited control over the results.
Simakov et al. [2008] proposed framing the problem of image and
video retargeting as a maximization of bidirectional similarity be-
tween small patches in the original and output images, and a similar
objective function and optimization algorithm was independently
proposed by Wei et al. [2008] as a method to create texture sum-
maries for faster synthesis. Unfortunately, the approach of Simakov
et al. is extremely slow compared to seam carving. Our constrained
retargeting and image reshuffling applications employ the same ob-
jective function and iterative algorithm as Simakov et al., using
our new nearest-neighbor algorithm to obtain interactive speeds. In
each of these previous methods, the principal method of user con-
trol is the ability to define and protect important regions from dis-
tortion. In contrast, our system integrates specific user-directable

(a) Initialization (b) Propagation (c) Search

A A A

B B B

Figure 2: Phases of the randomized nearest neighbor algorithm:
(a) patches initially have random assignments; (b) the blue patch
checks above/green and left/red neighbors to see if they will im-
prove the blue mapping, propagating good matches; (c) the patch
searches randomly for improvements in concentric neighborhoods.

constraints in the retargeting process to explicitly protect lines from
bending or breaking, restrict user-defined regions to specific trans-
formations such as uniform or non-uniform scaling, and fix lines or
objects to specific output locations.

Image “reshuffling” is the rearrangement of content within an
image, according to user input, without precise mattes. Reshuffling
was demonstrated simultaneously by Simakov et al. [2008] and
by Cho et al. [2008], who used larger image patches and Belief
Propagation in an MRF formulation. Reshuffling requires the
minimization of a global error function, as objects may move
significant distances, and greedy algorithms will introduce large
artifacts. In contrast to all previous work, our reshuffling method
is fully interactive. As this task might be particularly hard and
badly constrained, these algorithms do not always produce the
expected result. Therefore interactivity is essential, as it allows the
user to preserve some semantically important structures from being
reshuffled, and to quickly choose the best result among alternatives.

3 Approximate nearest-neighbor algorithm

The core of our system is the algorithm for computing patch
correspondences. We define a nearest-neighbor field (NNF) as
a function f : A 7! R2 of offsets, defined over all possible patch
coordinates (locations of patch centers) in image A, for some
distance function of two patches D. Given patch coordinate a in
image A and its corresponding nearest neighbor b in image B, f (a)
is simply b�a. We refer to the values of f as offsets, and they are
stored in an array whose dimensions are those of A.

This section presents a randomized algorithm for computing an
approximate NNF. As a reminder, the key insights that motivate
this algorithm are that we search in the space of possible offsets,
that adjacent offsets search cooperatively, and that even a random
offset is likely to be a good guess for many patches over a large
image.

The algorithm has three main components, illustrated in Figure 2.
Initially, the nearest-neighbor field is filled with either random
offsets or some prior information. Next, an iterative update process
is applied to the NNF, in which good patch offsets are propagated
to adjacent pixels, followed by random search in the neighborhood
of the best offset found so far. Sections 3.1 and 3.2 describe these
steps in more detail.

limiting the search space for a patch to the source locations of its
neighbors in the exemplar texture. Our propagation search step
is inspired by the same coherence assumption. The k-coherence
technique [Tong et al. 2002] combines the propagation idea with a
precomputation stage in which the k nearest neighbors of each patch
are cached, and later searches take advantage of these precomputed
sets. Although this accelerates the search phase, k-coherence still
requires a full nearest-neighbor search for all pixels in the input,
and has only been demonstrated in the context of texture synthesis.
It assumes that the initial offsets are close enough that it suffices to
search only a small number of nearest neighbors. This may be true
for small pure texture inputs, but we found that for large complex
images our random search phase is required to escape local minima.
In this work we compare speed and memory usage of our algorithm
against kd-trees with dimensionality reduction, and we show that
it is at least an order of magnitude faster than the best competing
combination (ANN+PCA) and uses significantly less memory. Our
algorithm also provides more generality than kd-trees because it
can be applied with arbitrary distance metrics, and easily modified
to enable local interactions such as constrained completion.

