ARM Architecture

Reference Manual
ARM'v7-A and ARM°v7-R edition

ARM

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.
ARM DDI 0406B

ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Confidentiality Change

05 April 2007 A Non-Confidential New edition for ARMv7-A and ARMv7-R architecture profiles.
Document number changed from ARM DDI 0100 to ARM DDI 0406 and contents
restructured.

29 April 2008 B Non-Confidential Addition of the VFP Half-precision and Multiprocessing Extensions, and many clarifications

and enhancements.

From ARMv7, the ARM® architecture defines different architectural profiles and this edition of this manual describes
only the A and R profiles. For details of the documentation of the ARMv7-M profile see Further reading on page xx.
Before ARMvV7 there was only a single ARM Architecture Reference Manual, with document number DDI 0100. The first
issue of this was in February 1996, and the final issue, Issue I, was in July 2005. For more information see Further reading
on page XX.

Proprietary Notice

Words and logos marked with © or ™ are registered trademarks or trademarks of ARM Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be
the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted
or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

1. Subject to the provisions set out below, ARM hereby grants to you a perpetual, non-exclusive, nontransferable, royalty
free, worldwide licence to use this ARM Architecture Reference Manual for the purposes of developing; (i) software
applications or operating systems which are targeted to run on microprocessor cores distributed under licence from ARM;
(ii) tools which are designed to develop software programs which are targeted to run on microprocessor cores distributed
under licence from ARM,; (iii) or having developed integrated circuits which incorporate a microprocessor core
manufactured under licence from ARM.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the ARM Architecture Reference

Manual, or any Intellectual Property therein. In no event shall the licences granted in Clause 1, be construed as granting
you expressly or by implication, estoppel or otherwise, licences to any ARM technology other than the ARM Architecture
Reference Manual. The licence grant in Clause 1 expressly excludes any rights for you to use or take into use any ARM
patents. No right is granted to you under the provisions of Clause 1 to; (i) use the ARM Architecture Reference Manual
for the purposes of developing or having developed microprocessor cores or models thereof which are compatible in

whole or part with either or both the instructions or programmers’ models described in this ARM Architecture Reference
Manual; or (ii) develop or have developed models of any microprocessor cores designed by or for ARM; or (iii) distribute

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

in whole or in part this ARM Architecture Reference Manual to third parties, other than to your subcontractors for the
purposes of having developed products in accordance with the licence grant in Clause 1 without the express written
permission of ARM; or (iv) translate or have translated this ARM Architecture Reference Manual into any other
languages.

3. THE ARM ARCHITECTURE REFERENCE MANUAL IS PROVIDED "AS IS" WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

4. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename, in connection with the use of the ARM Architecture Reference Manual or any products based thereon.
Nothing in Clause 1 shall be construed as authority for you to make any representations on behalf of ARM in respect of
the ARM Architecture Reference Manual or any products based thereon.

Where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Note

The term ARM is also used to refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the
ARM architecture. The context makes it clear when the term is used in this way.

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited
110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential. The right to use, copy and disclose this document is subject to the licence set out
above.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. iii

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Contents
ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition

Preface
About this ManUalooooiiiiiiiiiii e Xiv
Using this Manualccceeiiioiiiiee e XV
CONVENLIONS ...uviiiiiiiiiiiiieiieeee e ee e eeeecc e e e e e e seeeeseeeeseeeesnssansnrnes Xviii
Further readingccoooiiiiii e XX
(11T | oF=To] QRPN XXi
Part A Application Level Architecture
Chapter A1 Introduction to the ARM Architecture
A1A1 About the ARM architecturecccoovveviiiiiiiiiee e, A1-2
Al1.2 The ARM and Thumb instruction Setscccccevvviiiiiiiveviiiiieeeeeeeees A1-3
A1.3 Architecture versions, profiles, and variantscccccoccoiieriiinnen. Al1-4
Al14 Architecture eXtENSIONScceeeiieee e A1-6
A1.5 The ARM memory Modelc..ooeiiiiiiiiiiiiiee e A1-7
A1.6 DEDUQG e A1-8

Chapter A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ modelcccccceeeruneeen. A2-2

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. v

Contents

A2.2
A2.3
A2.4
A2.5
A2.6
A2.7
A2.8
A2.9
A2.10
A2.11

ARM core data types and arithmeticccccoviiiiiiiiiiiie A2-3
ARM COre registers ... A2-11
The Application Program Status Register (APSR)ccccccevveeene A2-14
Execution state registers ..., A2-15
Advanced SIMD and VFP extensionsc.cccceveeeeiieeinieeenieeenns A2-20
Floating-point data types and arithmeticcccococeeviiiiieiienne A2-32
Polynomial arithmetic over {0,1} ... A2-67
COProCESSOr SUPPOIT ..veeeeeeriiiieiereetee st eteessee b sie e nnee s A2-68
Execution environment SUPPOItcccooiiiiiiiiiiiiiiiieeee e A2-69
Exceptions, debug events and checksccccoceiiiiniiiciinenn. A2-81

Chapter A3 Application Level Memory Model

A3.1
A3.2
A3.3
A3.4
A3.5
A3.6
A3.7
A3.8
A3.9

AAreSS SPACEueeiiieiieiiiee ettt A3-2
AlIGNMENT SUPPOIT ...t A3-4
ENdian SUPPOITceiieieeecee e A3-7
Synchronization and Semaphorescccccereviieeneenieeseeseenn A3-12
Memory types and attributes and the memory order model A3-24
ACCESS MGNES ... A3-38
Virtual and physical addreSSingcccccverieeeerieeniiee e A3-40
MEmMOrY @CCESS OFAETcciiiiiiiiii e A3-41
Caches and memory hierarchyccccoveiiiieniene e A3-51

Chapter A4 The Instruction Sets

A4.1
A4.2
A4.3
A4.4
A45
A4.6
A4.7
A4.8
A4.9
A4.10
A4.11
A4.12
A4.13
A4.14

About the INSLrUCtioN SetScccoiiiiiee e A4-2
Unified Assembler Languagecccoecveeeeieeriiieeesiee e A4-4
Branch inStruCtioNSoooiiiiiiiiii e A4-7
Data-processing inStruCtionscoovcieieiiiiiiiiee e A4-8
Status register access iNStructionsccccccceiviiiieiiinincceeeene A4-18
Load/store iNSrUCONScooeciviiiiieiee e A4-19
Load/store multiple iNStructionscccooeereiiiiiniieniee e A4-22
Miscellaneous iNStrUCHIONSeeeiiiiiiiiii e A4-23
Exception-generating and exception-handling instructions A4-24
Coprocessor iNSIIUCLIONSoeiiiiiiiie e A4-25
Advanced SIMD and VFP load/store instructionsccccccceeenee A4-26
Advanced SIMD and VFP register transfer instructions A4-29
Advanced SIMD data-processing operationsccceeeevveeneennnnn. A4-30
VFP data-processing instructionscccocceviiiiiniicniiee e A4-38

Chapter A5 ARM Instruction Set Encoding

A5.1
A5.2
A5.3
A5.4
A55
A5.6
A5.7

ARM instruction set encodingcccceviiieeeiiieiniie e A5-2
Data-processing and miscellaneous instructionsc.cccocccvevneen. A5-4
Load/store word and unsigned byteccccevceiiiiieniniee e, A5-19
Media inStruCtioNSccceiiiiiiiiii i, A5-21
Branch, branch with link, and block data transfer A5-27
Supervisor Call, and coprocessor instructionsccccccceeeeerenen. A5-28
Unconditional inStruCtionsc.eoiiiiiiiiiei e A5-30

vi Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Contents

Chapter A6 Thumb Instruction Set Encoding

A6.1 Thumb instruction set encodingcceeceviiieeinieree e AB-2
A6.2 16-bit Thumb instruction encodingcccoeoviiiiiiiiiie e A6-6
A6.3 32-bit Thumb instruction encodingcccooviiiiiiiii e A6-14

Chapter A7 Advanced SIMD and VFP Instruction Encoding

A7A1 OVEIVIBW ..ttt sttt e n e e A7-2
A7.2 Advanced SIMD and VFP instruction syntaxcccccccevveeriveennnee. A7-3
A7.3 Register encodingcccoooiiiiiiiiiii A7-8
A7.4 Advanced SIMD data-processing instructionsccccccenenne A7-10
A7.5 VFP data-processing instructionsc.ccccovveeriienniee e

A7.6 Extension register load/store instructions

A7.7 Advanced SIMD element or structure load/store instructions A7-27
A7.8 8, 16, and 32-bit transfer between ARM core and extension registers

A7-31
A7.9 64-bit transfers between ARM core and extension registers A7-32
Chapter A8 Instruction Details

A8.1 Format of instruction descriptionscccocoviiiieiiiiinnie e A8-2
A8.2 Standard assembler syntax fieldsccocceiiiiiinini i A8-7
A8.3 Conditional @XECUIONcciiiiiiiieieeee e A8-8
A8.4 Shifts applied t0 @ regiSterccccviiiiiniieie e A8-10
A8.5 MEMOIY @CCESSESeiiiiiiiiieiee et A8-13
A8.6 Alphabetical list Of INSrUCLIONSc.eevriieiiiicc e A8-14

Chapter A9 ThumbEE

A9.1 The ThumbEE instruction set ... A9-2
A9.2 ThumbEE instruction set encodingccccoeoiiiiiniiiiiiccces A9-6
A9.3 Additional instructions in Thumb and ThumbEE instruction sets A9-7
A9.4 ThumbEE instructions with modified behaviorcccccooveiiennins A9-8
A9.5 Additional ThumbEE instructionscccccooiiiiiiiiiiiecee A9-14
Part B System Level Architecture
Chapter B1 The System Level Programmers’ Model
B1.1 About the system level programmers’ modelc.ccccevvveeiineeenee. B1-2
B1.2 System level concepts and terminologycccccoveveereeriieneeneenane. B1-3
B1.3 ARM processor modes and core registersccceevvvieeeiiiiiieeeennns B1-6
B1.4 Instruction set statesccceviiiiiiii e, B1-23
B1.5 The Security EXtENSIONScceeiiiiiiiiiiicieeee e B1-25
B1.6 EXCEPLONS ..ot B1-30
B1.7 Coprocessors and system CONTrolccoeceereeiieeneenieeneenee e B1-62
B1.8 Advanced SIMD and floating-point SUPPOItcccceriercieeneenenns B1-64
B1.9 Execution environment SUPPOIcccceeieieiiiieiniieeesee e B1-73

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. vii

Contents

Chapter B2 Common Memory System Architecture Features
B2.1 About the memory system architecturecccococevieiiieiiinene B2-2
B2.2 CACNES ..o e B2-3
B2.3 Implementation defined memory system featurescccceceeee. B2-27
B2.4 Pseudocode details of general memory system operations B2-29

Chapter B3 Virtual Memory System Architecture (VMSA)

B3.1 About the VIMSA ... B3-2
B3.2 MemOry aCCESS SEQUENCEcccueeeiieeeiiieeeiiee e B3-4
B3.3 Translation tablescooiieiii e B3-7
B3.4 Address mapping restrictionscc.cocevoeiineee e B3-23
B3.5 Secure and Non-secure address SPaCEScccceeevererreerireeneenanens B3-26
B3.6 Memory access CONIOlcoooiiiiiiiiiiee e

B3.7 Memory region attributes

B3.8 VMSA MeMOry @bOrSoooiiiiiiieeiiiieeiee e

B3.9 Fault Status and Fault Address registers in a VMSA implementation

B3-48

B3.10 Translation Lookaside Buffers (TLBS)cccccoeeiierieerieeiiieieeniens B3-54
B3.11 Virtual Address to Physical Address translation operations B3-63
B3.12 CP15 registers for a VMSA implementationcccccovieeiiiennne B3-64
B3.183 Pseudocode details of VMSA memory system operations B3-156

Chapter B4 Protected Memory System Architecture (PMSA)

B4.1 ADOUE the PMSA ... e e B4-2
B4.2 Memory acCess CONIOlcoeiieiiiiiie e B4-9
B4.3 Memory region attributesccoccviriiiii B4-11
B4.4 PMSA Memory @borsc.cocveiiiiiieiniiesieeeee e B4-13
B4.5 Fault Status and Fault Address registers in a PMSA implementation
B4-18
B4.6 CP15 registers for a PMSA implementationcccccoooieieenene B4-22
B4.7 Pseudocode details of PMSA memory system operations B4-79

Chapter B5 The CPUID Identification Scheme

B5.1 Introduction to the CPUID SChemeccccceviiiieeiiiieeeee e B5-2
B5.2 The CPUID regiSterscceiiieiiieeiiieeieeiee e B5-4
B5.3 Advanced SIMD and VFP feature identification registers B5-34
Chapter B6 System Instructions
B6.1 Alphabetical list Of INSrUCIONSoeeviiiiiiiiieee e B6-2
Part C Debug Architecture
Chapter C1 Introduction to the ARM Debug Architecture
C11 Scope of part C of this manualcccoceeriiiiii e C1-2
C1.2 About the ARM Debug architectureccccovveerieiiiiniiiiienieeene C1-3

viii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter C2

Chapter C3

Chapter C4

Chapter C5

Chapter C6

Chapter C7

Contents

C1.3 Security Extensions and debugcccocuiereeriieriiienieeiesee e C1-8
Cl4 Register interfaces ..o C1-9

Invasive Debug Authentication
c21 About invasive debug authenticationccccovviiiiiiiiiiiiinin e, c2-2

Debug Events

C3.1 About debug EVENLSccceiiiiiiiiie e C3-2
Cs3.2 Software debug BVENESc..ooiiiiiiiiiie e C3-5
C3.3 Halting debug eventsc.ocoiiiiiiiii C3-38
C3.4 Generation of debug events ..., C3-40
C3.5 Debug event priofitizationcccccceiiieinie i C3-43

Debug Exceptions

C4.1 About debug exXCeptionscccovriiiiiiieee e C4-2
C4.2 Effects of debug exceptions on CP15 registers and the DBGWFAR
C4-4

Debug State

C5.1 About Debug state ... C5-2
Ch.2 Entering Debug Statecooveiiiiiiii e C5-3
C5.3 Behavior of the PC and CPSR in Debug statecccoccooeiiinnnnne C5-7
C5.4 Executing instructions in Debug statecccooviiiiiiiiiiiiinine C5-9
C5.5 Privilege in Debug stateccccoceeiiiie i C5-13
C5.6 Behavior of non-invasive debug in Debug stateccccceeene C5-19
C5.7 Exceptions in Debug statecccceviiiiiiiiiiii e C5-20
C5.8 Memory system behavior in Debug stateccccoceevviiinieniieenn. C5-24
C5.9 Leaving Debug state ... C5-28

Debug Register Interfaces

C6.1 About the debug register interfaces ... C6-2
Cc6.2 Reset and power-down SUPPOIcc.vviiiieeeiiiee e C6-4
C6.3 Debug regiSter Mapccccooceeeeiie e e s Cé6-18
C6.4 Synchronization of debug register updatescccocvevieieerinnnne. C6-24
CB.5 ACCESS PEIMISSIONScveeieeereiiiiieniierte sttt s C6-26
C6.6 The CP14 debug register interfacescccccevvviiiriciiiieeenieeene C6-32
C6.7 The memory-mapped and recommended external debug interfaces
C6-43

Non-invasive Debug Authentication

C7.1 About non-invasive debug authenticationcccccoiiiiin C7-2
C7.2 v7 Debug non-invasive debug authenticationcccccccoeeriiinnnns C7-4
C7.3 Effects of non-invasive debug authenticationcccccoceiiiiinns C7-6
C7.4 ARMv6 non-invasive debug authenticationcccoceviiieneennnnne C7-8

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ix

Contents

Chapter C8

Chapter C9

Chapter C10

Appendix A

Appendix B

Appendix C

Sample-based Profiling
cs.1 Program Counter Samplingc.coooeeeiuerieenieeree e Cc8-2

Performance Monitors

C9.1 About the performance monitorsccccccvviiiniec e C9-2
C9.2 Statusin the ARM architecturecccooeiieiiiiiiiiiiee e C9-4
C9.3 Accuracy of the performance mMOonNitorsccocuveeeereeriiineeseennnns C9-5
C9.4 Behavior on oVerflowcccccoviieiiiiiienie e C9-6
C9.5 Interaction with Security EXtENSIONSccccoviiviiiiiiiiee e C9-7
C9.6 Interaction With tracecoooiiiiiiie e C9-8
C9.7 Interaction with power saving operationscccccocervieeiieniiienenns C9-9
C9.8 CP15COregister Mapccccceeeerierieniiesieesee e C9-10
C9.9 ACCESS PEIMISSIONScveiieririieriiieieenree st e st e st e e en e C9-12
C9.10 EVEeNt NUMDEIS ...ccueiiiiiiiecieet e e C9-13

Debug Registers Reference

C10.1 Accessing the debug registerscccocvveiiiiiienniie e C10-2
C10.2 Debug identification registerscccoceveiiiiiiiiiceic e C10-3
C10.3 Control and status registerscccocoeviiiiiiiinese e C10-10
C10.4 Instruction and data transfer registersccccoeveriiineeniennnne C10-40
C10.5 Software debug event registerscccooveveriiiiieenic i C10-48
C10.6 OS Save and Restore registers, v7 Debug onlycccceeeenenne C10-75
C10.7 Memory system control registersccocceevveeriieeeiieeesiee e C10-80
C10.8 Management registers, ARMV7 ONlyccccccoriiiiiiiiniiniieieee C10-88
C10.9 Performance monitor registersccoceeviriiiieniin i C10-105

Recommended External Debug Interface
A1 System integration Signalscccooeeiiiiiii AppxA-2
A2 Recommended debug slave portccoccceeveeiniiineeeseees AppxA-13

Common VFP Subarchitecture Specification

B.1 Scope of this @PPENdiXcoceiiiieriiiiieiie e AppxB-2
B.2 Introduction to the Common VFP subarchitecture AppxB-3
B.3 EXCEepPtion ProCeSSING ...ccovcveriiiieiiiie e AppxB-6
B.4 Support code reqUIrEMENtSccccveeveeeiiiiiieee e e AppxB-11
B.5 Context SWItChiNGcoovvieiiiie e AppxB-14
B.6 Subarchitecture additions to the VFP system registers AppxB-15
B.7 Version 1 of the Common VFP subarchitecture AppxB-23
B.8 Version 2 of the Common VFP subarchitecture AppxB-24

Legacy Instruction Mnemonics
CA1 Thumb instruction MNEMONICSocceeririiieiec e AppxC-2
c.2 Pre-UAL pseudo-instruction NOPcccocieiieniiienieneeeeen AppxC-3