Control and interactivity. One advantage of patch sampling
schemes is that they offer a great deal of fine-scale control. For ex-
ample, in texture synthesis, the method of Ashikhmin [2001] gives
the user control over the process by initializing the output pixels
with desired colors. The image analogies framework of Hertz-
mann et al. [2001] uses auxiliary images as “guiding layers,” en-
abling a variety of effects including super-resolution, texture trans-
fer, artistic filters, and texture-by-numbers. In the field of image
completion, impressive guided filling results were shown by an-
notating structures that cross both inside and outside the missing
region [Sun et al. 2005]. Lines are filled first using Belief Propa-
gation, and then texture synthesis is applied for the other regions,
but the overall run-time is on the order of minutes for a half MP
image. Our system provides similar user annotations, for lines and
other region constraints, but treats all regions in a unified iterative
process at interactive rates. Fang and Hart [2007] demonstrated a
tool to deform image feature curves while preserving textures that
allows finer adjustments than our editing tools, but not at interac-
tive rates. Pavic et al. [2006] presented an interactive completion
system based on large fragments that allows the user to define the
local 3D perspective to properly warp the fragments before corre-
lating and pasting them. Although their system interactively pastes
each individual fragment, the user must still manually click on each
completion region, so the overall process can still be tedious.

Image retargeting. Many methods of image retargeting have ap-
plied warping or cropping, using some metric of saliency to avoid
deforming important image regions [Liu and Gleicher 2005; Setlur
et al. 2005; Wolf et al. 2007; Wang et al. 2008]. Seam carving [Avi-
dan and Shamir 2007; Rubinstein et al. 2008] uses a simple greedy
approach to prioritize seams in an image that can safely be removed
in retargeting. Although seam carving is fast, it does not preserve
structures well, and offers only limited control over the results.
Simakov et al. [2008] proposed framing the problem of image and
video retargeting as a maximization of bidirectional similarity be-
tween small patches in the original and output images, and a similar
objective function and optimization algorithm was independently
proposed by Wei et al. [2008] as a method to create texture sum-
maries for faster synthesis. Unfortunately, the approach of Simakov
et al. is extremely slow compared to seam carving. Our constrained
retargeting and image reshuffling applications employ the same ob-
jective function and iterative algorithm as Simakov et al., using
our new nearest-neighbor algorithm to obtain interactive speeds. In
each of these previous methods, the principal method of user con-
trol is the ability to define and protect important regions from dis-
tortion. In contrast, our system integrates specific user-directable

(a) Initialization (b) Propagation (c) Search

A A A

B B B

Figure 2: Phases of the randomized nearest neighbor algorithm:
(a) patches initially have random assignments; (b) the blue patch
checks above/green and left/red neighbors to see if they will im-
prove the blue mapping, propagating good matches; (c) the patch
searches randomly for improvements in concentric neighborhoods.

constraints in the retargeting process to explicitly protect lines from
bending or breaking, restrict user-defined regions to specific trans-
formations such as uniform or non-uniform scaling, and fix lines or
objects to specific output locations.

Image “reshuffling” is the rearrangement of content within an
image, according to user input, without precise mattes. Reshuffling
was demonstrated simultaneously by Simakov et al. [2008] and
by Cho et al. [2008], who used larger image patches and Belief
Propagation in an MRF formulation. Reshuffling requires the
minimization of a global error function, as objects may move
significant distances, and greedy algorithms will introduce large
artifacts. In contrast to all previous work, our reshuffling method
is fully interactive. As this task might be particularly hard and
badly constrained, these algorithms do not always produce the
expected result. Therefore interactivity is essential, as it allows the
user to preserve some semantically important structures from being
reshuffled, and to quickly choose the best result among alternatives.

3 Approximate nearest-neighbor algorithm

The core of our system is the algorithm for computing patch
correspondences. We define a nearest-neighbor field (NNF) as
a function f : A 7! R2 of offsets, defined over all possible patch
coordinates (locations of patch centers) in image A, for some
distance function of two patches D. Given patch coordinate a in
image A and its corresponding nearest neighbor b in image B, f (a)
is simply b�a. We refer to the values of f as offsets, and they are
stored in an array whose dimensions are those of A.

This section presents a randomized algorithm for computing an
approximate NNF. As a reminder, the key insights that motivate
this algorithm are that we search in the space of possible offsets,
that adjacent offsets search cooperatively, and that even a random
offset is likely to be a good guess for many patches over a large
image.

The algorithm has three main components, illustrated in Figure 2.
Initially, the nearest-neighbor field is filled with either random
offsets or some prior information. Next, an iterative update process
is applied to the NNF, in which good patch offsets are propagated
to adjacent pixels, followed by random search in the neighborhood
of the best offset found so far. Sections 3.1 and 3.2 describe these
steps in more detail.

Initialisation (aléatoire) Propagation Recherche (aléatoire)

Amélioration itérative [Barnes et al. 2009]

(a) originals (b) random (c) 1
4 iteration (d) 3

4 iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

Figure 3: Illustration of convergence. (a) The top image is reconstructed using only patches from the bottom image. (b) above: the
reconstruction by the patch “voting” described in Section 4, below: a random initial offset field, with magnitude visualized as saturation
and angle visualized as hue. (c) 1/4 of the way through the first iteration, high-quality offsets have been propagated in the region above
the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two
iterations. (g) After 5 iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the
later iterations.

3.1 Initialization

The nearest-neighbor field can be initialized either by assigning ran-
dom values to the field, or by using prior information. When ini-
tializing with random offsets, we use independent uniform samples
across the full range of image B. In applications described in Sec-
tion 4, we use a coarse-to-fine gradual resizing process, so we have
the option to use an initial guess upscaled from the previous level
in the pyramid. However, if we use only this initial guess, the al-
gorithm can sometimes get trapped in suboptimal local minima. To
retain the quality of this prior but still preserve some ability to es-
cape from such minima, we perform a few early iterations of the
algorithm using a random initialization, then merge with the up-
sampled initialization only at patches where D is smaller, and then
perform the remaining iterations.

3.2 Iteration

After initialization, we perform an iterative process of improving
the NNF. Each iteration of the algorithm proceeds as follows:
Offsets are examined in scan order (from left to right, top to
bottom), and each undergoes propagation followed by random
search. These operations are interleaved at the patch level: if Pj and
S j denote, respectively, propagation and random search at patch j,
then we proceed in the order: P1,S1,P2,S2, . . . ,Pn,Sn.

Propagation. We attempt to improve f (x,y) using the known
offsets of f (x�1,y) and f (x,y�1), assuming that the patch offsets
are likely to be the same. For example, if there is a good mapping
at (x� 1,y), we try to use the translation of that mapping one
pixel to the right for our mapping at (x,y). Let D(v) denote the
patch distance (error) between the patch at (x,y) in A and patch
(x,y)+ v in B. We take the new value for f (x,y) to be the arg min
of {D(f (x,y)), D(f (x�1,y)), D(f (x,y�1))}.

The effect is that if (x,y) has a correct mapping and is in a coherent
region R, then all of R below and to the right of (x,y) will be
filled with the correct mapping. Moreover, on even iterations we
propagate information up and left by examining offsets in reverse
scan order, using f (x+1,y) and f (x,y+1) as our candidate offsets.

Random search. Let v0 = f (x,y). We attempt to improve f (x,y)
by testing a sequence of candidate offsets at an exponentially
decreasing distance from v0:

ui = v0 +wa iRi (1)

where Ri is a uniform random in [�1,1]⇥ [�1,1], w is a large
maximum search “radius”, and a is a fixed ratio between search
window sizes. We examine patches for i = 0,1,2, ... until the
current search radius wa i is below 1 pixel. In our applications w is

the maximum image dimension, and a = 1/2, except where noted.
Note the search window must be clamped to the bounds of B.

Halting criteria. Although different criteria for halting may be
used depending on the application, in practice we have found it
works well to iterate a fixed number of times. All the results shown
here were computed with 4-5 iterations total, after which the NNF
has almost always converged. Convergence is illustrated in Figure 3
and in the accompanying video.

Efficiency. The efficiency of this naive approach can be improved
in a few ways. In the propagation and random search phases, when
attempting to improve an offset f (v) with a candidate offset u,
one can do early termination if a partial sum for D(u) exceeds the
current known distance D(f (v)). Also, in the propagation stage,
when using square patches of side length p and an Lq norm, the
change in distance can be computed incrementally in O(p) rather
than O(p2) time, by noting redundant terms in the summation
over the overlap region. However, this incurs additional memory
overhead to store the current best distances D(f (x,y)).