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Appendix D

Deprecated and Obsolete Features

Contents

DA Deprecated featurescccoovveeeiiiieiiic e AppxD-2
D.2 Deprecated terminologycccveiieeiiiiiinieeiee e AppxD-5
D.3 Obsolete fEaturesccoecveiiiiiieese e AppxD-6
D.4 Semaphore iNStruCtionsccceeviveiiiiii e AppxD-7
D.5 Use of the SP as a general-purpose registercccocceevieenns AppxD-8
D.6 Explicit use of the PC in ARM inStructionsccccoevveeeniieenns AppxD-9
D.7 Deprecated Thumb inStructionscccceccevineeeenieeenieee e AppxD-10
Appendix E Fast Context Switch Extension (FCSE)
E.1 ADOUL the FCSE ...t AppxE-2
E.2 Modified virtual addreSSEScccvevvieriiiiiiiee e AppxE-3
E.3 Debug and traCe ... AppxE-5
Appendix F VFP Vector Operation Support
F.A About VFP vector modeooocueiiiiiiiiiiiie e AppxF-2
F.2 Vector length and stride controlccccocceeieiiiiiieeiiiieeeeee AppxF-3
F.3 VFP register banks ... AppxF-5
F.4 VFP instruction type selectionccccooieiiiiiieneee e, AppxF-7
Appendix G ARMv6 Differences
G.1 Introduction t0 ARMVEoocueiiiiiieiiei e AppxG-2
G.2 Application level register SUPPOrtccceviieieiiiinieeeeeeee AppxG-3
G.3 Application level memory SUPPOItccoocveeeiieiirieeenieee e AppxG-6
G4 Instruction set SUPPOIcooviiiiiii e AppxG-10
G.5 System level register SUPPOItoovieeiirieeeriieeeee e AppxG-16
G.6 System level memory modeloocceeiiieiiiiiciiiee e AppxG-20
G.7 System Control coprocessor (CP15) supportccoeveeenineenne AppxG-29
Appendix H ARMv4 and ARMv5 Differences
H.1 Introduction to ARMv4 and ARMV5cccoeiiiiiiiiiiceeeeeeee AppxH-2
H.2 Application level register SUPPOItccceriiiviiiiiiiiee e AppxH-4
H.3 Application level memory Supportccccvvceveniieeiiiee e AppxH-6
H.4 Instruction Set SUPPOITeeiiiiiiiiiee e AppxH-11
H.5 System level register SUPPOItcceeviieeiriii e AppxH-18
H.6 System level memory modelcoocveviiieiiiieeeee e AppxH-21
H.7 System Control coprocessor (CP15) supportccooceeeeiveennes AppxH-31
Appendix | Pseudocode Definition
1.1 Instruction encoding diagrams and pseudocodecc.cceenneee. AppxI-2
1.2 Limitations of pseudocodeccooeeivieiiniee e Appxl-4
1.3 Data tYPES .oeeieiiieee e e AppxI-5
1.4 EXPreSSIONS ...coiiiiiiiiiei ettt AppxI-9
1.5 Operators and built-in functionsccccoecviiiiiiiiciiie e, AppxI-11
1.6 Statements and program structurecccocceviiiiiiiininin e, AppxI-17
1.7 Miscellaneous helper procedures and functionscc........ Appxl-22
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Xi

Contents

Appendix J Pseudocode Index
J.1 Pseudocode operators and KEywordscccccvereeeeireeenineenne AppxJ-2
J.2 Pseudocode functions and proceduresccccoecevinieerieeenne AppxdJ-6

Appendix K Register Index
K.1 Register iNeXoiiiiiiieiie e AppxK-2

Glossary

Xii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

This preface summarizes the contents of this manual and lists the conventions it uses. It contains the
following sections:

. About this manual on page xiv
. Using this manual on page xv
. Conventions on page Xviii

. Further reading on page xx

. Feedback on page xxi.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. Xiii

Preface

About this manual

This manual describes the ARM®v7 instruction set architecture, including its high code density Thumb®
instruction encoding and the following extensions to it:

. The System Control coprocessor, coprocessor 15 (CP15), used to control memory system
components such as caches, write buffers, Memory Management Units, and Protection Units.

. The optional Advanced SIMD extension, that provides high-performance integer and
single-precision floating-point vector operations.

. The optional VFP extension, that provides high-performance floating-point operations. It can
optionally support double-precision operations.

. The Debug architecture, that provides software access to debug features in ARM processors.

Part A describes the application level view of the architecture. It describes the application level view of the
programmers’ model and the memory model. It also describes the precise effects of each instruction in User
mode (the normal operating mode), including any restrictions on its use. This information is of primary
importance to authors and users of compilers, assemblers, and other programs that generate ARM machine
code.

Part B describes the system level view of the architecture. It gives details of system registers that are not
accessible from User mode, and the system level view of the memory model. It also gives full details of the
effects of instructions in privileged modes (any mode other than User mode), where these are different from
their effects in User mode.

Part C describes the Debug architecture. This is an extension to the ARM architecture that provides
configuration, breakpoint and watchpoint support, and a Debug Communications Channel (DCC) to a debug
host.

Assembler syntax is given for the instructions described in this manual, permitting instructions to be
specified in textual form. However, this manual is not intended as tutorial material for ARM assembler
language, nor does it describe ARM assembler language at anything other than a very basic level. To make
effective use of ARM assembler language, consult the documentation supplied with the assembler being
used.

Xiv

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

Using this manual

The information in this manual is organized into four parts, as described below.

Part A, Application Level Architecture

Part A describes the application level view of the architecture. It contains the following chapters:

Chapter Al

Chapter A2

Chapter A3

Chapter A4

Chapter AS

Chapter A6

Chapter A7

Chapter A8

Chapter A9

Gives a brief overview of the ARM architecture, and the ARM and Thumb instruction sets.

Describes the application level view of the ARM programmers’ model, including the
application level view of the Advanced SIMD and VFP extensions. It describes the types of
value that ARM instructions operate on, the general-purpose registers that contain those
values, and the Application Program Status Register.

Describes the application level view of the memory model, including the ARM memory
types and attributes, and memory access control.

Describes the range of instructions available in the ARM, Thumb, Advanced SIMD, and
VFP instruction sets. It also contains some details of instruction operation, where these are
common to several instructions.

Gives details of the encoding of the ARM instruction set.
Gives details of the encoding of the Thumb instruction set.
Gives details of the encoding of the Advanced SIMD and VFP instruction sets.

Provides detailed reference information about every instruction available in the Thumb,
ARM, Advanced SIMD, and VFP instruction sets, with the exception of information only
relevant in privileged modes.

Provides detailed reference information about the ThumbEE (Execution Environment)
variant of the Thumb instruction set.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XV

Preface

Part B, System Level Architecture

Part B describes the system level view of the architecture. It contains the following chapters:

Chapter B1

Chapter B2

Chapter B3

Chapter B4

Chapter B5

Chapter B6

Describes the system level view of the programmers’ model.

Describes the system level view of the memory model features that are common to all
memory systems.

Describes the system level view of the Virtual Memory System Architecture (VMSA) that
is part of all ARMv7-A implementations. This chapter includes descriptions of all of the
CP15 System Control Coprocessor registers in a VMSA implementation.

Describes the system level view of the Protected Memory System Architecture (PMSA) that
is part of all ARMv7-R implementations. This chapter includes descriptions of all of the
CP15 System Control Coprocessor registers in a PMSA implementation.

Describes the CPUID scheme.

Provides detailed reference information about system instructions, and more information
about instructions where they behave differently in privileged modes.

Part C, Debug Architecture

Part C describes the Debug architecture. It contains the following chapters:

Chapter C1
Chapter C2
Chapter C3
Chapter C4
Chapter C5
Chapter C6
Chapter C7
Chapter C8
Chapter C9

Gives a brief introduction to the Debug architecture.
Describes the authentication of invasive debug.
Describes the debug events.

Describes the debug exceptions.

Describes Debug state.

Describes the permitted debug register interfaces.
Describes the authentication of non-invasive debug.
Describes sample-based profiling.

Describes the ARM performance monitors.

Chapter C10 Describes the debug registers.

Xvi Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part D, Appendices

Preface

This manual contains the following appendices:

Appendix A

Appendix B

Appendix C
Appendix D

Appendix E

Appendix F
Appendix G
Appendix H
Appendix I
Appendix J

Appendix K

Describes the recommended external Debug interfaces.

—— Note

This description is not part of the ARM architecture specification. It is included here only
as supplementary information, for the convenience of developers and users who might
require this information.

The Common VFP subarchitecture specification.

—— Note

This specification is not part of the ARM architecture specification. This sub-architectural
information is included here only as supplementary information, for the convenience of
developers and users who might require this information.

Describes the legacy mnemonics.
Identifies the deprecated architectural features.

Describes the Fast Context Switch Extension (FCSE). From ARMv®6, the use of this feature
is deprecated, and in ARMv7 the FCSE is optional.

Describes the VFP vector operations. Use of these operations is deprecated in ARMv7.
Describes the differences in the ARMv6 architecture.

Describes the differences in the ARMv4 and ARMvVS architectures.

The formal definition of the pseudocode.

Index to definitions of pseudocode operators, keywords, functions, and procedures.

Index to register descriptions in the manual.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XVii

Preface

Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Is used for assembler syntax descriptions, pseudocode descriptions of instructions,
and source code examples. In the cases of assembler syntax descriptions and
pseudocode descriptions, see the additional conventions below.

The typewriter style is also used in the main text for instruction mnemonics and for
references to other items appearing in assembler syntax descriptions, pseudocode
descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for a few terms that have specific technical meanings. Their meanings can
be found in the Glossary.

Signals
In general this specification does not define processor signals, but it does include some signal examples and
recommendations. It uses the following signal conventions:
Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
. HIGH for active-HIGH signals
. LOW for active-LOW signals.
Lower-case n At the start or end of a signal name denotes an active-LOW signal.
Numbers
Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers
by 0x and written in a typewriter font.
Bit values

Values of bits and bitfields are normally given in binary, in single quotes. The quotes are normally omitted
in encoding diagrams and tables.
Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a typewriter font, and is described in Appendix I Pseudocode Definition.

xviii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are shown in a typewriter font, and use the conventions described in
Assembler syntax on page A8-4.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XiX

Preface

Further reading

This section lists publications from both ARM and third parties that provide more information on the ARM
family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Frequently Asked Questions.

ARM publications

ARM Debug Interface v5 Architecture Specification (ARM IHI 0031)
ARMv7-M Architecture Reference Manual (ARM DDI 0403)
CoreSight Architecture Specification (ARM IHI 0029)

ARM Architecture Reference Manual (ARM DDI 01001)

Note
— Issue I of the ARM Architecture Reference Manual (DDI 0100I) was issued in July 2005 and
describes the first version of the ARMv6 architecture, and all previous architecture versions.
— Addison-Wesley Professional publish ARM Architecture Reference Manual, Second Edition
(December 27, 2000). The contents of this are identical to Issue E of the ARM Architecture
Reference Manual (DDI 0100E). It describes ARMVSTE and earlier versions of the ARM
architecture, and is superseded by DDI 0100I.

Embedded Trace Macrocell Architecture Specification (ARM IHI 0014)
CoreSight Program Flow Trace Architecture Specification (ARM IHI 0035).

External publications

The following books are referred to in this manual, or provide more information:

IEEE Std 1596.5-1993, IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent
Interface (SCI) Processors, ISBN 1-55937-354-7

IEEE Std 1149.1-2001, IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG)
ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic
JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association

The Java Virtual Machine Specification Second Edition, Tim Lindholm and Frank Yellin, published
by Addison Wesley (ISBN: 0-201-43294-3)

Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo, Stanford
University Technical Report CSL-TR-95-685

XX

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Preface

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you notice any errors or omissions in this manual, send e-mail to errata@arm.com giving:

. the document title

. the document number

. the page number(s) to which your comments apply
. a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. XXi

Preface

XXii Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Part A

Application Level Architecture

Chapter A1
Introduction to the ARM Architecture

This chapter introduces the ARM architecture and contains the following sections:
. About the ARM architecture on page Al-2

. The ARM and Thumb instruction sets on page A1-3

. Architecture versions, profiles, and variants on page Al-4

. Architecture extensions on page Al-6

. The ARM memory model on page Al-7

. Debug on page Al-8.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

Introduction to the ARM Architecture

A1.1 About the ARM architecture
The ARM architecture supports implementations across a wide range of performance points. It is
established as the dominant architecture in many market segments. The architectural simplicity of ARM
processors leads to very small implementations, and small implementations mean devices can have very low
power consumption. Implementation size, performance, and very low power consumption are key attributes
of the ARM architecture.
The ARM architecture is a Reduced Instruction Set Computer (RISC) architecture, as it incorporates these
typical RISC architecture features:
. a large uniform register file
. a load/store architecture, where data-processing operations only operate on register contents, not

directly on memory contents
. simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only.

In addition, the ARM architecture provides:
. instructions that combine a shift with an arithmetic or logical operation
. auto-increment and auto-decrement addressing modes to optimize program loops
. Load and Store Multiple instructions to maximize data throughput
. conditional execution of almost all instructions to maximize execution throughput.
These enhancements to a basic RISC architecture enable ARM processors to achieve a good balance of high
performance, small code size, low power consumption, and small silicon area.
Except where the architecture specifies differently, the programmer-visible behavior of an implementation
must be the same as a simple sequential execution of the program. This programmer-visible behavior does
not include the execution time of the program.

A1-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture

A1.2 The ARM and Thumb instruction sets

The ARM instruction set is a set of 32-bit instructions providing comprehensive data-processing and control
functions.

The Thumb instruction set was developed as a 16-bit instruction set with a subset of the functionality of the
ARM instruction set. It provides significantly improved code density, at a cost of some reduction in
performance. A processor executing Thumb instructions can change to executing ARM instructions for
performance critical segments, in particular for handling interrupts.

In ARMvV6T2, Thumb-2 technology is introduced. This technology makes it possible to extend the original
Thumb instruction set with many 32-bit instructions. The range of 32-bit Thumb instructions included in
ARMvV6T?2 permits Thumb code to achieve performance similar to ARM code, with code density better than
that of earlier Thumb code.

From ARMvV6T2, the ARM and Thumb instruction sets provide almost identical functionality. For more
information, see Chapter A4 The Instruction Sets.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-3

Introduction to the ARM Architecture

A1.3 Architecture versions, profiles, and variants

The ARM and Thumb instruction set architectures have evolved significantly since they were first

developed. They will continue to be developed in the future. Seven major versions of the instruction set have

been defined to date, denoted by the version numbers 1 to 7. Of these, the first three versions are now
obsolete.

ARMYV7 provides three profiles:

ARMvV7-A Application profile, described in this manual. Implements a traditional ARM architecture
with multiple modes and supporting a Virtual Memory System Architecture (VMSA) based
on an MMU. Supports the ARM and Thumb instruction sets.

ARMvV7-R Real-time profile, described in this manual. Implements a traditional ARM architecture with
multiple modes and supporting a Protected Memory System Architecture (PMSA) based on
an MPU. Supports the ARM and Thumb instruction sets.

ARMvV7-M Microcontroller profile, described in the ARMv7-M Architecture Reference Manual.
Implements a programmers' model designed for fast interrupt processing, with hardware
stacking of registers and support for writing interrupt handlers in high-level languages.
Implements a variant of the ARMv7 PMSA and supports a variant of the Thumb instruction
set.

Versions can be qualified with variant letters to specify additional instructions and other functionality that

are included as an architecture extension. Extensions are typically included in the base architecture of the

next version number. Provision is also made to exclude variants by prefixing the variant letter with x.

Some extensions are described separately instead of using a variant letter. For details of these extensions see

Architecture extensions on page Al-6.

The valid variants of ARMv4, ARMvS5, and ARMv6 are as follows:

ARMv4 The earliest architecture variant covered by this manual. It includes only the ARM
instruction set.

ARMv4T Adds the Thumb instruction set.

ARMvVST Improves interworking of ARM and Thumb instructions. Adds count leading zeros (CLZ)
and software breakpoint (BKPT) instructions.

ARMVSTE Enhances arithmetic support for digital signal processing (DSP) algorithms. Adds preload
data (PLD), dual word load (LDRD), store (STRD), and 64-bit coprocessor register transfers
(MCRR, MRRC).

ARMVSTE]J Adds the BX] instruction and other support for the Jazelle® architecture extension.

ARMV6 Adds many new instructions to the ARM instruction set. Formalizes and revises the memory
model and the Debug architecture.

ARMv6K Adds instructions to support multi-processing to the ARM instruction set, and some extra
memory model features.

A1-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture

ARMvV6T2 Introduces Thumb-2 technology, giving a major development of the Thumb instruction set
to provide a similar level of functionality to the ARM instruction set.

Note

ARMvV6KZ or ARMvV6Z are sometimes used to describe the ARMvOK architecture with the optional
Security Extensions.

For detailed information about versions of the ARM architecture, see Appendix G ARMv6 Differences and
Appendix H ARMv4 and ARMv5 Differences.

The following architecture variants are now obsolete:

ARMv1, ARMv2, ARMv2a, ARMv3, ARMv3G, ARMv3M, ARMv4xM, ARMv4TxM, ARMvS,
ARMvV5xM, ARMv5TxM, and ARMvS5TEXP.

Contact ARM if you require details of obsolete variants.

Instruction descriptions in this manual specify the architecture versions that support them.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-5

Introduction to the ARM Architecture

Al1.4

Architecture extensions

This manual describes the following extensions to the ARM and Thumb instruction set architectures:

ThumbEE

VFP

Advanced SIMD

Security Extensions

Jazelle

Is a variant of the Thumb instruction set that is designed as a target for dynamically
generated code. It is:

. arequired extension to the ARMv7-A profile

. an optional extension to the ARMv7-R profile.

Is a floating-point coprocessor extension to the instruction set architectures. There
have been three main versions of VFP to date:

. VFPvl1 is obsolete. Details are available on request from ARM.
. VFPv2 is an optional extension to:

— the ARM instruction set in the ARMVSTE, ARMvSTEJ, ARMv6, and
ARMVOK architectures

— the ARM and Thumb instruction sets in the ARMv6T?2 architecture.

. VFPv3 is an optional extension to the ARM, Thumb and ThumbEE
instruction sets in the ARMv7-A and ARMv7-R profiles.

VFPv3 can be implemented with either thirty-two or sixteen doubleword
registers, as described in Advanced SIMD and VFP extension registers on
page A2-21. Where necessary, the terms VFPv3-D32 and VFPv3-D16 are
used to distinguish between these two implementation options. Where the
term VFPv3 is used it covers both options.