GPU implementation. The editing system to be described in Sec-
tion 4 relies on a CPU implementation of the NNF estimation al-
gorithm, but we have also prototyped a fully parallelized variant
on the GPU. To do so, we alternate between iterations of random
search and propagation, where each stage addresses the entire offset
field in parallel. Although propagation is inherently a serial oper-
ation, we adapt the jump flood scheme of Rong and Tan [2006]
to perform propagation over several iterations. Whereas our CPU
version is capable of propagating information all the way across a
scanline, we find that in practice long propagations are not needed,
and a maximum jump distance of 8 suffices. We also use only 4
neighbors at each jump distance, rather than the 8 neighbors pro-
posed by Rong and Tan. With similar approximation accuracy, the
GPU algorithm is roughly 7x faster than the CPU algorithm, on a
GeForce 8800 GTS card.

3.3 Analysis for a synthetic example

Our iterative algorithm converges to the exact NNF in the limit.
Here we offer a theoretical analysis for this convergence, showing
that it converges most rapidly in the first few iterations with
high probability. Moreover, we show that in the common case
where only approximate patch matches are required, the algorithm
converges even faster. Thus our algorithm is best employed as
an approximation algorithm, by limiting computation to a small
number of iterations.

We start by analyzing the convergence to the exact nearest-neighbor
field and then extend this analysis to the more useful case of con-

But: reconstruire l’image A à partir de l’image B

(a) originals (b) random (c) 1
4 iteration (d) 3

4 iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

Figure 3: Illustration of convergence. (a) The top image is reconstructed using only patches from the bottom image. (b) above: the
reconstruction by the patch “voting” described in Section 4, below: a random initial offset field, with magnitude visualized as saturation
and angle visualized as hue. (c) 1/4 of the way through the first iteration, high-quality offsets have been propagated in the region above
the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two
iterations. (g) After 5 iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the
later iterations.

3.1 Initialization

The nearest-neighbor field can be initialized either by assigning ran-
dom values to the field, or by using prior information. When ini-
tializing with random offsets, we use independent uniform samples
across the full range of image B. In applications described in Sec-
tion 4, we use a coarse-to-fine gradual resizing process, so we have
the option to use an initial guess upscaled from the previous level
in the pyramid. However, if we use only this initial guess, the al-
gorithm can sometimes get trapped in suboptimal local minima. To
retain the quality of this prior but still preserve some ability to es-
cape from such minima, we perform a few early iterations of the
algorithm using a random initialization, then merge with the up-
sampled initialization only at patches where D is smaller, and then
perform the remaining iterations.

3.2 Iteration

After initialization, we perform an iterative process of improving
the NNF. Each iteration of the algorithm proceeds as follows:
Offsets are examined in scan order (from left to right, top to
bottom), and each undergoes propagation followed by random
search. These operations are interleaved at the patch level: if Pj and
S j denote, respectively, propagation and random search at patch j,
then we proceed in the order: P1,S1,P2,S2, . . . ,Pn,Sn.

Propagation. We attempt to improve f (x,y) using the known
offsets of f (x�1,y) and f (x,y�1), assuming that the patch offsets
are likely to be the same. For example, if there is a good mapping
at (x� 1,y), we try to use the translation of that mapping one
pixel to the right for our mapping at (x,y). Let D(v) denote the
patch distance (error) between the patch at (x,y) in A and patch
(x,y)+ v in B. We take the new value for f (x,y) to be the arg min
of {D(f (x,y)), D(f (x�1,y)), D(f (x,y�1))}.

The effect is that if (x,y) has a correct mapping and is in a coherent
region R, then all of R below and to the right of (x,y) will be
filled with the correct mapping. Moreover, on even iterations we
propagate information up and left by examining offsets in reverse
scan order, using f (x+1,y) and f (x,y+1) as our candidate offsets.

Random search. Let v0 = f (x,y). We attempt to improve f (x,y)
by testing a sequence of candidate offsets at an exponentially
decreasing distance from v0:

ui = v0 +wa iRi (1)

where Ri is a uniform random in [�1,1]⇥ [�1,1], w is a large
maximum search “radius”, and a is a fixed ratio between search
window sizes. We examine patches for i = 0,1,2, ... until the
current search radius wa i is below 1 pixel. In our applications w is

the maximum image dimension, and a = 1/2, except where noted.
Note the search window must be clamped to the bounds of B.

Halting criteria. Although different criteria for halting may be
used depending on the application, in practice we have found it
works well to iterate a fixed number of times. All the results shown
here were computed with 4-5 iterations total, after which the NNF
has almost always converged. Convergence is illustrated in Figure 3
and in the accompanying video.

Efficiency. The efficiency of this naive approach can be improved
in a few ways. In the propagation and random search phases, when
attempting to improve an offset f (v) with a candidate offset u,
one can do early termination if a partial sum for D(u) exceeds the
current known distance D(f (v)). Also, in the propagation stage,
when using square patches of side length p and an Lq norm, the
change in distance can be computed incrementally in O(p) rather
than O(p2) time, by noting redundant terms in the summation
over the overlap region. However, this incurs additional memory
overhead to store the current best distances D(f (x,y)).

GPU implementation. The editing system to be described in Sec-
tion 4 relies on a CPU implementation of the NNF estimation al-
gorithm, but we have also prototyped a fully parallelized variant
on the GPU. To do so, we alternate between iterations of random
search and propagation, where each stage addresses the entire offset
field in parallel. Although propagation is inherently a serial oper-
ation, we adapt the jump flood scheme of Rong and Tan [2006]
to perform propagation over several iterations. Whereas our CPU
version is capable of propagating information all the way across a
scanline, we find that in practice long propagations are not needed,
and a maximum jump distance of 8 suffices. We also use only 4
neighbors at each jump distance, rather than the 8 neighbors pro-
posed by Rong and Tan. With similar approximation accuracy, the
GPU algorithm is roughly 7x faster than the CPU algorithm, on a
GeForce 8800 GTS card.

3.3 Analysis for a synthetic example

Our iterative algorithm converges to the exact NNF in the limit.
Here we offer a theoretical analysis for this convergence, showing
that it converges most rapidly in the first few iterations with
high probability. Moreover, we show that in the common case
where only approximate patch matches are required, the algorithm
converges even faster. Thus our algorithm is best employed as
an approximation algorithm, by limiting computation to a small
number of iterations.

We start by analyzing the convergence to the exact nearest-neighbor
field and then extend this analysis to the more useful case of con-

(a) originals (b) random (c) 1
4 iteration (d) 3

4 iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

Figure 3: Illustration of convergence. (a) The top image is reconstructed using only patches from the bottom image. (b) above: the
reconstruction by the patch “voting” described in Section 4, below: a random initial offset field, with magnitude visualized as saturation
and angle visualized as hue. (c) 1/4 of the way through the first iteration, high-quality offsets have been propagated in the region above
the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two
iterations. (g) After 5 iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the
later iterations.

3.1 Initialization

The nearest-neighbor field can be initialized either by assigning ran-
dom values to the field, or by using prior information. When ini-
tializing with random offsets, we use independent uniform samples
across the full range of image B. In applications described in Sec-
tion 4, we use a coarse-to-fine gradual resizing process, so we have
the option to use an initial guess upscaled from the previous level
in the pyramid. However, if we use only this initial guess, the al-
gorithm can sometimes get trapped in suboptimal local minima. To
retain the quality of this prior but still preserve some ability to es-
cape from such minima, we perform a few early iterations of the
algorithm using a random initialization, then merge with the up-
sampled initialization only at patches where D is smaller, and then
perform the remaining iterations.

3.2 Iteration

After initialization, we perform an iterative process of improving
the NNF. Each iteration of the algorithm proceeds as follows:
Offsets are examined in scan order (from left to right, top to
bottom), and each undergoes propagation followed by random
search. These operations are interleaved at the patch level: if Pj and
S j denote, respectively, propagation and random search at patch j,
then we proceed in the order: P1,S1,P2,S2, . . . ,Pn,Sn.

Propagation. We attempt to improve f (x,y) using the known
offsets of f (x�1,y) and f (x,y�1), assuming that the patch offsets
are likely to be the same. For example, if there is a good mapping
at (x� 1,y), we try to use the translation of that mapping one
pixel to the right for our mapping at (x,y). Let D(v) denote the
patch distance (error) between the patch at (x,y) in A and patch
(x,y)+ v in B. We take the new value for f (x,y) to be the arg min
of {D(f (x,y)), D(f (x�1,y)), D(f (x,y�1))}.

The effect is that if (x,y) has a correct mapping and is in a coherent
region R, then all of R below and to the right of (x,y) will be
filled with the correct mapping. Moreover, on even iterations we
propagate information up and left by examining offsets in reverse
scan order, using f (x+1,y) and f (x,y+1) as our candidate offsets.