VFPv3 can be extended by the half-precision extensions that provide
conversion functions in both directions between half-precision floating-point
and single-precision floating-point.

Is an instruction set extension that provides Single Instruction Multiple Data
(SIMD) functionality. It is an optional extension to the ARMv7-A and ARMv7-R
profiles. When VFPv3 and Advanced SIMD are both implemented, they use a
shared register bank and have some shared instructions.

Advanced SIMD can be extended by the half-precision extensions that provide
conversion functions in both directions between half-precision floating-point and
single-precision floating-point.

Are a set of security features that facilitate the development of secure applications.
They are an optional extension to the ARMvOK architecture and the ARMv7-A
profile.

Is the Java bytecode execution extension that extended ARMvVSTE to ARMVSTEJ.
From ARMVv6 Jazelle is a required part of the architecture, but is still often
described as the Jazelle extension.

Multiprocessing Extensions

Are a set of features that enhance multiprocessing functionality. They are an
optional extension to the ARMv7-A and ARMv7-R profiles.

A1-6

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Introduction to the ARM Architecture

A1.5 The ARM memory model

The ARM architecture uses a single, flat address space of 232 8-bit bytes. The address space is also regarded
as 230 32-bit words or 23! 16-bit halfwords.

The architecture provides facilities for:

.

faulting unaligned memory accesses

restricting access by applications to specified areas of memory

translating virtual addresses provided by executing instructions into physical addresses
altering the interpretation of word and halfword data between big-endian and little-endian
optionally preventing out-of-order access to memory

controlling caches

synchronizing access to shared memory by multiple processors.

For more information, see:

.

.

Chapter A3 Application Level Memory Model

Chapter B2 Common Memory System Architecture Features
Chapter B3 Virtual Memory System Architecture (VMSA)
Chapter B4 Protected Memory System Architecture (PMSA).

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A1-7

Introduction to the ARM Architecture

A1.6 Debug

ARMV7 processors implement two types of debug support:

Invasive debug Debug permitting modification of the state of the processor. This is intended
primarily for run-control debugging.

Non-invasive debug Debug permitting data and program flow observation, without modifying the state
of the processor or interrupting the flow of execution.

This provides for:

. instruction and data tracing
. program counter sampling
. performance monitors.

For more information, see Chapter C1 Introduction to the ARM Debug Architecture.

A1-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A2

Application Level Programmers’ Model

This chapter gives an application level view of the ARM programmers’ model. It contains the following
sections:

.

About the Application level programmers’ model on page A2-2
ARM core data types and arithmetic on page A2-3

ARM core registers on page A2-11

The Application Program Status Register (APSR) on page A2-14
Execution state registers on page A2-15

Advanced SIMD and VFP extensions on page A2-20
Floating-point data types and arithmetic on page A2-32
Polynomial arithmetic over {0,1} on page A2-67

Coprocessor support on page A2-68

Execution environment support on page A2-69

Exceptions, debug events and checks on page A2-81.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A2-1

Application Level Programmers’ Model

A2.1

About the Application level programmers’ model
This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support
application execution under an operating system. However, some knowledge of that system information is
needed to put the Application level programmers' model into context.

System level support requires access to all features and facilities of the architecture, a mode of operation
referred to as privileged operation. System code determines whether an application runs in a privileged or
unprivileged manner. When an operating system supports both privileged and unprivileged operation, an
application usually runs unprivileged. This:

. permits the operating system to allocate system resources to it in a unique or shared manner

. provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

This chapter indicates where some system level understanding is helpful, and where appropriate it:
. gives an overview of the system level information

. gives references to the system level descriptions in Chapter B1 The System Level Programmers’
Model and elsewhere.

The Security Extensions extend the architecture to provide hardware security features that support the
development of secure applications. For more information, see The Security Extensions on page B1-25.

A2-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.2

Application Level Programmers’ Model

ARM core data types and arithmetic

All ARMv7-A and ARMvV7-R processors support the following data types in memory:

Byte 8 bits
Halfword 16 bits
Word 32 bits

Doubleword 64 bits.

Processor registers are 32 bits in size. The instruction set contains instructions supporting the following data
types held in registers:

. 32-bit pointers

. unsigned or signed 32-bit integers

. unsigned 16-bit or 8-bit integers, held in zero-extended form
. signed 16-bit or 8-bit integers, held in sign-extended form

. two 16-bit integers packed into a register

. four 8-bit integers packed into a register

. unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or
halfwords zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory.
You can load and store doublewords using these instructions. The exclusive doubleword load/store
instructions LDREXD and STREXD specify single-copy atomic doubleword accesses to memory.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer
in the range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2N-1
to +2N-1-1, using two's complement format.

The instructions that operate on packed halfwords or bytes include some multiply instructions that use just
one of two halfwords, and Single Instruction Multiple Data (SIMD) instructions that operate on all of the
halfwords or bytes in parallel.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two
or more instructions to synthesize them.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-3

Application Level Programmers’ Model

A2.2.1 Integer arithmetic

The instruction set provides a wide variety of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and many others. These operations are defined
using the pseudocode described in Appendix I Pseudocode Definition, usually in one of three ways:

. By direct use of the pseudocode operators and built-in functions defined in Operators and built-in
functions on page AppxI-11.

. By use of pseudocode helper functions defined in the main text. These can be located using the table
in Appendix J Pseudocode Index.

. By a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to
integers on page AppxI-14 to convert the bitstring contents of the instruction operands to the
unbounded integers that they represent as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded
integers to calculate other such integers.

3. Use of either the bitstring extraction operator defined in Bitstring extraction on page AppxI-12
or of the saturation helper functions described in Pseudocode details of saturation on
page A2-9 to convert an unbounded integer result into a bitstring result that can be written to
a register.

A2-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Shift and rotate operations
The following types of shift and rotate operations are used in instructions:

Logical Shift Left

(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at
the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in
at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost
bit are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted
off the right end of the bitstring is re-introduced at the left end. The last bit shifted off the
right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each bit of a bitstring right by one bit. The carry input is shifted in at the left
end of the bitstring. The bit shifted off the right end of the bitstring can be produced as a
carry output.

Pseudocode details of shift and rotate operations
These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-5

Application Level Programmers’ Model

(result, -) = LSL_C(x, shift);
return result;

// LSR_C()
J/p—

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;

// ASR_C()
/] =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;

// ROR_C()
/] =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

A2-6

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

bits(N) ROR(bits(N) x, integer shift)
if n == 0 then
result = x;
else
(result, -) = ROR_C(x, shift);
return result;

// RRX_C()

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, shift);
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-7

Application Level Programmers’ Model

Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and
bitstrings, provided that if they are performed on two bitstrings, the bitstrings must be identical in length.
The result is another unbounded integer if both operands are unbounded integers, and a bitstring of the same
length as the bitstring operand(s) otherwise. For the precise definition of these operations, see Addition and
subtraction on page AppxI-15.

The main addition and subtraction instructions can produce status information about both unsigned carry
and signed overflow conditions. This status information can be used to synthesize multi-word additions and
subtractions. In pseudocode the AddwithCarry() function provides an addition with a carry input and carry
and overflow outputs:

// AddWithCarry()

(bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then ‘@’ else ‘1’;
overflow = if SInt(result) == signed_sum then ‘@’ else ‘1’;

return (result, carry_out, overflow);
An important property of the AddWithCarry() function is that if:

(result, carry_out, overflow) = AddwithCarry(x, NOT(y), carry_in)

then:
. if carry_in == '1', then result == x-y with:

— overflow == '1" if signed overflow occurred during the subtraction

— carry_out == '1' if unsigned borrow did not occur during the subtraction, that is, if x >=y
. if carry_in == '0', then result == x-y-1 with:

— overflow == '1' if signed overflow occurred during the subtraction

— carry_out == '1' if unsigned borrow did not occur during the subtraction, that is, if x > y.

Together, these mean that the carry_in and carry_out bits in AddwithCarry() calls can act as NOT borrow
flags for subtractions as well as carry flags for additions.

A2-8

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the
destination signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that
range, rather than wrapping around modulo 2N. This is supported in pseudocode by the SignedSatQ() and
UnsignedSatQ() functions when a boolean result is wanted saying whether saturation occurred, and by the
SignedSat() and UnsignedSat() functions when only the saturated result is wanted:

// SignedSatQ()
/A ———

(bits(N), boolean) SignedSatQ(integer i, integer N)

if i > 2A(N-1) - 1 then

result = 2A(N-1) - 1; saturated = TRUE;
elsif i < -(2A(N-1)) then

result = -(2A(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// UnsignedSatQ()
/] =mm=m=mmmma==s

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2AN - 1 then
result = 2AN - 1; saturated = TRUE;
elsif i < 0 then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// SignedSat()
1 e

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

// UnsignedSat()
/] ==mmm=m=mmaes

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i,N) or SignedSatQ(i, N) depending on the value of its
third argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on
the value of its third argument:

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-9

Application Level Programmers’ Model

// SatQ()
/] ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

A2-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.3 ARM core registers

In the application level view, an ARM processor has:
. thirteen general-purpose32-bit registers, RO to R12
. three 32-bit registers, R13 to R15, that sometimes or always have a special use.

Registers R13 to R15 are usually referred to by names that indicate their special uses:

SP, the Stack Pointer
Register R13 is used as a pointer to the active stack.

In Thumb code, most instructions cannot access SP. The only instructions that can access
SP are those designed to use SP as a stack pointer.

The use of SP for any purpose other than as a stack pointer is deprecated.

—— Note

Using SP for any purpose other than as a stack pointer is likely to break the requirements of
operating systems, debuggers, and other software systems, causing them to malfunction.

LR, the Link Register

Register R14 is used to store the return address from a subroutine. At other times, LR can
be used for other purposes.

When a BL or BLX instruction performs a subroutine call, LR is set to the subroutine return
address. To perform a subroutine return, copy LR back to the program counter. This is
typically done in one of two ways, after entering the subroutine with a BL or BLX instruction:

. Return with a BX LR instruction.

. On subroutine entry, store LR to the stack with an instruction of the form:
PUSH {<registers>,LR}
and use a matching instruction to return:
POP {<registers>,PC}

ThumbEE checks and handler calls use LR in a similar way. For details see Chapter A9
ThumbEE.

PC, the Program Counter
Register R15 is the program counter:

. When executing an ARM instruction, PC reads as the address of the current
instruction plus 8.

. When executing a Thumb instruction, PC reads as the address of the current
instruction plus 4.

. Writing an address to PC causes a branch to that address.

In Thumb code, most instructions cannot access PC.

See ARM core registers on page B1-9 for the system level view of SP, LR, and PC.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-11

Application Level Programmers’ Model

Note

The names SP, LR and PC are preferred to R13, R14 and R15. However, sometimes it is simpler to use the
R13-R15 names when referring to a group of registers. For example, it is simpler to refer to Registers RS to
R15, rather than to Registers RS to R12, the SP, LR and PC. However these two descriptions of the group of
registers have exactly the same meaning.

A2.3.1 Pseudocode details of operations on ARM core registers
In pseudocode, the R[] function is used to:
. Read or write RO-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.
. Read the PC, using n == 15.
This function has prototypes:
bits(32) R[integer n]
assert n >= 0 & n <= 15;
R[integer n] = bits(32) value
assert n >= 0 && n <= 14;
The full operation of this function is explained in Pseudocode details of ARM core register operations on
page B1-12.
Descriptions of ARM store instructions that store the PC value use the PCStoreValue() pseudocode function
to specify the PC value stored by the instruction:
// PCStoreValue()
A ——
bits(32) PCStoreValue()
// This function returns the PC value. On architecture versions before ARMv7, it
// is permitted to instead return PC+4, provided it does so consistently. It is
// used only to describe ARM instructions, so it returns the address of the current
// instruction plus 8 (normally) or 12 (when the alternative is permitted).
return PC;
Writing an address to the PC causes either a simple branch to that address or an interworking branch that
also selects the instruction set to execute after the branch. A simple branch is performed by the
BranchWritePC() function:
// BranchWritePC()
A ——
BranchWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_ARM then
if ArchVersion() < 6 & address<1:0> != ‘00’ then UNPREDICTABLE;
BranchTo(address<31:2>:’00°);
else
BranchTo(address<31:1>:'0’);
An interworking branch is performed by the BXWritePC() function:
A2-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

// BXWritePC()
R

BXWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_ThumbEE then
if address<0> == ‘1’ then
BranchTo(address<31:1>:'0"); // Remaining in ThumbEE state
else
UNPREDICTABLE;
else
if address<@0> == ‘1’ then
SelectInstrSet(InstrSet_Thumb);
BranchTo(address<31:1>:'0’);
elsif address<l> == ‘@’ then
SelectInstrSet(InstrSet_ARM);
BranchTo(address);
else // address<1:0> == ‘10’
UNPREDICTABLE;

The LoadwWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions:

// LoadWritePC()
/] ======mm=====

LoadWritePC(bits(32) address)
if ArchVersion() >= 5 then
BXWritePC(address);
else
BranchWritePC(address);

// ALUWritePC()
1} e

ALUWritePC(bits(32) address)
if ArchVersion() >= 7 && CurrentInstrSet() == InstrSet_ARM then
BXWritePC(address);
else
BranchWritePC(address);

Note

The behavior of the PC writes performed by the ALUWritePC() function is different in Debug state, where
there are more UNPREDICTABLE cases. The pseudocode in this section only handles the non-debug cases. For
more information, see Data-processing instructions with the PC as the target in Debug state on page C5-12.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-13

Application Level Programmers’ Model

A2.4 The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Status Register (APSR). The format of the

APSR is:

31 30 29 28 27 26 24 23 20 19 16 15 0

RAZ/

N(Z|C|V|Q SBZP Reserved GE[3:0] Reserved

In the APSR, the bits are in the following categories:

. Reserved bits are allocated to system features, or are available for future expansion. Unprivileged
execution ignores writes to privileged fields. However, application level software that writes to the
APSR must treat reserved bits as Do-Not-Modify (DNM) bits. For more information about the
reserved bits, see Format of the CPSR and SPSRs on page B1-16.

. Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
is regarded as a two's complement signed integer, then N == 1 if the result is negative and
N == 0 if it is positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to O otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overftlow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Setto 1 to indicate overflow or saturation occurred in some instructions, normally related
to Digital Signal Processing (DSP). For more information, see Pseudocode details of
saturation on page A2-9.

GE[3:0], bits [19:16]

Greater than or Equal flags. SIMD instructions update these flags to indicate the results
from individual bytes or halfwords of the operation. These flags can control a later SEL
instruction. For more information, see SEL on page A8-312.

. Bits [26:24] are RAZ/SBZP. Therefore, software can use MSR instructions that write the top byte of
the APSR without using a read, modify, write sequence. If it does this, it must write zeros to
bits [26:24].

Instructions can test the N, Z, C, and V condition code flags to determine whether the instruction is to be

executed. In this way, execution of the instruction can be made conditional on the result of a previous

operation. For more information about conditional execution see Conditional execution on page A4-3 and

Conditional execution on page A8-8.

In ARMv7-A and ARMv7-R, the APSR is the same register as the CPSR, but the APSR must be used only

to access the N, Z, C, V, Q, and GE[3:0] bits. For more information, see Program Status Registers (PSRs)

on page B1-14.
A2-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.5

A2.5.1

Application Level Programmers’ Model

Execution state registers
The execution state registers modify the execution of instructions. They control:

. Whether instructions are interpreted as Thumb instructions, ARM instructions, ThumbEE
instructions, or Java bytecodes. For more information, see ISETSTATE.

. In Thumb state and ThumbEE state only, what conditions apply to the next four instructions. For
more information, see ITSTATE on page A2-17.

. Whether data is interpreted as big-endian or little-endian. For more information, see ENDIANSTATE
on page A2-19.

In ARMv7-A and ARMvV7-R, the execution state registers are part of the Current Program Status Register.
For more information, see Program Status Registers (PSRs) on page B1-14.

There is no direct access to the execution state registers from application level instructions, but they can be
changed by side effects of application level instructions.

ISETSTATE

The J bit and the T bit determine the instruction set used by the processor. Table A2-1 shows the encoding
of these bits.

Table A2-1 J and T bit encoding in ISETSTATE

J T Instruction set state

0 0 ARM
0 1 Thumb
1 0 Jazelle

1 1 ThumbEE

ARM state The processor executes the ARM instruction set described in Chapter AS ARM
Instruction Set Encoding.

Thumb state The processor executes the Thumb instruction set as described in Chapter A6
Thumb Instruction Set Encoding.

Jazelle state The processor executes Java bytecodes as part of a Java Virtual Machine (JVM). For
more information, see Jazelle direct bytecode execution support on page A2-73.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-15

Application Level Programmers’ Model

ThumbEE state The processor executes a variation of the Thumb instruction set specifically targeted
for use with dynamic compilation techniques associated with an execution
environment. This can be Java or other execution environments. This feature is
required in ARMv7-A, and optional in ARMv7-R. For more information, see
Thumb Execution Environment on page A2-69.

Pseudocode details of ISETSTATE operations

The following pseudocode functions return the current instruction set and select a new instruction set:
enumeration InstrSet {InstrSet_ARM, InstrSet_Thumb, InstrSet_Jazelle, InstrSet_ThumbEE};

// CurrentInstrSet()
/e ——

InstrSet CurrentInstrSet()
case ISETSTATE of
when ‘00’ result = InstrSet_ARM;
when ‘01’ result = InstrSet_Thumb;
when ‘10’ result = InstrSet_Jlazelle;
when ‘11’ result = InstrSet_ThumbEE;
return result;

// SelectInstrSet()
/] =======m=======

SelectInstrSet(InstrSet iset)
case iset of
when InstrSet_ARM
if CurrentInstrSet() == InstrSet_ThumbEE then
UNPREDICTABLE;
else
ISETSTATE = ‘00’ ;
when InstrSet_Thumb
ISETSTATE = ‘01’;
when InstrSet_lazelle
ISETSTATE = ‘10’;
when InstrSet_ThumbEE
ISETSTATE = ‘11’;
return;

A2-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.5.2

Application Level Programmers’ Model

ITSTATE
76543210
IT[7:0]

This field holds the If-Then execution state bits for the Thumb IT instruction. See /7 on page A8-104 for a
description of the IT instruction and the associated IT block.

ITSTATE divides into two subfields:
IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the

condition specified by the IT instruction.
This subfield is 0b000 when no IT block is active.

1T[4:0] Encodes:

. The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is implied by the position of the least significant 1 in
this field, as shown in Table A2-2 on page A2-18.