Random search. Let v0 = f (x,y). We attempt to improve f (x,y)
by testing a sequence of candidate offsets at an exponentially
decreasing distance from v0:

ui = v0 +wa iRi (1)

where Ri is a uniform random in [�1,1]⇥ [�1,1], w is a large
maximum search “radius”, and a is a fixed ratio between search
window sizes. We examine patches for i = 0,1,2, ... until the
current search radius wa i is below 1 pixel. In our applications w is

the maximum image dimension, and a = 1/2, except where noted.
Note the search window must be clamped to the bounds of B.

Halting criteria. Although different criteria for halting may be
used depending on the application, in practice we have found it
works well to iterate a fixed number of times. All the results shown
here were computed with 4-5 iterations total, after which the NNF
has almost always converged. Convergence is illustrated in Figure 3
and in the accompanying video.

Efficiency. The efficiency of this naive approach can be improved
in a few ways. In the propagation and random search phases, when
attempting to improve an offset f (v) with a candidate offset u,
one can do early termination if a partial sum for D(u) exceeds the
current known distance D(f (v)). Also, in the propagation stage,
when using square patches of side length p and an Lq norm, the
change in distance can be computed incrementally in O(p) rather
than O(p2) time, by noting redundant terms in the summation
over the overlap region. However, this incurs additional memory
overhead to store the current best distances D(f (x,y)).

GPU implementation. The editing system to be described in Sec-
tion 4 relies on a CPU implementation of the NNF estimation al-
gorithm, but we have also prototyped a fully parallelized variant
on the GPU. To do so, we alternate between iterations of random
search and propagation, where each stage addresses the entire offset
field in parallel. Although propagation is inherently a serial oper-
ation, we adapt the jump flood scheme of Rong and Tan [2006]
to perform propagation over several iterations. Whereas our CPU
version is capable of propagating information all the way across a
scanline, we find that in practice long propagations are not needed,
and a maximum jump distance of 8 suffices. We also use only 4
neighbors at each jump distance, rather than the 8 neighbors pro-
posed by Rong and Tan. With similar approximation accuracy, the
GPU algorithm is roughly 7x faster than the CPU algorithm, on a
GeForce 8800 GTS card.

3.3 Analysis for a synthetic example

Our iterative algorithm converges to the exact NNF in the limit.
Here we offer a theoretical analysis for this convergence, showing
that it converges most rapidly in the first few iterations with
high probability. Moreover, we show that in the common case
where only approximate patch matches are required, the algorithm
converges even faster. Thus our algorithm is best employed as
an approximation algorithm, by limiting computation to a small
number of iterations.

We start by analyzing the convergence to the exact nearest-neighbor
field and then extend this analysis to the more useful case of con-

(a) originals (b) random (c) 1
4 iteration (d) 3

4 iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

Figure 3: Illustration of convergence. (a) The top image is reconstructed using only patches from the bottom image. (b) above: the
reconstruction by the patch “voting” described in Section 4, below: a random initial offset field, with magnitude visualized as saturation
and angle visualized as hue. (c) 1/4 of the way through the first iteration, high-quality offsets have been propagated in the region above
the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two
iterations. (g) After 5 iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the
later iterations.

3.1 Initialization

The nearest-neighbor field can be initialized either by assigning ran-
dom values to the field, or by using prior information. When ini-
tializing with random offsets, we use independent uniform samples
across the full range of image B. In applications described in Sec-
tion 4, we use a coarse-to-fine gradual resizing process, so we have
the option to use an initial guess upscaled from the previous level
in the pyramid. However, if we use only this initial guess, the al-
gorithm can sometimes get trapped in suboptimal local minima. To
retain the quality of this prior but still preserve some ability to es-
cape from such minima, we perform a few early iterations of the
algorithm using a random initialization, then merge with the up-
sampled initialization only at patches where D is smaller, and then
perform the remaining iterations.

3.2 Iteration

After initialization, we perform an iterative process of improving
the NNF. Each iteration of the algorithm proceeds as follows:
Offsets are examined in scan order (from left to right, top to
bottom), and each undergoes propagation followed by random
search. These operations are interleaved at the patch level: if Pj and
S j denote, respectively, propagation and random search at patch j,
then we proceed in the order: P1,S1,P2,S2, . . . ,Pn,Sn.

Propagation. We attempt to improve f (x,y) using the known
offsets of f (x�1,y) and f (x,y�1), assuming that the patch offsets
are likely to be the same. For example, if there is a good mapping
at (x� 1,y), we try to use the translation of that mapping one
pixel to the right for our mapping at (x,y). Let D(v) denote the
patch distance (error) between the patch at (x,y) in A and patch
(x,y)+ v in B. We take the new value for f (x,y) to be the arg min
of {D(f (x,y)), D(f (x�1,y)), D(f (x,y�1))}.