. The value of the least significant bit of the condition code for each instruction in the
block.

—— Note

Changing the value of the least significant bit of a condition code from O to 1 has the
effect of inverting the condition code.

This subfield is 0bO0000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the instruction, and the
Then and Else (T and E) parameters in the instruction. For more information, see /7 on page A8-104.

An instruction in an IT block is conditional, see Conditional instructions on page A4-4 and Conditional
execution on page A8-8. The condition used is the current value of IT[7:4]. When an instruction in an IT
block completes its execution normally, ITSTATE is advanced to the next line of Table A2-2 on page A2-18.

For details of what happens if such an instruction takes an exception see Exception entry on page B1-34.

Note

Instructions that can complete their normal execution by branching are only permitted in an IT block as its
last instruction, and so always result in ITSTATE advancing to normal execution.

Note

ITSTATE affects instruction execution only in Thumb and ThumbEE states. In ARM and Jazelle states,
ITSTATE must be '00000000', otherwise behavior is UNPREDICTABLE.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-17

Application Level Programmers’ Model

Table A2-2 Effect of IT execution state bits

IT bits 2
Note
[7:5] (41 [31 21 [11 [0]
cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block
cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block
cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block
cond_base PlI 1 0 0 0 Entry point for 1-instruction IT block
000 0 0 0 0 0 Normal execution, not in an IT block

a. Combinations of the IT bits not shown in this table are reserved.

Pseudocode details of ITSTATE operations

ITSTATE advances after normal execution of an IT block instruction. This is described by the ITAdvance()

pseudocode function:

// ITAdvance()
// mmmmmmmmume

ITAdvance()
if ITSTATE<2:0> == ‘000’ then
ITSTATE.IT = ‘00000000’ ;
else

ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);

The following functions test whether the current instruction is in an IT block, and whether it is the last

instruction of an IT block:

// InITBlock()
// =

boolean InITBlock()

return (ITSTATE.IT<3:0> != ‘0000’);

// LastInITBlock()
/] ==mmmmmmmmmees

boolean LastInITBlock()

return (ITSTATE.IT<3:0> == ‘1000’);

A2-18

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.5.3 ENDIANSTATE

ARMv7-A and ARMvV7-R support configuration between little-endian and big-endian interpretations of
data memory, as shown in Table A2-3. The endianness is controlled by ENDIANSTATE.

Table A2-3 APSR configuration of endianness

ENDIANSTATE Endian mapping

0 Little-endian

1 Big-endian

The ARM and Thumb instruction sets both include an instruction to manipulate ENDIANSTATE:
SETEND BE Sets ENDIANSTATE to 1, for big-endian operation
SETEND LE Sets ENDIANSTATE to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND on page A8-314.

Pseudocode details of ENDIANSTATE operations

The BigEndian() pseudocode function tests whether big-endian memory accesses are currently selected.

// BigEndian()
1

booTlean BigEndian()
return (ENDIANSTATE == ‘1’);

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-19

Application Level Programmers’ Model

A2.6

Advanced SIMD and VFP extensions
Advanced SIMD and VFP are two optional extensions to ARMv7.

Advanced SIMD performs packed Single Instruction Multiple Data (SIMD) operations, either integer or
single-precision floating-point. VFP performs single-precision or double-precision floating-point
operations.

Both extensions permit floating-point exceptions, such as overflow or division by zero, to be handled in an
untrapped fashion. When handled in this way, a floating-point exception causes a cumulative status register
bit to be set to 1 and a default result to be produced by the operation.

The ARMv7 VFP implementation is VFPv3. ARMv7 also permits a variant of VFPv3, VFPv3U, that
supports the trapping of floating-point exceptions, see VFPv3U on page A2-31. VFPv2 also supports the
trapping of floating-point exceptions.

For more information about floating-point exceptions see Floating-point exceptions on page A2-42.

Each extension can be implemented at a number of levels. Table A2-4 shows the permitted combinations of
implementations of the two extensions.

Table A2-4 Permitted combinations of Advanced SIMD and VFP extensions

Advanced SIMD VFP

Not implemented Not implemented

Integer only Not implemented

Integer and single-precision floating-point Single-precision floating-point only?

Integer and single-precision floating-point Single-precision and double-precision floating-point

Not implemented Single-precision floating-point only?

Not implemented Single-precision and double-precision floating-point

a. Must be able to load and store double-precision data.

The optional half-precision extensions provide conversion functions in both directions between
half-precision floating-point and single-precision floating-point. These extensions can be implemented with
any Advanced SIMD and VFP implementation that supports single-precision floating-point. The
half-precision extensions apply to both VFP and Advanced SIMD if they are both implemented.

For system-level information about the Advanced SIMD and VFP extensions see:
. Advanced SIMD and VFP extension system registers on page B1-66
. Advanced SIMD and floating-point support on page B1-64.

A2-20

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.6.1

Application Level Programmers’ Model

Note

Before ARMv7, the VFP extension was called the Vector Floating-point Architecture, and was used for
vector operations. For details of these deprecated operations see Appendix F VFP Vector Operation
Support. From ARMvV7:

. ARM recommends that the Advanced SIMD extension is used for single-precision vector
floating-point operations

. an implementation that requires support for vector operations must implement the Advanced SIMD
extension.

Advanced SIMD and VFP extension registers

Advanced SIMD and VFPv3 use the same register set. This is distinct from the ARM core register set. These
registers are generally referred to as the extension registers.

The extension register set consists of either thirty-two or sixteen doubleword registers, as follows:
. If VFPv2 is implemented, it consists of sixteen doubleword registers.

. If VFPv3 is implemented, it consists of either thirty-two or sixteen doubleword registers. Where
necessary the terms VFPv3-D32 and VFPv3-D16 are used to distinguish between these two
implementation options.

. If Advanced SIMD is implemented, it consists of thirty-two doubleword registers. If both Advanced
SIMD and VFPv3 are implemented, VFPv3 must be implemented in its VFPv3-D32 form.

The Advanced SIMD and VFP views of the extension register set are not identical. They are described in
the following sections.

Figure A2-1 on page A2-22 shows the views of the extension register set, and the way the word,
doubleword, and quadword registers overlap.

Advanced SIMD views of the extension register set

Advanced SIMD can view this register set as:
. Sixteen 128-bit quadword registers, Q0-Q15.
. Thirty-two 64-bit doubleword registers, D@-D31. This view is also available in VFPv3.

These views can be used simultaneously. For example, a program might hold 64-bit vectors in DO and D1
and a 128-bit vector in Q1.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-21

Application Level Programmers’ Model

VFP views of the extension register set

In VFPv3-D32, the extension register set consists of thirty-two doubleword registers, that VFP can view as:
. Thirty-two 64-bit doubleword registers, D0-D31. This view is also available in Advanced SIMD.
. Thirty-two 32-bit single word registers, S0-S31. Only half of the set is accessible in this view.

In VFPv3-D16 and VFPv2, the extension register set consists of sixteen doubleword registers, that VFP can

view as:

. Sixteen 64-bit doubleword registers, DO-D15.
. Thirty-two 32-bit single word registers, S0-5S31.

In each case, the two views can be used simultaneously.

Advanced SIMD and VFP register mapping

S0-S31
VFP only

SO

S1

S2

S3

S4

S5

S6

s7

S28

S29

S30

S31

D0-D15
VFPv2 or

VFPv3-D16

— DO

— D1

— D2

— D3

— D14 —|

— D15 —|

D0-D31

VFPv3-D32 or
Advanced SIMD

— DO

— D14 —|

— D15 —|

— D16 —|

— D17 —

— D30 —

— D31 —|

Q0-Q15
Advanced SIMD only

— Q1 —

Q7 —

I Q8 —

— Q15—

Figure A2-1 Advanced SIMD and VFP register set

A2-22

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

The mapping between the registers is as follows:

. S<2n> maps to the least significant half of D<n>
. S<2n+1> maps to the most significant half of D<n>
. D<2n> maps to the least significant half of Q<n>
. D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to D12,
and the most significant half of the elements by referring to D13.

Pseudocode details of Advanced SIMD and VFP extension registers

The pseudocode function VFPSmal1RegisterBank() returns FALSE if all of the 32 registers DO-D31 can be
accessed, and TRUE if only the 16 registers DO-D15 can be accessed:

boolean VFPSmallRegisterBank()

In more detail, VFPSmal1RegisterBank():
. returns TRUE for a VFPv2 or VFPv3-D16 implementation
. for a VFPv3-D32 implementation:
— returns FALSE if CPACR.D32DIS ==
— returns TRUE if CPACR.D32DIS == 1 and CPACR.ASEDIS == 1
— results in UNPREDICTABLE behavior if CPACR.D32DIS == 1 and CPACR.ASEDIS == 0.

For details of the CPACR register, see:
. cl, Coprocessor Access Control Register (CPACR) on page B3-104 for a VMSA implementation
. cl, Coprocessor Access Control Register (CPACR) on page B4-51 for a PMSA implementation.

The S0-S31, D0-D31, and QO0-Q15 views of the registers are provided by the following functions:
// The 64-bit extension register bank for Advanced SIMD and VFP.
array bits(64) _D[0..31];

// S[] - non-assignment form

//

bits(32) S[integer n]
assert n >= 0 & n <= 31;
if (n MOD 2) == @ then
result = D[n DIV 2]<31:0>;
else
result = D[n DIV 2]<63:32>;
return result;

// S[]1 - assignment form
//

S[integer n] = bits(32) value
assert n >= 0 & n <= 31;
if (n MOD 2) == @ then

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-23

Application Level Programmers’ Model

D[n DIV 2]<31:0> = value;
else

D[n DIV 2]1<63:32> = value;
return;

// D[] - non-assignment form

//

bits(64) D[integer n]
assert n >= 0 && n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
return _D[n];

// D[] - assignment form

//

D[integer n] = bits(64) value
assert n >= 0 & n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
_D[n] = value;
return;

// Q[] - non-assignment form

//

bits(128) Q[integer n]
assert n >= 0 && n <= 15;
return D[2«n+1]:D[2xn];

// QL] - assignment form
//

Q[integer n] = bits(128) value
assert n >= 0 && n <= 15;
D[2xn] = value<63:0>;
D[2xn+1] = value<127:64>;
return;

A2-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.6.2

Application Level Programmers’ Model

Data types supported by the Advanced SIMD extension

When the Advanced SIMD extension is implemented, it can operate on integer and floating-point data. It
defines a set of data types to represent the different data formats. Table A2-5 shows the available formats.
Each instruction description specifies the data types that the instruction supports.

Table A2-5 Advanced SIMD data types

Data type specifier = Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

I<size> Signed or unsigned integer of <size> bits
.P<size> Polynomial over {0,1} of degree less than <size>
.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

The polynomial data type is described in Polynomial arithmetic over {0,1} on page A2-67.

The .F16 data type is the half-precision data type currently selected by the FPSCR.AHP bit, see Advanced
SIMD and VFP system registers on page A2-28. It is supported only when the half-precision extensions are
implemented.

The .F32 data type is the ARM standard single-precision floating-point data type, see Advanced SIMD and
VFP single-precision format on page A2-34.

The instruction definitions use a data type specifier to define the data types appropriate to the operation.
Figure A2-2 on page A2-26 shows the hierarchy of Advanced SIMD data types.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-25

Application Level Programmers’ Model

A2.6.3

S8
18
8 U8
P8
516
116
16 U16
P16
F16 1
832
132
32 U32
F32
.S64
164
64 .Ub4

T Supported only if the half-precision extensions are implemented

Figure A2-2 Advanced SIMD data type hierarchy

For example, a multiply instruction must distinguish between integer and floating-point data types.
However, some multiply instructions use modulo arithmetic for integer instructions and therefore do not
need to distinguish between signed and unsigned inputs.

A multiply instruction that generates a double-width (long) result must specify the input data types as signed
or unsigned, because for this operation it does make a difference.

Advanced SIMD vectors

When the Advanced SIMD extension is implemented, a register can hold one or more packed elements, all
of the same size and type. The combination of a register and a data type describes a vector of elements. The
vector is considered to be an array of elements of the data type specified in the instruction. The number of
elements in the vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements — 1). An index of O refers to the least significant
end of the vector. Figure A2-3 on page A2-27 shows examples of Advanced SIMD vectors:

A2-26

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

127 0

128-bit vector of single-precision

‘ F32 ‘ F32 ‘ F32 ‘ F32 (32-bit) floating-point numbers

131 [2] 1 [0]

‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘ S16 ‘128-bitvectorof16-bitsigned integers
B @ W o

63 0
| o |

‘ .832 ‘ .832 ‘ 64-bit vector of 32-bit signed integers
0l [0]

‘ U16 ‘ u16 ‘ u16 ‘ u16 ‘64-bitvectorof16-bit unsigned integers
B @ @ o

Figure A2-3 Examples of Advanced SIMD vectors

Pseudocode details of Advanced SIMD vectors
The pseudocode function Elem[] is used to access the element of a specified index and size in a vector:

// Elem[] - non-assignment form

//

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 & (e+l)*size <= N;
return vector<(e+l)«size-l:exsize>;

// Elem[] - assignment form

//

Elem[bits(N) vector, integer e, integer size] = bits(size) value
assert e >= 0 & (e+l)xsize <= N;
vector<(e+l)«size-1l:exsize> = value;
return;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-27

Application Level Programmers’ Model

A2.6.4 Advanced SIMD and VFP system registers
The Advanced SIMD and VFP extensions have a shared register space for system registers. Only one
register in this space is accessible at the application level, see Floating-point Status and Control Register
(FPSCR).
See Advanced SIMD and VFP extension system registers on page B1-66 for the system level description of
the registers.
Floating-point Status and Control Register (FPSCR)
The Floating-point Status and Control Register (FPSCR) is implemented in any system that implements one
or both of:
. the VFP extension
. the Advanced SIMD extension.
The FPSCR provides all necessary User level control of the floating-point system
The FPSCR is a 32-bit read/write system register, accessible in unprivileged and privileged modes.
The format of the FPSCR is:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 151413121110 9 8 7 6 5 4 3 2 1 0
. UNK/ UNK/
N|(Z|C|V Stride Len SBZP SBZP
QC ll RMode IDE ll IXE ll IXC ll
AHP — UFE — UFC—
DN UNK/SBZP OFE OFC
FZ—— DZE —— DZC
IOE——M— 10C
DC—mM8M8™M—

Bits [31:28] Condition code bits. These are updated on floating-point comparison operations. They are
not updated on SIMD operations, and do not affect SIMD instructions.
N, bit [31] Negative condition code flag.

Z, bit [30] Zero condition code flag.
C, bit [29] Carry condition code flag.
V, bit [28] Overflow condition code flag.

QGC, bit [27] Cumulative saturation flag, Advanced SIMD only. This bit is set to 1 to indicate that an
Advanced SIMD integer operation has saturated since 0 was last written to this bit. For
details of saturation, see Pseudocode details of saturation on page A2-9.

The value of this bit is ignored by the VFP extension. If Advanced SIMD is not implemented
this bit is UNK/SBZP.
A2-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

AHP, bit[26] Alternative half-precision control bit:

0 IEEE half-precision format selected.
1 Alternative half-precision format selected.

For more information see Advanced SIMD and VFP half-precision formats on page A2-38.
If the half-precision extensions are not implemented this bit is UNK/SBZP.

Bits [19,14:13,6:5]

DN, bit [25]

FZ, bit [24]

Reserved. UNK/SBZP.

Default NaN mode control bit:
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.

For more information, see NaN handling and the Default NaN on page A2-41.

The value of this bit only controls VFP arithmetic. Advanced SIMD arithmetic always uses
the Default NaN setting, regardless of the value of the DN bit.

Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.

1 Flush-to-zero mode enabled.
For more information, see Flush-to-zero on page A2-39.

The value of this bit only controls VFP arithmetic. Advanced SIMD arithmetic always uses
the Flush-to-zero setting, regardless of the value of the FZ bit.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode

0b01 Round towards Plus Infinity (RP) mode
0b10 Round towards Minus Infinity (RM) mode
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all VFP floating-point instructions.
Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the
value of the RMode bits.

Stride, bits [21:20] and Len, bits [18:16]

Use of nonzero values of these fields is deprecated in ARMv7. For details of their use in
previous versions of the ARM architecture see Appendix F VFP Vector Operation Support.

The values of these fields are ignored by the Advanced SIMD extension.

Bits [15,12:8] Floating-point exception trap enable bits. These bits are supported only in VFPv2 and

VFPv3U. They are reserved, RAZ/SBZP, on a system that implements VFPv3.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-29

Application Level Programmers’ Model

Bits [7,4:0]

The possible values of each bit are:
0 Untrapped exception handling selected
1 Trapped exception handling selected.

The values of these bits control only VFP arithmetic. Advanced SIMD arithmetic always
uses untrapped exception handling, regardless of the values of these bits.

For more information, see Floating-point exceptions on page A2-42.

IDE, bit [15] Input Denormal exception trap enable.
IXE, bit [12] Inexact exception trap enable.

UFE, bit [11] Underflow exception trap enable.

OFE, bit [10] Overflow exception trap enable.

DZE, bit [9] Division by Zero exception trap enable.
IOE, bit [8] Invalid Operation exception trap enable.

Cumulative exception flags for floating-point exceptions. Each of these bits is set to 1 to
indicate that the corresponding exception has occurred since O was last written to it. How
VFP instructions update these bits depends on the value of the corresponding exception trap
enable bits:

Trap enable bit = 0
If the floating-point exception occurs then the cumulative exception flag is set
to 1.

Trap enable bit = 1
If the floating-point exception occurs the trap handling software can decide
whether to set the cumulative exception flag to 1.

Advanced SIMD instructions set each cumulative exception flag if the corresponding
exception occurs in one or more of the floating-point calculations performed by the
instruction, regardless of the setting of the trap enable bits.

For more information, see Floating-point exceptions on page A2-42.

IDC, bit [7] Input Denormal cumulative exception flag.
IXC, bit [4] Inexact cumulative exception flag.

UFC, bit [3] Underflow cumulative exception flag.

OFC, bit [2] Overflow cumulative exception flag.

DZC, bit [1] Division by Zero cumulative exception flag.
10C, bit [0] Invalid Operation cumulative exception flag.

If the processor implements the integer-only Advanced SIMD extension and does not implement the VFP
extension, all of these bits except QC are UNK/SBZP.

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these
side-effects are synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier
instructions in the execution stream, and they are guaranteed to be visible to later instructions in the
execution stream.

A2-30

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.6.5

Application Level Programmers’ Model

Accessing the FPSCR

You read or write the FPSCR using the VMRS and VMSR instructions. For more information, see VMRS on
page A8-658 and VMSR on page A8-660. For example:

VMRS <Rt>, FPSCR ; Read Floating-point System Control Register
VMSR FPSCR, <Rt> ; Write Floating-point System Control Register
VFPv3U

VFPv3 does not support the exception trap enable bits in the FPSCR, see Floating-point Status and Control
Register (FPSCR) on page A2-28. All floating-point exceptions are untrapped.

The VFPv3U variant of the VFPv3 architecture implements the exception trap enable bits in the FPSCR,
and provides exception handling as described in VFP support code on page B1-70. There is a separate trap
enable bit for each of the six floating-point exceptions described in Floating-point exceptions on

page A2-42. The VFPv3U architecture is otherwise identical to VFPv3.

Trapped exception handling never causes the corresponding cumulative exception bit of the FPSCR to be
set to 1. If this behavior is desired, the trap handler routine must use a read, modify, write sequence on the
FPSCR to set the cumulative exception bit.

VFPv3U is backwards compatible with VFPv2.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-31

Application Level Programmers’ Model

A2.7 Floating-point data types and arithmetic

The VFP extension supports single-precision (32-bit) and double-precision (64-bit) floating-point data

types and arithmetic as defined by the IEEE 754 floating-point standard. It also supports the ARM Standard

modifications to that arithmetic described in Flush-to-zero on page A2-39 and NaN handling and the

Default NaN on page A2-41.

Trapped floating-point exception handling is supported in the VFPv3U variant only (see VFPv3U on

page A2-31).

ARM standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the ARM standard

modifications and:

. the Round to Nearest rounding mode selected

. untrapped exception handling selected for all floating-point exceptions.

The Advanced SIMD extension only supports single-precision ARM standard floating-point arithmetic.

Note

Implementations of the VFP extension require support code to be installed in the system if trapped

floating-point exception handling is required. See VFP support code on page B1-70.

They might also require support code to be installed in the system to support other aspects of their

floating-point arithmetic. It is IMPLEMENTATION DEFINED which aspects of VFP floating-point arithmetic

are supported in a system without support code installed.

Aspects of floating-point arithmetic that are implemented in support code are likely to run much more

slowly than those that are executed in hardware.

ARM recommends that:

. To maximize the chance of getting high floating-point performance, software developers use ARM
standard floating-point arithmetic.

. Software developers check whether their systems have support code installed, and if not, observe the
IMPLEMENTATION DEFINED restrictions on what operations their VFP implementation can handle
without support code.

. VFP implementation developers implement at least ARM standard floating-point arithmetic in
hardware, so that it can be executed without any need for support code.

A2-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.7.1 ARM standard floating-point input and output values

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

.

Zeros.
Normalized numbers.

Denormalized numbers are flushed to 0 before floating-point operations. For details, see
Flush-to-zero on page A2-39.

NaNs.

Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest rounding mode defined by the IEEE
754 standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the IEEE
754 standard:

Zeros.
Normalized numbers.

Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero on
page A2-39.

NaNs produced in floating-point operations are always the default NaN, see NaN handling and the
Default NaN on page A2-41.

Infinities.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-33

Application Level Programmers’ Model

A2.7.2

Advanced SIMD and VFP single-precision format

The single-precision floating-point format used by the Advanced SIMD and VFP extensions is as defined
by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word, and must be word-aligned when held in memory. It has the format:
31 30 23 22 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits [30:23]:

0 < exponent < 0xFF
The value is a normalized number and is equal to:
—18 x 2(exponent —127) x (] fraction)
The minimum positive normalized number is 2-126, or approximately 1.175 x10-38.

The maximum positive normalized number is (2 — 2-23) x 2127, or approximately
3.403 x1038.

exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==0
-0 when S==1.
These usually behave identically. In particular, the result is equal if +0 and -0
are compared as floating-point numbers. However, they yield different results in
some circumstances. For example, the sign of the infinity produced as the result
of dividing by zero depends on the sign of the zero. The two zeros can be
distinguished from each other by performing an integer comparison of the two
words.

fraction !=0
The value is a denormalized number and is equal to:
—18 x 2-126 x (0.fraction)

The minimum positive denormalized number is 2-149, or approximately 1.401 x 10-45.

Denormalized numbers are flushed to zero in the Advanced SIMD extension. They are
optionally flushed to zero in the VFP extension. For details see Flush-to-zero on
page A2-39.

A2-34

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

exponent == OxFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==

The value is an infinity. There are two distinct infinities:

+00 When S==0. This represents all positive numbers that are too big to
be represented accurately as a normalized number.

-0 When S==1. This represents all negative numbers with an absolute
value that is too big to be represented accurately as a normalized
number.

fraction !=0

The value is a NaN, and is either a quiet NaN or a signaling NaN.
In the VFP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit [22]:
bit [22] ==
The NaN is a signaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except all zeros.
bit [22] ==1
The NaN is a quiet NaN. The sign bit and remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-41.

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean you can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN
compares as unordered with everything, including itself. However, you can use integer comparisons to
distinguish different NaNs.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-35

Application Level Programmers’ Model

A2.7.3 VFP double-precision format
The double-precision floating-point format used by the VFP extension is as defined by the IEEE 754
standard.
This description includes VFP-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.
A double-precision value consists of two 32-bit words, with the formats:
Most significant word:
31 30 20 19 0
S exponent fraction[51:32]
Least significant word:
31 0
fraction[31:0]
When held in memory, the two words must appear consecutively and must both be word-aligned. The order
of the two words depends on the endianness of the memory system:
. In a little-endian memory system, the least significant word appears at the lower memory address and
the most significant word at the higher memory address.
. In a big-endian memory system, the most significant word appears at the lower memory address and
the least significant word at the higher memory address.
Double-precision values represent numbers, infinities and NaNs in a similar way to single-precision values,
with the interpretation of the format depending on the value of the exponent:
0 < exponent < 0x7FF
The value is a normalized number and is equal to:
—18 x 2exponent-1023 x (1 fraction)
The minimum positive normalized number is 2-1022 or approximately 2.225 x 10308,
The maximum positive normalized number is (2 — 2-52) x 21023 or approximately
1.798 x 10308,
exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The value is a zero. There are two distinct zeros that behave analogously to the
two single-precision zeros:
+0 when S==
-0 when S==1.
A2-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

fraction !=0
The value is a denormalized number and is equal to:
1-S x 2-1022 x (0.fraction)
The minimum positive denormalized number is 2-1974, or approximately 4.941 x 10-324,

Optionally, denormalized numbers are flushed to zero in the VFP extension. For details see
Flush-to-zero on page A2-39.

exponent == 0x7FF

The value is either an infinity or a NaN, depending on the fraction bits:

fraction ==
the value is an infinity. As for single-precision, there are two infinities:
+00 Plus infinity, when S==0
-0 Minus infinity, when S==1.
fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
In the VFP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit [19] of the most significant word:
bit [19] ==
The NaN is a signaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except all zeros.
bit [19] ==1
The NaN is a quiet NaN. The sign bit and the remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-41.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-37

Application Level Programmers’ Model

A2.7.4 Advanced SIMD and VFP half-precision formats
Two half-precision floating-point formats are used by the half-precision extensions to Advanced SIMD and
VFP:
. IEEE half-precision, as described in the revised IEEE 754 standard
. Alternative half-precision.
The description of IEEE half-precision includes ARM-specific details that are left open by the standard, and
is only an introduction to the formats and to the values they can contain. For more information, especially
on the handling of infinities, NaNs and signed zeros, see the IEEE 754 standard.
For both half-precision floating-point formats, the layout of the 16-bit number is the same. The format is:
1514 10 9 0
S| Exponent Fraction
The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which
half-precision format is being used.
0 < exponent < 0x1F
The value is a normalized number and is equal to:
—1S x 2((exponent-15) x (] fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 x10-5.
The maximum positive normalized number is (2 — 2-10) x 215, or 65504.
Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.
exponent == ()
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==
-0 when S==1.
fraction !=0
The value is a denormalized number and is equal to:
—18 x 2-14 x (0.fraction)
The minimum positive denormalized number is 2-25, or approximately 2.980 x 10-8.
A2-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

exponent == 0x1F
The value depends on which half-precision format is being used:

IEEE Half-precision

The value is either an infinity or a Not a Number (NaN), depending on the
fraction bits:

fraction == 0
The value is an infinity. There are two distinct infinities:

+o0 When S==0. This represents all positive
numbers that are too big to be represented
accurately as a normalized number.

-0 When S==1. This represents all negative
numbers with an absolute value that is too
big to be represented accurately as a
normalized number.

fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant
fraction bit, bit [9]:
bit [9] == 0 The NaN is a signaling NaN. The sign bit
can take any value, and the remaining

fraction bits can take any value except all
Zeros.

bit [9] == The NaN is a quiet NaN. The sign bit and
remaining fraction bits can take any value.
Alternative Half-precision
The value is a normalized number and is equal to:
-1 x 216 x (1.fraction)

The maximum positive normalized number is (2-2-19) x 216 or 131008.

A2.7.5 Flush-to-zero

The performance of floating-point implementations can be significantly reduced when performing
calculations involving denormalized numbers and Underflow exceptions. In particular this occurs for
implementations that only handle normalized numbers and zeros in hardware, and invoke support code to
handle any other types of value. For an algorithm where a significant number of the operands and
intermediate results are denormalized numbers, this can result in a considerable loss of performance.

In many of these algorithms, this performance can be recovered, without significantly affecting the accuracy
of the final result, by replacing the denormalized operands and intermediate results with zeros. To permit
this optimization, VFP implementations have a special processing mode called Flush-to-zero mode.
Advanced SIMD implementations always use Flush-to-zero mode.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-39

Application Level Programmers’ Model

Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

. All inputs to floating-point operations that are double-precision de-normalized numbers or
single-precision de-normalized numbers are treated as though they were zero. This causes an Input
Denormal exception, but does not cause an Inexact exception. The Input Denormal exception occurs
only in Flush-to-zero mode.

The FPSCR contains a cumulative exception bit FPSCR.IDC and trap enable bit FPSCR.IDE
corresponding to the Input Denormal exception. For details of how these are used when processing
the exception see Advanced SIMD and VFP system registers on page A2-28.

The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

. The result of a floating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:
0 < Abs(result) < MinNorm, where:
— MinNorm == 2-126 for single-precision
— MinNorm == 2-1022 for double-precision.

This causes the FPSCR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for
the operation.

Underflow exceptions occur only when a result is flushed to zero.
In a VFPv2 or VFPv3U implementation Underflow exceptions that occur in Flush-to-zero mode are

always treated as untrapped, even when the Underflow trap enable bit, FPSCR.UFE, is set to 1.

. An Inexact exception does not occur if the result is flushed to zero, even though the final result of
zero is not equivalent to the value that would be produced if the operation were performed with
unbounded precision and exponent range.

For information on the FPSCR bits see Floating-point Status and Control Register (FPSCR) on page A2-28.
When an input or a result is flushed to zero the value of the sign bit of the zero is determined as follows:

. In VFPv3 or VFPv3U, it is preserved. That is, the sign bit of the zero matches the sign bit of the input
or result that is being flushed to zero.

. In VFPv2, it is IMPLEMENTATION DEFINED whether it is preserved or always positive. The same
choice must be made for all cases of flushing an input or result to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or
results from floating-point operations.

A2-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.7.6

Application Level Programmers’ Model

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Flush-to-zero mode must be treated with care. Although it can lead to a major
performance increase on many algorithms, there are significant limitations on its use. These are application
dependent:

. On many algorithms, it has no noticeable effect, because the algorithm does not normally use
denormalized numbers.

. On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results
of the algorithm.

NaN handling and the Default NaN
The IEEE 754 standard specifies that:

. an operation that produces an Invalid Operation floating-point exception generates a quiet NaN as its
result if that exception is untrapped

. an operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN
as its result.

The VFP behavior when Default NaN mode is disabled adheres to this with the following extra details,
where the first operand means the first argument to the pseudocode function call that describes the
operation:

. If an untrapped Invalid Operation floating-point exception is produced because one of the operands
is a signaling NaN, the quiet NaN result is equal to the signaling NaN with its most significant
fraction bit changed to 1. If both operands are signaling NaNss, the result is produced in this way from
the first operand.

. If an untrapped Invalid Operation floating-point exception is produced for other reasons, the quiet
NaN result is the Default NaN.

. If both operands are quiet NaNs, the result is the first operand.

The VFP behavior when Default NaN mode is enabled, and the Advanced SIMD behavior in all
circumstances, is that the Default NaN is the result of all floating-point operations that:

. generate untrapped Invalid Operation floating-point exceptions
. have one or more quiet NaN inputs.

Table A2-6 on page A2-42 shows the format of the default NaN for ARM floating-point processors.

Default NaN mode is selected for VFP by setting the FPSCR.DN bit to 1, see Floating-point Status and
Control Register (FPSCR) on page A2-28.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-41

Application Level Programmers’ Model

Other aspects of the functionality of the Invalid Operation exception are not affected by Default NaN mode.

These are that:

. If untrapped, it causes the FPSCR.IOC bit be set to 1.
. If trapped, it causes a user trap handler to be invoked. This is only possible in VFPv2 and VFPv3U.

Table A2-6 Default NaN encoding

Half-precision, IEEE Format Single-precision Double-precision
Signbit 0 02 02
Exponent 0x1F OxFF Ox7FF
Fraction Bit[9] == 1, bits[8:0] == bit [22] == 1, bits [21:0] == bit [51] == 1, bits [50:0] ==

a. In VFPv2, the sign bit of the Default NaN is UNKNOWN.

A2.7.7 Floating-point exceptions

The Advanced SIMD and VFP extensions record the following floating-point exceptions in the FPSCR
cumulative flags, see Floating-point Status and Control Register (FPSCR) on page A2-28:

10C

DZC

OFC

UFC

Invalid Operation. The flag is set to 1 if the result of an operation has no mathematical value
or cannot be represented. Cases include infinity * 0, +infinity + (—infinity), for example.
These tests are made after flush-to-zero processing. For example, if flush-to-zero mode is
selected, multiplying a denormalized number and an infinity is treated as O * infinity and
causes an Invalid Operation floating-point exception.

IOC is also set on any floating-point operation with one or more signaling NaNs as
operands, except for negation and absolute value, as described in Negation and absolute
value on page A2-47.

Division by Zero. The flag is set to 1 if a divide operation has a zero divisor and a dividend
that is not zero, an infinity or a NaN. These tests are made after flush-to-zero processing, so
if flush-to-zero processing is selected, a denormalized dividend is treated as zero and
prevents Division by Zero from occurring, and a denormalized divisor is treated as zero and
causes Division by Zero to occur if the dividend is a normalized number.

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to
be +1.0. This means that a zero or denormalized operand to these functions sets the DZC
flag.

Overflow. The flag is set to 1 if the absolute value of the result of an operation, produced
after rounding, is greater than the maximum positive normalized number for the destination
precision.

Underflow. The flag is set to 1 if the absolute value of the result of an operation, produced
before rounding, is less than the minimum positive normalized number for the destination
precision, and the rounded result is inexact.

A2-42

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

IXC

IDC

Application Level Programmers’ Model

The criteria for the Underflow exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-39.

Inexact. The flag is set to 1 if the result of an operation is not equivalent to the value that
would be produced if the operation were performed with unbounded precision and exponent
range.

The criteria for the Inexact exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-39.

Input Denormal. The flag is set to 1 if a denormalized input operand is replaced in the
computation by a zero, as described in Flush-to-zero on page A2-39.

With the Advanced SIMD extension and the VFPv3 extension these are non-trapping exceptions and the
data-processing instructions do not generate any trapped exceptions.

With the VFPv2 and VFPv3U extensions:

These exceptions can be trapped, by setting trap enable flags in the FPSCR, see VFPv3U on
page A2-31. Trapped floating-point exceptions are delivered to user code in an IMPLEMENTATION
DEFINED fashion.

The definitions of the floating-point exceptions change as follows:

if the Underflow exception is trapped, it occurs if the absolute value of the result of an
operation, produced before rounding, is less than the minimum positive normalized number
for the destination precision, regardless of whether the rounded result is inexact

higher priority trapped exceptions can prevent lower priority exceptions from occurring, as
described in Combinations of exceptions on page A2-44.

Table A2-7 shows the default results of the floating-point exceptions:

Table A2-7 Floating-point exception default results

Exception type Default result for positive sign Default result for negative sign

IOC, Invalid Operation ~ Quiet NaN Quiet NaN

DZC, Division by Zero +» (plus infinity) -0 (minus infinity)

OFC, Overflow RN, RP: +oo (plus infinity) RN, RM: -0 (minus infinity)
RM, RZ: +MaxNorm RP, RZ: —MaxNorm

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal Normal rounded result Normal rounded result

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-43

Application Level Programmers’ Model

In Table A2-7 on page A2-43:

MaxNorm The maximum normalized number of the destination precision

RM Round towards Minus Infinity mode, as defined in the IEEE 754 standard

RN Round to Nearest mode, as defined in the IEEE 754 standard

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard

RZ Round towards Zero mode, as defined in the IEEE 754 standard

. For Invalid Operation exceptions, for details of which quiet NaN is produced as the default result see

NaN handling and the Default NaN on page A2-41.

. For Division by Zero exceptions, the sign bit of the default result is determined normally for a
division. This means it is the exclusive OR of the sign bits of the two operands.

. For Overflow exceptions, the sign bit of the default result is determined normally for the overflowing
operation.

Combinations of exceptions
The following pseudocode functions perform floating-point operations:

FixedToFP()
FPAbs()

FPAdd()
FPCompare()
FPCompareGE()
FPCompareGT()
FPDiv()
FPDoubleToSingle()
FPMax ()

FPMin()

FPMuT()

FPNeg()
FPRecipEstimate()
FPRecipStep()
FPRSqrtEstimate()
FPRSqrtStep()
FPSingleToDouble()
FPSqrt()

FPSub()
FPToFixed()

All of these operations except FPAbs() and FPNeg() can generate floating-point exceptions.

More than one exception can occur on the same operation. The only combinations of exceptions that can

occur are:

. Overflow with Inexact

. Underflow with Inexact

. Input Denormal with other exceptions.

A2-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

‘When none of the exceptions caused by an operation are trapped, any exception that occurs causes the
associated cumulative flag in the FPSCR to be set.