The effect is that if (x,y) has a correct mapping and is in a coherent
region R, then all of R below and to the right of (x,y) will be
filled with the correct mapping. Moreover, on even iterations we
propagate information up and left by examining offsets in reverse
scan order, using f (x+1,y) and f (x,y+1) as our candidate offsets.

Random search. Let v0 = f (x,y). We attempt to improve f (x,y)
by testing a sequence of candidate offsets at an exponentially
decreasing distance from v0:

ui = v0 +wa iRi (1)

where Ri is a uniform random in [�1,1]⇥ [�1,1], w is a large
maximum search “radius”, and a is a fixed ratio between search
window sizes. We examine patches for i = 0,1,2, ... until the
current search radius wa i is below 1 pixel. In our applications w is

the maximum image dimension, and a = 1/2, except where noted.
Note the search window must be clamped to the bounds of B.

Halting criteria. Although different criteria for halting may be
used depending on the application, in practice we have found it
works well to iterate a fixed number of times. All the results shown
here were computed with 4-5 iterations total, after which the NNF
has almost always converged. Convergence is illustrated in Figure 3
and in the accompanying video.

Efficiency. The efficiency of this naive approach can be improved
in a few ways. In the propagation and random search phases, when
attempting to improve an offset f (v) with a candidate offset u,
one can do early termination if a partial sum for D(u) exceeds the
current known distance D(f (v)). Also, in the propagation stage,
when using square patches of side length p and an Lq norm, the
change in distance can be computed incrementally in O(p) rather
than O(p2) time, by noting redundant terms in the summation
over the overlap region. However, this incurs additional memory
overhead to store the current best distances D(f (x,y)).

GPU implementation. The editing system to be described in Sec-
tion 4 relies on a CPU implementation of the NNF estimation al-
gorithm, but we have also prototyped a fully parallelized variant
on the GPU. To do so, we alternate between iterations of random
search and propagation, where each stage addresses the entire offset
field in parallel. Although propagation is inherently a serial oper-
ation, we adapt the jump flood scheme of Rong and Tan [2006]
to perform propagation over several iterations. Whereas our CPU
version is capable of propagating information all the way across a
scanline, we find that in practice long propagations are not needed,
and a maximum jump distance of 8 suffices. We also use only 4
neighbors at each jump distance, rather than the 8 neighbors pro-
posed by Rong and Tan. With similar approximation accuracy, the
GPU algorithm is roughly 7x faster than the CPU algorithm, on a
GeForce 8800 GTS card.

3.3 Analysis for a synthetic example

Our iterative algorithm converges to the exact NNF in the limit.
Here we offer a theoretical analysis for this convergence, showing
that it converges most rapidly in the first few iterations with
high probability. Moreover, we show that in the common case
where only approximate patch matches are required, the algorithm
converges even faster. Thus our algorithm is best employed as
an approximation algorithm, by limiting computation to a small
number of iterations.

We start by analyzing the convergence to the exact nearest-neighbor
field and then extend this analysis to the more useful case of con-

(a) originals (b) random (c) 1
4 iteration (d) 3

4 iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

Figure 3: Illustration of convergence. (a) The top image is reconstructed using only patches from the bottom image. (b) above: the
reconstruction by the patch “voting” described in Section 4, below: a random initial offset field, with magnitude visualized as saturation
and angle visualized as hue. (c) 1/4 of the way through the first iteration, high-quality offsets have been propagated in the region above
the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two
iterations. (g) After 5 iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the
later iterations.

3.1 Initialization

The nearest-neighbor field can be initialized either by assigning ran-
dom values to the field, or by using prior information. When ini-
tializing with random offsets, we use independent uniform samples
across the full range of image B. In applications described in Sec-
tion 4, we use a coarse-to-fine gradual resizing process, so we have
the option to use an initial guess upscaled from the previous level
in the pyramid. However, if we use only this initial guess, the al-
gorithm can sometimes get trapped in suboptimal local minima. To
retain the quality of this prior but still preserve some ability to es-
cape from such minima, we perform a few early iterations of the
algorithm using a random initialization, then merge with the up-
sampled initialization only at patches where D is smaller, and then
perform the remaining iterations.