When one or more exceptions caused by an operation are trapped, the behavior of the instruction depends
on the priority of the exceptions. The Inexact exception is treated as lowest priority, and Input Denormal as
highest priority:

. If the higher priority exception is trapped, its trap handler is called. It is IMPLEMENTATION DEFINED
whether the parameters to the trap handler include information about the lower priority exception.
Apart from this, the lower priority exception is ignored in this case.

. If the higher priority exception is untrapped, its cumulative bit is set to 1 and its default result is
evaluated. Then the lower priority exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the
pseudocode descriptions of the instruction. In such cases, an exception on one operation is treated as higher
priority than an exception on another operation if the occurrence of the second exception depends on the
result of the first operation. Otherwise, it is UNPREDICTABLE which exception is treated as higher priority.

For example, a VMLA. F32 instruction specifies a floating-point multiplication followed by a floating-point
addition. The addition can generate Overflow, Underflow and Inexact exceptions, all of which depend on
both operands to the addition and so are treated as lower priority than any exception on the multiplication.
The same applies to Invalid Operation exceptions on the addition caused by adding opposite-signed
infinities.

The addition can also generate an Input Denormal exception, caused by the addend being a denormalized
number while in Flush-to-zero mode. It is UNPREDICTABLE which of an Input Denormal exception on the
addition and an exception on the multiplication is treated as higher priority, because the occurrence of the
Input Denormal exception does not depend on the result of the multiplication. The same applies to an Invalid
Operation exception on the addition caused by the addend being a signaling NaN.

Note

Like other details of VFP instruction execution, these rules about exception handling apply to the overall
results produced by an instruction when the system uses a combination of hardware and support code to
implement it. See VFP support code on page B1-70 for more information.

These principles also apply to the multiple floating-point operations generated by VFP instructions in the
deprecated VFP vector mode of operation. For details of this mode of operation see Appendix F VFP Vector
Operation Support.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-45

Application Level Programmers’ Model

A2.7.8 Pseudocode details of floating-point operations

This section contains pseudocode definitions of the floating-point operations used by the architecture.

Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument of
FPInfinity(), FPMaxNormal(), and FPZero() is '@' for the positive version and '1' for the negative version.

// FPZero()
/] ——

bits(N) FPZero(bit sign, integer N)
assert N ==16 || N == 32 || N == 64;
if N == 16 then

return sign : ‘00000 0000000000’ ;
elsif N == 32 then

CODOOOOON OO0)

return sign : ‘0 00 ;
else
return sign : ‘00000000000 00° ;
// FPTwo()

/] ===m===

bits(N) FPTwo(integer N)
assert N == 32 || N == 64;
if N == 32 then
return ‘0 10000000 00 "

else
return ‘0 10000000000 00° ;

// FPThree()
/] =m=mmm==

bits(N) FPThree(integer N)
assert N == 32 || N == 64;
if N == 32 then
return ‘0 10000000 10 ;

else

return ‘0 10000000000 10000 '

// FPMaxNormal()
/] ====m========

bits(N) FPMaxNormal(bit sign, integer N)
assert N == 16 || N == 32 || N == 64;
if N == 16 then
return sign : ‘11110 1111111111°;
elsif N == 32 then
return sign : ‘11111110 11111111111111111111111°;

else
return sign : ‘11111111110 11°;

A2-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

// FPInfinity()
/] =m=mmmmma==

bits(N) FPInfinity(bit sign, integer N)
assert N ==16 || N == 32 || N == 64;
if N == 16 then
return sign : ‘11111 0000000000’ ;
elsif N == 32 then
return sign : ‘11111111 00000000000000000000000° ;
else
return sign : ‘11111111111 0 '

// FPDefaultNaN()
/] ====m==m=m====

bits(N) FPDefaultNaN(integer N)
assert N == 16 || N == 32 || N == 64;
if N == 16 then
return ‘0 11111 1000000000’ ;
elsif N == 32 then
return ‘0 11111111 10 i
else
return ‘0 11111111111 1000 0’

Note

This definition of FPDefaultNaN() applies to VFPv3 and VFPv3U. For VFPv2, the sign bit of the result is a
single-bit UNKNOWN value, instead of 0.

Negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not treat NaN
operands specially, nor denormalized number operands when flush-to-zero is selected.

// FPNeg()
/] =======

bits(N) FPNeg(bits(N) operand)
assert N == 32 || N == 64;
return NOT(operand<N-1>) : operand<N-2:0>;

// FPAbs()
/] =======

bits(N) FPAbs(bits(N) operand)
assert N == 32 || N == 64;
return ‘0’ : operand<N-2:0>;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-47

Application Level Programmers’ Model

Floating-point value unpacking

The FPUnpack() function determines the type and numerical value of a floating-point number. It also does
flush-to-zero processing on input operands.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

// FPUnpack()

/] ==========

/!

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
assert N == 16 || N == 32 || N == 64;

if N == 16 then
sign = fpval<15>;
exp = fpval<14:10>;
frac = fpval<9:0>;
if IsZero(exp) then
// Produce zero if value is zero
if IsZero(frac) then
type = FPType_Zero; value = 0.0;
else
type = FPType_Nonzero; value = 2A-14 « (UInt(frac) = 2A-10);
elsif IsOnes(exp) && fpscr_val<26> == ‘@’ then // Infinity or NaN in IEEE format
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if
value = @

frac<9> == ‘1’ then FPType_QNaN else FPType_SNaN;
.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-15) = (1.0 + UInt(frac) = 2A-10));

elsif N == 32 then

sign = fpval<3l>;
exp fpval<30:23>;
frac = fpval<22:0>;
if IsZero(exp) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if !IsZero(frac) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);

else
type = FPType_Nonzero; value = 2A-126 = (UInt(frac) = 2A-23);

A2-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

elsif IsOnes(exp) then
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if
value = 0

frac<22> == ‘1’ then FPType_QNaN else FPType_SNaN;
.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-127) = (1.0 + UInt(frac) = 2A-23));

else // N == 64
sign = fpval<63>;
exp = fpval<62:52>;

frac = fpval<51:0>;
if IsZero(exp) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if !IsZero(frac) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);
else
type = FPType_Nonzero; value = 2A-1022 + (UInt(frac) = 2A-52);
elsif IsOnes(exp) then
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if
value = 0

frac<51> == ‘1’ then FPType_QNaN else FPType_SNaN;
.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-1023) = (1.0 + UInt(frac) = 2A-52));

if sign == ‘1’ then value = -value;
return (type, sign, value);

Floating-point exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it
accordingly:

enumeration FPExc (FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

// FPProcessException()
//
//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
// Get appropriate FPSCR bit numbers
case exception of
when FPExc_InvalidOp enable = 8; cumul
when FPExc_DivideByZero enable = 9; cumul =

1}
S

|
=

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-49

Application Level Programmers’ Model

when FPExc_Overflow enable = 10; cumul = 2;
when FPExc_Underflow enable = 11; cumul = 3;
when FPExc_Inexact enable = 12; cumul = 4;
when FPExc_InputDenorm enable = 15; cumul = 7;

if fpscr_val<enable> then

IMPLEMENTATION_DEFINED floating-point trap handling;
else

FPSCR<cumul> = ‘1’;
return;

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an
Invalid Operation exception if necessary:

// FPProcessNaN()

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType type, bits(N) operand, bits(32) fpscr_val)
assert N == 32 || N == 64;
topfrac = if N == 32 then 22 else 51;
result = operand;
if type = FPType_SNaN then
result<topfrac> = ‘1’;
FPProcessException(FPExc_InvalidOp, fpscr_val);
if fpscr_val<25> == ‘1’ then // DefaultNaN requested
result = FPDefaultNaN(N);
return result;

The FPProcessNaNs () function performs the standard NaN processing for a two-operand operation:

// FPProcessNaNs()

/] ===============

//

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType typel, FPType type2,
bits(N) opl, bits(N) op2,
bits(32) fpscr_val)
assert N == 32 || N == 64;
if typel == FPType_SNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif typel == FPType_QNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);

A2-50 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

else
done = FALSE; result = Zeros(N); // ‘Don’t care’ result
return (done, result);

Floating-point rounding

The FPRound() function rounds and encodes a floating-point result value to a specified destination format.
This includes processing Overflow, Underflow and Inexact floating-point exceptions and performing
flush-to-zero processing on result values.

// FPRound()

//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real result, integer N, bits(32) fpscr_val)
assert N ==16 || N == 32 || N == 64;
assert result != 0.0;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then
minimum_exp = -14; E =5; F = 10;
elsif N == 32 then
minimum_exp = -126; E = 8; F = 23;
else // N == 64
minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
if result < 0.0 then

sign = ‘1’; mantissa = -result;
else

sign = ‘Q’; mantissa = result;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Deal with flush-to-zero.
if fpscr_val<24> == ‘1’ & N != 16 & exponent < minimum_exp then

result = FPZero(sign, N);

FPSCR.UFC = ‘1’; // Flush-to-zero never generates a trapped exception
else

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, Tower values @ (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);

if biased_exp == @ then mantissa = mantissa / 2A(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the “units in Tast place” rounding error.
int_mant = RoundDown(mantissa = 2AF); // < 2AF if biased_exp == 0, >= 2AF if not
error = mantissa = 2AF - int_mant;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-51

Application Level Programmers’ Model

// Underflow occurs if exponent is too small before rounding, and result is inexact or

// the Underflow exception is trapped.

if biased_exp == 0 && (error != 0.0 || fpscr_val<ll> == ‘1’) then
FPProcessException(FPExc_Underflow, fpscr_val);

// Round result according to rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 & int_mant<0> == ‘1’));
overflow_to_inf = TRUE;
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0 & sign == ‘0’);
overflow_to_inf = (sign == ‘0’);
when ‘10’ // Round towards Minus Infinity
round_up = (error != 0.0 & sign == ‘1’);
overflow_to_inf = (sign == ‘1’);
when ‘11’ // Round towards Zero
round_up = FALSE;
overflow_to_inf = FALSE;
if round_up then
int_mant = int_mant + 1;
if int_mant == 2AF then // Rounded up from denormalized to normalized
biased_exp = 1;
if int_mant == 2A(F+1) then // Rounded up to next exponent
biased_exp = biased_exp + 1; dint_mant = int_mant DIV 2;

// Deal with overflow and generate result.
if N != 16 || fpscr_val<26> == ‘@’ then // Single, double or IEEE half precision
if biased_exp >= 2AE - 1 then
result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
FPProcessException(FPExc_Overflow, fpscr_val);
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;
else // Alternative half precision
if biased_exp >= 2AE then
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
error = 0.0; // avoid an Inexact exception
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;

// Deal with Inexact exception.
if error != @ then

FPProcessException(FPExc_Inexact, fpscr_val);

return result;

Selection of ARM standard floating-point arithmetic

StandardFPSCRValue is an FPSCR value that selects ARM standard floating-point arithmetic. Most of the
arithmetic functions have a boolean fpscr_controlled argument that is TRUE for VFP operations and FALSE
for Advanced SIMD operations, and that selects between using the real FPSCR value and this value.

A2-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

// StandardFPSCRValue()
//

bits(32) StandardFPSCRValue()
return ‘00000’ : FPSCR<26> : ‘11000000000000000000000000° ;

Comparisons

The FPCompare() function compares two floating-point numbers, producing an (N,Z,C,V) flags result as
shown in Table A2-8:

Table A2-8 VFP comparison flag values

Comparisonresut N Z C V

Equal 0 1 1 0
Less than 1 0 0 0
Greater than 0 0 1 0
Unordered 0 0 1 1

This result is used to define the VCMP instruction in the VFP extension. The VCMP instruction writes these flag
values in the FPSCR. After using a VMRS instruction to transfer them to the APSR, they can be used to control
conditional execution as shown in Table A8-1 on page AS8-8.

// FPCompare()
/] smmmmmm====

(bit, bit, bit, bit) FPCompare(bits(N) opl, bits(N) op2, boolean quiet_nan_exc,
boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = (‘0’,’0",’1",’1’);
if typel==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
if valuel == value2 then
result = (‘0’,’1’,’1",70");
elsif valuel < value2 then
result = (‘1’,70’,’0’,°0");
else // valuel > value2
result = (‘0’,’0’,’1",°0");
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-53

Application Level Programmers’ Model

The FPCompareEQ(), FPCompareGE() and FPCompareGT() functions are used to describe Advanced SIMD
instructions that perform floating-point comparisons.

// FPCompareEQ()
/] =============

boolean FPCompareEQ(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
if typel==FPType_SNaN || type2==FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel == value2);

return result;

// FPCompareGE()
/] ==m=m=mmmm=ms

boolean FPCompareGE(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel >= value2);

return result;

// FPCompareGT()
/] ====m========

boolean FPCompareGT(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel > value2)

return result;

A2-54 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Maximum and minimum

// FPMax()
J/—

bits(N) FPMax(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
if typel == FPType_Zero && type2 == FPType_Zero && signl == NOT(sign2) then
// Opposite-signed zeros produce +0.0
result = FPZero(‘0’, N);
else
// A11 other cases can be evaluated on the values produced by FPUnpack()
result = if valuel > value2 then opl else op2;
return result;

// FPMin()
/] =======

bits(N) FPMin(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
if typel == FPType_Zero && type2 == FPType_Zero & signl == NOT(sign2) then
// Opposite-signed zeros produce -0.0
result = FPZero(‘1’, N);
else
// A11 other cases can be evaluated on the values produced by FPUnpack()
result = if valuel < value2 then opl else op2;
return result;

Addition and subtraction

// FPAdd()
Jy—

bits(N) FPAdd(bits(N) opl, bits(N) op2, boolean fpscr_controlled)

assert N == 32 || N == 64;

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);

if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == NOT(sign2) then

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-55

Application Level Programmers’ Model

result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl & signl == ‘Q’) || (inf2 && sign2 == ‘@’) then
result = FPInfinity(‘Q’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘1’, N);
elsif zerol && zero2 && signl == sign2 then
result = FPZero(signl, N);
else
result_value = valuel + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

// FPSub()

bits(N) FPSub(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == sign2 then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == ‘0’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘0’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘Q’) then
result = FPInfinity(‘1l’, N);
elsif zerol && zero2 & signl == NOT(sign2) then
result = FPZero(signl, N);
else
result_value = valuel - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

A2-56 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

Multiplication and division

// FPMuT()
J/—

bits(N) FPMul(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || inf2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPInfinity(result_sign, N);
elsif zerol || zero2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuelxvalue2, N, fpscr_val);
return result;

// FPDiv()
J/—

bits(N) FPDiv(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && inf2) || (zerol && zero2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || zero2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPInfinity(result_sign, N);
if linfl then FPProcessException(FPExc_DivideByZero);
elsif zerol || inf2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuel/value2, N, fpscr_val);
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-57

Application Level Programmers’ Model

Reciprocal estimate and step

The Advanced SIMD extension includes instructions that support Newton-Raphson calculation of the
reciprocal of a number.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the following pseudocode
functions

// FPRecipEstimate()
// =================

bits(32) FPRecipEstimate(bits(32) operand)

(type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, StandardFPSCRValue());
elsif type = FPType_Infinity then
result = FPZero(sign, 32);
elsif type = FPType_Zero then
result = FPInfinity(sign, 32);
FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
elsif Abs(value) >= 2A126 then // Result underflows to zero of correct sign
result = FPZero(sign, 32);
FPProcessException(FPExc_Underflow, StandardFPSCRValue());;
else
// Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
// doubTle-precision value in the range 0.5 <= x < 1.0, and calculate result exponent.
// Scaled value has copied sign bit, exponent = 1022 = double-precision biased version of
// -1, fraction = original fraction extended with zeros.
scaled = operand<31> : ‘01111111110° : operand<22:0> : Zeros(29);
result_exp = 253 - UInt(operand<30:23>); // In range 253-252 = 1 to 253-1 = 252

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_estimate(scaled);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
// to scaled single-precision result with copied sign bit and high-order fraction bits,
// and exponent calculated above.

result = estimate<63> : result_exp<7:0> : estimate<51:29>;

return result;

// UnsignedRecipEstimate()
/!

bits(32) UnsignedRecipEstimate(bits(32) operand)

if operand<31> == ‘0’ then // Operands <= Ox7FFFFFFF produce OxFFFFFFFF
result = Ones(32);

else
// Generate double-precision value = operand = 2A-32. This has zero sign bit,
// exponent = 1022 = double-precision biased version of -1, fraction taken from
// operand, excluding its most significant bit.
dp_operand = ‘@ 01111111110° : operand<30:0> : Zeros(21)

A2-58

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_estimate(dp_operand);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
// Multiply by 2A31 and convert to an unsigned integer - this just involves

// concatenating the implicit units bit with the top 31 fraction bits.

result = ‘1’ : estimate<51:21>;

return result;
where recip_estimate() is defined by the following C function:

double recip_estimate(double a)

{
int q, s;
double r;
q = (int)(a * 512.0); /% a in units of 1/512 rounded down =/
r=1.0/ (((duble)g + 0.5) / 512.0); /= reciprocal r =/
s = (int)(256.0 « r + 0.5); /« r in units of 1/256 rounded to nearest =/

return (double)s / 256.0;
}

Table A2-9 shows the results where input values are out of range.

Table A2-9 VRECPE results for out-of-range inputs

Number type Input Vm[i] Result Vd[i]
Integer <= OX7FFFFFFF OXFFFFFFFF
Floating-point NaN Default NaN
Floating-point +/— 0 or denormalized number +/— Infinity 2
Floating-point +/— infinity +/-0
Floating-point Absolute value >= 2126 +/-0

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

The Newton-Raphson iteration:
Xni1 = Xn(2-0dXn)
converges to (1/d) if xg is the result of VRECPE applied to d.

The VRECPS instruction performs a 2 - op1*op2 calculation and can be used with a multiplication to
perform a step of this iteration. The functionality of this instruction is defined by the following pseudocode
function:

// FPRecipStep()

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-59

Application Level Programmers’ Model

bits(32) FPRecipStep(bits(32) opl, bits(32) op2)
(typel,signl,valuel) = FPUnpack(opl, StandardFPSCRValue());
(type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
(done, result) = FPProcessNaNs(typel, type2, opl, op2, StandardFPSCRValue());
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
product = FPZero(‘0’, 32);
else
product = FPMul(opl, op2, FALSE);
result = FPSub(FPTwo(32), product, FALSE)
return result;

Table A2-10 shows the results where input values are out of range.

Table A2-10 VRECPS results for out-of-range inputs

Input Vn[i] Input Vm[i] Result Vd[i]
Any NaN - Default NaN
- Any NaN Default NaN
+/— 0.0 or denormalized number +/— infinity 2.0

+/— infinity +/- 0.0 or denormalized number 2.0

Square root

// FPSqrt()

bits(N) FPSqrt(bits(N) operand, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, fpscr_val);
elsif type == FPType_Zero || (type = FPType_Infinity && sign == ‘@’) then
result = operand;
elsif sign == ‘1’ then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPRound(Sqrt(value), N, fpscr_val);
return result;

A2-60

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

Reciprocal square root

The Advanced SIMD extension includes instructions that support Newton-Raphson calculation of the
reciprocal of the square root of a number.

The VRSQRTE instruction produces the initial estimate of the reciprocal of the square root. It uses the following
pseudocode functions:

// FPRSqrtEstimate()
// ======s==========

bits(32) FPRSqrtEstimate(bits(32) operand)

(type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, StandardFPSCRValue());
elsif type = FPType_Zero then
result = FPInfinity(sign, 32);
FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
elsif sign == ‘1’ then
result = FPDefaultNaN(32);
FPProcessException(FPExc_InvalidOp, StandardFPSCRValue());
elsif type = FPType_Infinity then
result = FPZero(‘0’, 32);
else
// Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
// double-precision value in the range 0.25 <= x < 1.0, with the evenness or oddness of
// the exponent unchanged, and calculate result exponent. Scaled value has copied sign
// bit, exponent = 1022 or 1021 = double-precision biased version of -1 or -2, fraction
// = original fraction extended with zeros.
if operand<23> == ‘0’ then
scaled = operand<31> : ‘01111111110’ : operand<22:0> : Zeros(29)
else
scaled = operand<31> : ‘01111111101’ : operand<22:0> : Zeros(29)
result_exp = (380 - UInt(operand<30:23>)) DIV 2;

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_sqrt_estimate(scaled);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
// to scaled single-precision result with copied sign bit and high-order fraction bits,
// and exponent calculated above.

result = estimate<63> : result_exp<7:0> : estimate<51:29>;

return result;

// UnsignedRSqrtEstimate()
//

bits(32) UnsignedRSqrtEstimate(bits(32) operand)

if operand<31:30> == ‘00’ then // Operands <= Ox3FFFFFFF produce OxFFFFFFFF
result = Ones(32);
else

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-61

Application Level Programmers’ Model

// Generate double-precision value = operand * 2A-32. This has zero sign bit,
// exponent = 1022 or 1021 = double-precision biased version of -1 or -2,
// fraction taken from operand, excluding its most significant one or two bits.
if operand<31> == ‘1’ then

dp_operand = ‘0 01111111110 : operand<30:0> : Zeros(21);
else // operand<31:30> == ‘01’

dp_operand = ‘@ 01111111101’ : operand<29:0> : Zeros(22);

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_sqrt_estimate(dp_operand);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
// Multiply by 2A31 and convert to an unsigned integer - this just involves

// concatenating the implicit units bit with the top 31 fraction bits.

result = ‘1’ : estimate<51:21>;

return result;
where recip_sqrt_estimate() is defined by the following C function:

double recip_sqrt_estimate(double a)

{

int g0, ql, s;

double r;

if (a < 0.5) /+ range 0.25 <= a < 0.5 %/

{
g0 = (int)(a = 512.0); /% a in units of 1/512 rounded down =/
r=1.0 / sqrt(((double)gd + 0.5) / 512.0); /+ reciprocal root r =/

}

else /# range 0.5 <=a < 1.0 «/

{
gl = (int)(a = 256.0); /% a in units of 1/256 rounded down =/
r=1.0 / sqrt(((double)ql + 0.5) / 256.0); /+ reciprocal root r =/

}

s = (int)(256.0 * r + 0.5); /+ r in units of 1/256 rounded to nearest x/
return (double)s / 256.0;
}

Table A2-11 shows the results where input values are out of range.

Table A2-11 VRSQRTE results for out-of-range inputs

Number type Input Vm([i] Result Vd[i]

Integer <= Ox3FFFFFFF OXFFFFFFFF

Floating-point NaN, — normalized number, — infinity =~ Default NaN

Floating-point — 0 or — denormalized number — infinity 2
Floating-point + 0 or + denormalized number + infinity 2
Floating-point + infinity +0

A2-62

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set.

The Newton-Raphson iteration:
Xnl = Xn(3-dxp?)/2
converges to (1/Nd) if xo is the result of VRSQRTE applied to d.

The VRSQRTS instruction performs a (3 — op1*op2)/2 calculation and can be used with two multiplications to
perform a step of this iteration. The functionality of this instruction is defined by the following pseudocode
function:

// FPRSqrtStep()

bits(32) FPRSqrtStep(bits(32) opl, bits(32) op2)
(typel,signl,valuel) = FPUnpack(opl, StandardFPSCRValue());
(type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
(done,result) = FPProcessNaNs(typel, type2, opl, op2, StandardFPSCRValue());
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
product = FPZero(‘0Q’, 32);
else
product = FPMul(opl, op2, FALSE);
result = FPDiv(FPSub(FPThree(32), product, FALSE), FPTwo(32), FALSE);
return result;

Table A2-12 shows the results where input values are out of range.

Table A2-12 VRSQRTS results for out-of-range inputs

Input Vn[i] Input Vm([i] Result Vd[i]
Any NaN - Default NaN
- Any NaN Default NaN
+/— 0.0 or denormalized number +/— infinity 1.5

+/— infinity +/— 0.0 or denormalized number 1.5

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-63

Application Level Programmers’ Model

Conversions

The following functions perform conversions between half-precision and single-precision floating-point

numbers.

// FPHalfToSingle()
A ——

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : ‘11111111 1’ : operand<8:0> : Zeros(13);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type = FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type = FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val); // Rounding will be exact
return result;

// FPSingleToHalf()
/e

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<26> == ‘1’ then // AH bit set
result = FPZero(sign, 16);
elsif fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(16);
else
result = sign : ‘11111 1’ : operand<21:13>;
if type == FPType_SNaN || fpscr_val<26> == ‘1’ then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type = FPType_Infinity then
if fpscr_val<26> == ‘1’ then // AH bit set
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPInfinity(sign, 16);
elsif type = FPType_Zero then
result = FPZero(sign, 16);
else
result = FPRound(value, 16, fpscr_val);
return result;

A2-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Programmers’ Model

The following functions perform conversions between single-precision and double-precision floating-point
numbers.

// FPSingleToDouble()
/] =======smmmmmm=ame

bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(64);
else
result = sign : ‘11111111111 1’ : operand<21:0> : Zeros(29);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type = FPType_Infinity then
result = FPInfinity(sign, 64);
elsif type = FPType_Zero then
result = FPZero(sign, 64);
else
result = FPRound(value, 64, fpscr_val); // Rounding will be exact
return result;

// FPDoubleToSingle()
/] ===mm=m=mm=m======

bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : ‘11111111 1’ : operand<50:29>;
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type = FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type = FPType_Zero then
result = FPZero(sign, 32);

else
result = FPRound(value, 32, fpscr_val);
return result;

The following functions perform conversions between floating-point numbers and integers or fixed-point
numbers:

// FPToFixed()

/] ===========

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
boolean round_towards_zero, boolean fpscr_controlled)
assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-65

Application Level Programmers’ Model

if round_towards_zero then fpscr_val<23:22> = ‘11’;
(type,sign,value) = FPUnpack(operand, fpscr_val);

// For NaNs and infinities, FPUnpack() has produced a value that will round to the
// required result of the conversion. Also, the value produced for infinities will
// cause the conversion to overflow and signal an Invalid Operation floating-point
// exception as required. NaNs must also generate such a floating-point exception.
if type == FPType_SNaN || type == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Scale value by specified number of fraction bits, then start rounding to an integer
// and determine the rounding error.

value = value = 2Afraction_bits;

int_result = RoundDown(value);

error = value - int_result;

// Apply the specified rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_result<@d> == ‘1’));
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0);
when ‘10’ // Round towards Minus Infinity
round_up = FALSE;
when ‘11’ // Round towards Zero
round_up = (error != 0.0 & int_result < 0);
if round_up then int_result = int_result + 1;

// Bitstring result is the integer result saturated to the destination size, with
// saturation indicating overflow of the conversion (signaled as an Invalid
// Operation floating-point exception)
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif error != 0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

// FixedToFP()

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,

booTlean round_to_nearest, boolean fpscr_controlled)

assert N == 32 || N == 64;
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_to_nearest then fpscr_val<23:22> = ‘00’;
int_operand = if unsigned then UInt(operand) else SInt(operand);
real_operand = int_operand / 2Afraction_bits;
if real_operand == 0.0 then

result = FPZero(‘Q’, N);
else

result = FPRound(real_operand, N, fpscr_val);
return result;

A2-66

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.8

A2.8.1

Application Level Programmers’ Model

Polynomial arithmetic over {0,1}

The polynomial data type represents a polynomial in x of the form b,_jx"! + ... + b;x + by where by is
bit [k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:
d 0+0=1+1=0

. 0+1=1+0=1

. 0*0=0*1=1*0=0

. 1*1=1.

That is:

. adding two polynomials over {0,1} is the same as a bitwise exclusive OR

. multiplying two polynomials over {0,1} is the same as integer multiplication except that partial

products are exclusive-ORed instead of being added.

Pseudocode details of polynomial multiplication
In pseudocode, polynomial addition is described by the EOR operation on bitstrings.
Polynomial multiplication is described by the PolynomialMult() function:

// PolynomialMult()
7 ——

bits(M+N) PolynomialMult(bits(M) opl, bits(N) op2)
result = Zeros(M+N);
extended_op2 = Zeros(M) : op2;
for i=0 to M-1
if opl<i> == ‘1’ then
result = result EOR LSL(extended_op2, i);
return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-67

Application Level Programmers’ Model

A2.9 COpI’OCESSOI’ su ppOI‘t

Coprocessor space is used to extend the functionality of an ARM processor. There are sixteen coprocessors

defined in the coprocessor instruction space. These are commonly known as CP0 to CP15. The following

coprocessors are reserved by ARM for specific purposes:

. Coprocessor 15 (CP15) provides system control functionality. This includes architecture and feature
identification, as well as control, status information and configuration support. The following
sections describe CP15:

— CPIS5 registers for a VMSA implementation on page B3-64
— CPI5 registers for a PMSA implementation on page B4-22.
CP15 also provides performance monitor registers, see Chapter C9 Performance Monitors.
. Coprocessor 14 (CP14) supports:
— debug, see Chapter C6 Debug Register Interfaces
— the execution environment features defined by the architecture, see Execution environment
support on page A2-69.

. Coprocessor 11 (CP11) supports double-precision floating-point operations.

. Coprocessor 10 (CP10) supports single-precision floating-point operations and the control and
configuration of both the VFP and the Advanced SIMD architecture extensions.

o Coprocessors 8, 9, 12, and 13 are reserved for future use by ARM.

Note

Any implementation that includes either or both of the Advanced SIMD extension and the VFP extension

must enable access to both CP10 and CP11, see Enabling Advanced SIMD and floating-point support on

page B1-64.

In general, privileged access is required for:

. system control through CP15

. debug control and configuration

. access to the identification registers

. access to any register bits that enable or disable coprocessor features.

For details of the exact split between the privileged and unprivileged coprocessor operations see the relevant

sections of this manual.

All load, store, branch and data operation instructions associated with floating-point, Advanced SIMD and

execution environment support can execute unprivileged.

Coprocessors 0 to 7 can be used to provide vendor specific features.

A2-68 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A2.10

A2.10.1

Application Level Programmers’ Model

Execution environment support

The Jazelle and ThumbEE states, introduced in ISETSTATE on page A2-15, support execution
environments:

. The ThumbEE state is more generic, supporting a variant of the Thumb instruction set that minimizes
the code size overhead generated by a Just-In-Time (JIT) or Ahead-Of-Time (AOT) compiler. JIT and
AOT compilers convert execution environment source code to a native executable. For more
information, see Thumb Execution Environment.

. The Jazelle state is specific to hardware acceleration of Java bytecodes. For more information, see
Jazelle direct bytecode execution support on page A2-73.

Thumb Execution Environment

Thumb Execution Environment (ThumbEE) is a variant of the Thumb instruction set designed as a target for
dynamically generated code. This is code that is compiled on the device, from a portable bytecode or other
intermediate or native representation, either shortly before or during execution. ThumbEE provides support
for Just-In-Time (JIT), Dynamic Adaptive Compilation (DAC) and Ahead-Of-Time (AOT) compilers, but
cannot interwork freely with the ARM and Thumb instruction sets.

ThumbEE is particularly suited to languages that feature managed pointers and array types.

ThumbEE executes instructions in the ThumbEE instruction set state. For information about instruction set
states see ISETSTATE on page A2-15.

See Thumb Execution Environment on page B1-73 for system level information about ThumbEE.

ThumbEE instructions

In ThumbEE state, the processor executes almost the same instruction set as in Thumb state. However some
instructions behave differently, some are removed, and some ThumbEE instructions are added.

The key differences are:

. additional instructions to change instruction set in both Thumb state and ThumbEE state
. new ThumbEE instructions to branch to handlers

. null pointer checking on load/store instructions executed in ThumbEE state

. an additional instruction in ThumbEE state to check array bounds

. some other modifications to load, store, and control flow instructions.

For more information about the ThumbEE instructions see Chapter A9 ThumbEE.

ThumbEE configuration
ThumbEE introduces two new registers:

. ThumbEE Configuration Register, TEECR. This contains a single bit, the ThumbEE configuration
control bit, XED.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-69

Application Level Programmers’ Model

. ThumbEE Handler Base Register. This contains the base address for ThumbEE handlers.

A handler is a short, commonly executed, sequence of instructions. It is typically, but not always,
associated directly with one or more bytecodes or other intermediate language elements.

Changes to these CP14 registers have the same synchronization requirements as changes to the CP15
registers. These are described in:

. Changes to CP15 registers and the memory order model on page B3-77 for a VMSA implementation
. Changes to CP15 registers and the memory order model on page B4-28 for a PMSA implementation.

ThumbEE is an unprivileged, user-level facility, and there are no special provisions for using it securely. For
more information, see ThumbEE and the Security Extensions on page B1-73.

ThumbEE Configuration Register (TEECR)

The ThumbEE Configuration Register (TEECR) controls unprivileged access to the ThumbEE Handler
Base Register.

The TEECR is:
. a CP14 register
. a 32-bit register, with access rights that depend on the current privilege:
— the result of an unprivileged write to the register is UNDEFINED
— unprivileged reads, and privileged reads and writes, are permitted.
. when the Security Extensions are implemented, a Common register.

The format of the TEECR is:
31 1 0

UNK/SBZP XED

Bits [31:1] UNK/SBZP.

XED, bit [0)] Execution Environment Disable bit. Controls unprivileged access to the ThumbEE Handler
Base Register:

0 Unprivileged access permitted.
1 Unprivileged access disabled.

The reset value of this bit is O.
The effects of a write to this register on ThumbEE configuration are only guaranteed to be visible to

subsequent instructions after the execution of an ISB instruction, an exception entry or an exception return.
However, a read of this register always returns the value most recently written to the register.

To access the TEECR, read or write the CP14 registers with an MRC or MCR instruction with <opcl> set to 6,
<CRn> set to c0, <CRm> set to c0, and <opc2> set to 0. For example:

MRC pl4, 6, <Rt>, c@, c@, @ ; Read ThumbEE Configuration Register
MCR pl4, 6, <Rt>, c@, c@, @ ; Write ThumbEE Configuration Register

A2-70

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

ThumbEE Handler Base Register (TEEHBR)

The ThumbEE Handler Base Register (TEEHBR) holds the base address for ThumbEE handlers.
The TEEHBR is:

. a CP14 register

. a 32-bit read/write register, with access rights that depend on the current privilege and the value of
the TEECR.XED bit:

— privileged accesses are always permitted
— when TEECR.XED == 0, unprivileged accesses are permitted
— when TEECR.XED == 1, the result of an unprivileged access is UNDEFINED.

. when the Security Extensions are implemented, a Common register.
The format of the TEEHBR is:

31 2 1 0
HandlerBase SBZ

HandlerBase, bits [31:2]

The address of the ThumbEE Handler_00 implementation. This is the address of the first of
the ThumbEE handlers.

The reset value of this field is UNKNOWN.
bits [1:0] Reserved, SBZ.

The effects of a write to this register on ThumbEE handler entry are only guaranteed to be visible to
subsequent instructions after the execution of an ISB instruction, an exception entry or an exception return.
However, a read of this register always returns the value most recently written to the register.

To access the TEEHBR, read or write the CP14 registers with an MRC or MCR instruction with <opc1> set to 6,
<CRn> set to c1, <CRm> set to c0, and <opc2> set to 0. For example:

MRC pl4, 6, <Rt>, cl, c@, @ ; Read ThumbEE Handler Base Register
MCR pl4, 6, <Rt>, cl, c@, @ ; Write ThumbEE Handler Base Register

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-71

Application Level Programmers’ Model

Use of HandlerBase

ThumbEE handlers are entered by reference to a HandlerBase address, defined by the TEEHBR. See
ThumbEE Handler Base Register (TEEHBR) on page A2-71. Table A2-13 shows how the handlers are

arranged in relation to the value of HandlerBase:

Table A2-13 Access to ThumbEE handlers

Offset from HandlerBase = Name

Value stored

-0x0008 IndexCheck Branch to IndexCheck handler
-0x0004 NullCheck Branch to NullCheck handler
+0x0000 Handler_00 Implementation of Handler_00
+0x0020 Handler_01 Implementation of Handler_01
+(0x0000 + 32n) Handler_<n> Implementation of Handler_<n>

Implementation of additional handlers

The IndexCheck occurs when a CHKA instruction detects an index out of range. For more information, see

CHKA on page A9-15.

The NullCheck occurs when any memory access instruction is executed with a value of 0 in the base register.

For more information, see Null checking on page A9-3.

Note

Checks are similar to conditional branches, with the added property that they clear the IT bits when taken.

Other handlers are called using explicit handler call instructions. For details see the following sections:

. HB, HBL on page A9-16
. HBLP on page A9-17
. HBP on page A9-18.

A2-72 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.10.2 Jazelle direct bytecode execution support

From ARMVS5TE]J, the architecture requires every system to include an implementation of the Jazelle
extension. The Jazelle extension provides architectural support for hardware acceleration of bytecode
execution by a Java Virtual Machine (JVM).

In the simplest implementations of the Jazelle extension, the processor does not accelerate the execution of
any bytecodes, and the JVM uses software routines to execute all bytecodes. Such an implementation is
called a trivial implementation of the Jazelle extension, and has minimal additional cost compared with not
implementing the Jazelle extension at all. An implementation that provides hardware acceleration of
bytecode execution is a non-trivial Jazelle implementation.