3.2 Iteration

After initialization, we perform an iterative process of improving
the NNF. Each iteration of the algorithm proceeds as follows:
Offsets are examined in scan order (from left to right, top to
bottom), and each undergoes propagation followed by random
search. These operations are interleaved at the patch level: if Pj and
S j denote, respectively, propagation and random search at patch j,
then we proceed in the order: P1,S1,P2,S2, . . . ,Pn,Sn.

Propagation. We attempt to improve f (x,y) using the known
offsets of f (x�1,y) and f (x,y�1), assuming that the patch offsets
are likely to be the same. For example, if there is a good mapping
at (x� 1,y), we try to use the translation of that mapping one
pixel to the right for our mapping at (x,y). Let D(v) denote the
patch distance (error) between the patch at (x,y) in A and patch
(x,y)+ v in B. We take the new value for f (x,y) to be the arg min
of {D(f (x,y)), D(f (x�1,y)), D(f (x,y�1))}.

The effect is that if (x,y) has a correct mapping and is in a coherent
region R, then all of R below and to the right of (x,y) will be
filled with the correct mapping. Moreover, on even iterations we
propagate information up and left by examining offsets in reverse
scan order, using f (x+1,y) and f (x,y+1) as our candidate offsets.

Random search. Let v0 = f (x,y). We attempt to improve f (x,y)
by testing a sequence of candidate offsets at an exponentially
decreasing distance from v0:

ui = v0 +wa iRi (1)

where Ri is a uniform random in [�1,1]⇥ [�1,1], w is a large
maximum search “radius”, and a is a fixed ratio between search
window sizes. We examine patches for i = 0,1,2, ... until the
current search radius wa i is below 1 pixel. In our applications w is

the maximum image dimension, and a = 1/2, except where noted.
Note the search window must be clamped to the bounds of B.

Halting criteria. Although different criteria for halting may be
used depending on the application, in practice we have found it
works well to iterate a fixed number of times. All the results shown
here were computed with 4-5 iterations total, after which the NNF
has almost always converged. Convergence is illustrated in Figure 3
and in the accompanying video.

Efficiency. The efficiency of this naive approach can be improved
in a few ways. In the propagation and random search phases, when
attempting to improve an offset f (v) with a candidate offset u,
one can do early termination if a partial sum for D(u) exceeds the
current known distance D(f (v)). Also, in the propagation stage,
when using square patches of side length p and an Lq norm, the
change in distance can be computed incrementally in O(p) rather
than O(p2) time, by noting redundant terms in the summation
over the overlap region. However, this incurs additional memory
overhead to store the current best distances D(f (x,y)).

GPU implementation. The editing system to be described in Sec-
tion 4 relies on a CPU implementation of the NNF estimation al-
gorithm, but we have also prototyped a fully parallelized variant
on the GPU. To do so, we alternate between iterations of random
search and propagation, where each stage addresses the entire offset
field in parallel. Although propagation is inherently a serial oper-
ation, we adapt the jump flood scheme of Rong and Tan [2006]
to perform propagation over several iterations. Whereas our CPU
version is capable of propagating information all the way across a
scanline, we find that in practice long propagations are not needed,
and a maximum jump distance of 8 suffices. We also use only 4
neighbors at each jump distance, rather than the 8 neighbors pro-
posed by Rong and Tan. With similar approximation accuracy, the
GPU algorithm is roughly 7x faster than the CPU algorithm, on a
GeForce 8800 GTS card.

3.3 Analysis for a synthetic example

Our iterative algorithm converges to the exact NNF in the limit.
Here we offer a theoretical analysis for this convergence, showing
that it converges most rapidly in the first few iterations with
high probability. Moreover, we show that in the common case
where only approximate patch matches are required, the algorithm
converges even faster. Thus our algorithm is best employed as
an approximation algorithm, by limiting computation to a small
number of iterations.

We start by analyzing the convergence to the exact nearest-neighbor
field and then extend this analysis to the more useful case of con-

initialisation 1/4 de l’itération 1 fin itération 1 fin itération 5

im
ag

e
A

im
ag

e
B

Crédit: Kayvon Fatahalian

https://vimeo.com/5024379

https://vimeo.com/5024379

À retenir
• Texture: forme se répétant de manière structurée,

ou stochastique

• Synthèse de texture:

• par pixel: P(p | N(p))

• par bloc: P(b | N(b))