These requirements for the Jazelle extension mean a JVM can be written to both:
. function correctly on all processors that include a Jazelle extension implementation

. automatically take advantage of the accelerated bytecode execution provided by a processor that
includes a non-trivial implementation.

Typically, a non-trivial implementation of the Jazelle extension implements a subset of the bytecodes in
hardware, choosing bytecodes that:

. can have simple hardware implementations

. account for a large percentage of bytecode execution time.

The required features of a non-trivial implementation are:

. provision of the Jazelle state

. a new instruction, BXJ, to enter Jazelle state

. system support that enables an operating system to regulate the use of the Jazelle extension hardware
. system support that enables a JVM to configure the Jazelle extension hardware to its specific needs.

The required features of a trivial implementation are:

. Normally, the Jazelle instruction set state is never entered. If an incorrect exception return causes
entry to the Jazelle instruction set state, the next instruction executed is treated as UNDEFINED.

. The BXJ instruction behaves as a BX instruction.
. Configuration support that maintains the interface to the Jazelle extension is permanently disabled.

For more information about trivial implementations see Trivial implementation of the Jazelle extension on
page B1-81.

A JVM that has been written to take advantage automatically of hardware-accelerated bytecode execution
is known as an Enabled JVM (EJVM).

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-73

Application Level Programmers’ Model

Subarchitectures

A processor implementation that includes the Jazelle extension expects the general-purpose register values
and other resources of the ARM processor to conform to an interface standard defined by the Jazelle
implementation when Jazelle state is entered and exited. For example, a specific general-purpose register
might be reserved for use as the pointer to the current bytecode.

In order for an EJVM and associated debug support to function correctly, it must be written to comply with
the interface standard defined by the acceleration hardware at Jazelle state execution entry and exit points.

An implementation of the Jazelle extension might define other configuration registers in addition to the
architecturally defined ones.

The interface standard and any additional configuration registers used to communicate with the Jazelle
extension are known collectively as the subarchitecture of the implementation. They are not described in
this manual. Only EJVM implementations and debug or similar software can depend on the subarchitecture.
All other software must rely only on the architectural definition of the Jazelle extension given in this manual.
A particular subarchitecture is identified by reading the JIDR described in Jazelle ID Register (JIDR) on
page A2-76.

Jazelle state

While the processor is in Jazelle state, it executes bytecode programs. A bytecode program is defined as an
executable object that comprises one or more class files, or is derived from and functionally equivalent to
one or more class files. See Lindholm and Yellin, The Java Virtual Machine Specification 2nd Edition for
the definition of class files.

While the processor is in Jazelle state, the PC identifies the next JVM bytecode to be executed. A JVM
bytecode is a bytecode defined in Lindholm and Yellin, or a functionally equivalent transformed version of
a bytecode defined in Lindholm and Yellin.

For the Jazelle extension, the functionality of Native methods, as described in Lindholm and Yellin, must be
specified using only instructions from the ARM, Thumb, and ThumbEE instruction sets.

An implementation of the Jazelle extension must not be documented or promoted as performing any task
while it is in Jazelle state other than the acceleration of bytecode programs in accordance with this section
and The Java Virtual Machine Specification.

Jazelle state entry instruction, BX]

ARMV7 includes an ARM instruction similar to BX. The BXJ instruction has a single register operand that
specifies a target instruction set state, ARM state or Thumb state, and branch target address for use if entry
to Jazelle state is not available. For more information, see BXJ on page A8-64.

Correct entry into Jazelle state involves the EJVM executing the BXJ instruction at a time when both:

. the Jazelle extension Control and Configuration registers are initialized correctly, see Application
level configuration and control of the Jazelle extension on page A2-75

A2-74

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

. application level registers and any additional configuration registers are initialized as required by the
subarchitecture of the implementation.

Executing BXJ with Jazelle extension enabled

Executing a BXJ instruction when the JMCR.JE bit is 1, see Jazelle Main Configuration Register (JMCR) on
page A2-77, causes the Jazelle hardware to do one of the following:

. enter Jazelle state and start executing bytecodes directly from a SUBARCHITECTURE DEFINED address
. branch to a SUBARCHITECTURE DEFINED handler.

Which of these occurs is SUBARCHITECTURE DEFINED.

The Jazelle subarchitecture can use Application Level registers (but not System Level registers) to transfer
information between the Jazelle extension and the EJVM. There are SUBARCHITECTURE DEFINED
restrictions on what Application Level registers must contain when a BXJ instruction is executed, and
Application Level registers have SUBARCHITECTURE DEFINED values when Jazelle state execution ends and
ARM or Thumb state execution resumes.

Jazelle subarchitectures and implementations must not use any unallocated bits in Application Level
registers such as the CPSR or FPSCR. All such bits are reserved for future expansion of the ARM
architecture.

Executing BXJ with Jazelle extension disabled

If a BXJ instruction is executed when the JMCR.JE bit is 0, it is executed identically to a BX instruction with
the same register operand.

This means that BX] instructions can be executed freely when the JIMCR.JE bit is 0. In particular, if an EIVM
determines that it is executing on a processor whose Jazelle extension implementation is trivial or uses an
incompatible subarchitecture, it can set JE == 0 and execute correctly. In this case it executes without the

benefit of any Jazelle hardware acceleration that might be present.

Application level configuration and control of the Jazelle extension

All registers associated with the Jazelle extension are implemented in coprocessor space as part of
coprocessor 14 (CP14). The registers are accessed using the instructions:

. MCR, see MCR, MCR2 on page A8-186
. MRC, see MRC, MRC2 on page A8-202.

In a non-trivial implementation at least three registers are required. These are described in:
. Jazelle ID Register (JIDR) on page A2-76

. Jazelle Main Configuration Register (JMCR) on page A2-77

. Jazelle OS Control Register (JOSCR) on page B1-77.

Additional configuration registers might be provided and are SUBARCHITECTURE DEFINED.
The following rules apply to all Jazelle extension control and configuration registers:

. All configuration registers are accessed by CP14 MRC and MCR instructions with <opcl> set to 7.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-75

Application Level Programmers’ Model

. The values contained in configuration registers are changed only by the execution of MCR instructions.
In particular, they are never changed by Jazelle state execution of bytecodes.

. The access policy for the required registers is fully defined in their descriptions. With unprivileged
operation:

— all MCR accesses to the JIDR are UNDEFINED
— MRC and MCR accesses that are restricted to privileged modes are UNDEFINED.

The access policy of other configuration registers is SUBARCHITECTURE DEFINED.
. When the Security Extensions are implemented, the registers are common to the Secure and

Non-secure security states. For more information, see Effect of the Security Extensions on the CP15
registers on page B3-71. This section applies to some CP14 registers as well as to the CP15 registers.

. When a configuration register is readable, reading the register returns the last value written to it.
Reading a readable configuration register has no side effects.
When a configuration register is not readable, attempting to read it returns an UNKNOWN value.

. When a configuration register can be written, the effect of writing to it must be idempotent. That is,

the overall effect of writing the same value more than once must not differ from the effect of writing
it once.

Changes to these CP14 registers have the same synchronization requirements as changes to the CP15
registers. These are described in:

. Changes to CP15 registers and the memory order model on page B3-77 for a VMSA implementation
. Changes to CP15 registers and the memory order model on page B4-28 for a PMSA implementation.

For more information, see Jazelle state configuration and control on page B1-77.

Jazelle ID Register (JIDR)

The Jazelle ID Register (JIDR) enables an EJVM to determine the architecture and subarchitecture under
which it is running.

The JIDR is:

. a CP14 register

. a 32-bit read-only register

. accessible during privileged and unprivileged execution

. when the Security Extensions are implemented, a Common register, see Common CP135 registers on
page B3-74.

A2-76 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

The format of the JIDR is:
31 28 27 20 19 12 11 0
Architecture Implementer Subarchitecture SUBARCHITECTURE DEFINED

Architecture, bits [31:28]

Architecture code. This uses the same Architecture code that appears in the Main ID register
in coprocessor 15, see c0, Main ID Register (MIDR) on page B3-81 (VMSA
implementation) or c0, Main ID Register (MIDR) on page B4-32 (PMSA implementation).

Implementer, bits [27:20]

Implementer code of the designer of the subarchitecture. This uses the same Implementer
code that appears in the Main ID register in coprocessor 15, see c0, Main ID Register
(MIDR) on page B3-81 (VMSA implementation) or c0, Main ID Register (MIDR) on
page B4-32 (PMSA implementation).

If the trivial implementation of the Jazelle extension is used, the Implementer code is 0x00.

Subarchitecture, bits [19:12]

Contain the subarchitecture code. The following subarchitecture code is defined:

0x00 Jazelle v1 subarchitecture, or trivial implementation of Jazelle extension if
Implementer code is 0x00.

bits [11:0] Contain additional SUBARCHITECTURE DEFINED information.

To access the JIDR, read the CP14 registers with an MRC instruction with <opc1> set to 7, <CRn> set to c0, <CRm>
set to c0, and <opc2> set to 0. For example:

MRC pl4, 7, <Rt>, c0, c0, 0 ; Read Jazelle ID register

Jazelle Main Configuration Register (JMCR)

The Jazelle Main Configuration Register (JMCR) controls the Jazelle extension.
The JMCR is:

. a CP14 register

. a 32-bit register, with access rights that depend on the current privilege:
— for privileged operations the register is read/write

— for unprivileged operations, the register is normally write-only

. when the Security Extensions are implemented, a Common register, see Common CP15 registers on
page B3-74.

For more information about unprivileged access restrictions see Access to Jazelle registers on page A2-78.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-77

Application Level Programmers’ Model

The format of the JIMCR is:
31 1 0
SUBARCHITECTURE DEFINED JE
bit [31:1] SUBARCHITECTURE DEFINED information.
JE, bit [0] Jazelle Enable bit:
0 Jazelle extension disabled. The BXJ instruction does not cause Jazelle state

execution. BXJ behaves exactly as a BX instruction, see Jazelle state entry
instruction, BXJ on page A2-74.

1 Jazelle extension enabled.

The reset value of this bit is 0.

To access the JMCR, read or write the CP14 registers with an MRC or MCR instruction with <opcl> set to 7,
<CRn> set to c2, <CRm> set to c0, and <opc2> set to 0. For example:

MRC pl4, 7, <Rt>, c2, c@, @ ; Read Jazelle Main Configuration register
MCR pl4, 7, <Rt>, c2, c@, @ ; Write Jazelle Main Configuration register

Access to Jazelle registers

Table A2-14 shows the access permissions for the Jazelle registers, and how unprivileged access to the
registers depends on the value of the JOSCR.

Table A2-14 Access to Jazelle registers

Unprivileged access
Jazelle register Privileged access
JOSCR.CD == 02 JOSCR.CD==12

Read access permitted Read access permitted

Read and write access
UNDEFINED

JIDR

Write access ignored Write access ignored

Read access UNDEFINED .
Read and write access . .
JMCR Read and write access permitted

Write access permitted UNDEFINED
SUBARCHITECTURE Read access UNDEFINED Read and wite access Read access SUBARCHITECTURE
DEFINED configuration DEFINED
st UNDEFINED
resien Write access permitted Write access permitted

a. See Jazelle OS Control Register (JOSCR) on page B1-77.

A2-78 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

EJVM operation

The following subsections summarize how an EJVM must operate, to meet the requirements of the

architecture:

. Initialization

. Bytecode execution

. Jazelle exception conditions

. Other considerations on page A2-80.
Initialization

During initialization, the EJVM must first check which subarchitecture is present, by checking the
Implementer and Subarchitecture codes in the value read from the JIDR.

If the EJVM is incompatible with the subarchitecture, it must do one of the following:
. write a value with JE == 0 to the JMCR
. if unaccelerated bytecode execution is unacceptable, generate an error.

If the EJVM is compatible with the subarchitecture, it must write its required configuration to the JMCR
and any SUBARCHITECTURE DEFINED configuration registers.

Bytecode execution
The EJVM must contain a handler for each bytecode.

The EJVM initiates bytecode execution by executing a BXJ instruction with:

. the register operand specifying the target address of the bytecode handler for the first bytecode of the
program

. the Application Level registers set up in accordance with the SUBARCHITECTURE DEFINED interface
standard.

The bytecode handler:

. performs the data-processing operations required by the bytecode indicated

. determines the address of the next bytecode to be executed

. determines the address of the handler for that bytecode

. performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE

DEFINED interface standard.

Jazelle exception conditions

During bytecode execution, the EJVM might encounter SUBARCHITECTURE DEFINED Jazelle exception
conditions that must be resolved by a software handler. For example, in the case of a configuration invalid
handler, the handler rewrites the desired configuration to the JMCR and to any SUBARCHITECTURE DEFINED
configuration registers.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-79

Application Level Programmers’ Model

On entry to a Jazelle exception condition handler the contents of the Application Level registers are
SUBARCHITECTURE DEFINED. This interface to the Jazelle exception condition handler might differ from the
interface standard for the bytecode handler, in order to supply information about the Jazelle exception
condition.

The Jazelle exception condition handler:

. resolves the Jazelle exception condition

. determines the address of the next bytecode to be executed

. determines the address of the handler for that bytecode

. performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE

DEFINED interface standard.

Other considerations

To ensure application execution and correct interaction with an operating system, an EJVM must only
perform operations that are permitted in unprivileged operation. In particular, for register accesses they must
only:

. read the JIDR,

. write to the JMCR, and other configuration registers.

An EJVM must not attempt to access the JOSCR.

A2-80

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Programmers’ Model

A2.11 Exceptions, debug events and checks
ARMV7 uses the following terms to describe various types of exceptional condition:

Exceptions In the ARM architecture, exceptions cause entry into a privileged mode and execution of a
software handler for the exception.
—— Note

The terms floating-point exception and Jazelle exception condition do not use this meaning
of exception. These terms are described later in this list.

Exceptions include:

. reset

. interrupts

. memory system aborts
. undefined instructions

. supervisor calls (SVCs).

Most details of exception handling are not visible to application-level code, and are
described in Exceptions on page B1-30. Aspects that are visible to application-level code
are:

. The SVC instruction causes an SVC exception. This provides a mechanism for
unprivileged code to make a call to the operating system (or other privileged
component of the software system).

. If the Security Extensions are implemented, the SMC instruction causes an SMC
exception, but only if it is executed in a privileged mode. Unprivileged code can only
cause SMC exceptions to occur by methods defined by the operating system (or other
privileged component of the software system).

. The WFI instruction provides a hint that nothing needs to be done until an interrupt or
similar exception is taken, see Wait For Interrupt on page B1-47. This permits the
processor to enter a low-power state until that happens.

. The WFE instruction provides a hint that nothing needs to be done until either an event
is generated by an SEV instruction or an interrupt or similar exception is taken, see
Wait For Event and Send Event on page B1-44. This permits the processor to enter a
low-power state until one of these happens.

. The YIELD instruction provides a hint that the current execution thread is of low
importance, see The Yield instruction on page A2-82.

Floating-point exceptions
These relate to exceptional conditions encountered during floating-point arithmetic, such as
division by zero or overflow. For more information see:
. Floating-point exceptions on page A2-42
. Floating-point Status and Control Register (FPSCR) on page A2-28
. ANSVIEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A2-81

Application Level Programmers’ Model

A2.111

Jazelle exception conditions

Debug events

Checks

These are conditions that cause Jazelle hardware acceleration to exit into a software handler,
as described in Jazelle exception conditions on page A2-79.

These are conditions that cause a debug system to take action. Most aspects of debug events
are not visible to application-level code, and are described in Chapter C3 Debug Events.
Aspects that are visible to application-level code include:

o The BKPT instruction causes a BKPT Instruction debug event to occur, see BKPT
Instruction debug events on page C3-20.

. The DBG instruction provides a hint to the debug system.
These are provided in the ThumbEE extension. A check causes an unconditional branch to

a specific handler entry point. The base address of the ThumbEE check handlers is held in
the TEEHBR, see ThumbEE Handler Base Register (TEEHBR) on page A2-71.

The Yield instruction

In a Symmetric Multi-Threading (SMT) design, a thread can use a Yield instruction to give a hint to the
processor that it is running on. The Yield hint indicates that whatever the thread is currently doing is of low
importance, and so could yield. For example, the thread might be sitting in a spin-lock. Similar behavior
might be used to modify the arbitration priority of the snoop bus in a multiprocessor (MP) system. Defining
such an instruction permits binary compatibility between SMT and SMP systems.

ARMYV7 defines a YIELD instruction as a specific NOP-hint instruction, see Y/ELD on page A8-812.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use on migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there
is no implementation benefit.

A2-82

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A3
Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:
. Addpress space on page A3-2

. Alignment support on page A3-4

. Endian support on page A3-7

. Synchronization and semaphores on page A3-12

. Memory types and attributes and the memory order model on page A3-24

. Access rights on page A3-38

. Virtual and physical addressing on page A3-40

. Memory access order on page A3-41

. Caches and memory hierarchy on page A3-51.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-1

Application Level Memory Model

A3.1 Address space
The ARM architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated as
unsigned numbers, running from 0 to 232 - 1. The address space is also regarded as:
. 230 32-bit words:
— the address of each word is word-aligned, meaning that the address is divisible by 4 and the
last two bits of the address are 0b00
— the word at word-aligned address A consists of the four bytes with addresses A, A+1, A+2 and
A+3.
. 231 16-bit halfwords:
— the address of each halfword is halfword-aligned, meaning that the address is divisible by 2
and the last bit of the address is 0
— the halfword at halfword-aligned address A consists of the two bytes with addresses A and
A+1.
In some situations the ARM architecture supports accesses to halfwords and words that are not aligned to
the appropriate access size, see Alignment support on page A3-4.
Normally, address calculations are performed using ordinary integer instructions. This means that the
address wraps around if the calculation overflows or underflows the address space. Another way of
describing this is that any address calculation is reduced modulo 232.
A3.1.1 Address incrementing and address space overflow
When a processor performs normal sequential execution of instructions, it effectively calculates:
(address_of_current_instruction) + (size_of_executed_instruction)
after each instruction to determine which instruction to execute next.
Note
The size of the executed instruction depends on the current instruction set, and might depend on the
instruction executed.
If this address calculation overflows the top of the address space, the result is UNPREDICTABLE. In other
words, a program must not rely on sequential execution of the instruction at address 0x00000000 after the
instruction at address:
. OxFFFFFFFC, when a 4-byte instruction is executed
. OxFFFFFFFE, when a 2-byte instruction is executed
. OxFFFFFFFF, when a single byte instruction is executed.
A3-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

This UNPREDICTABLE behavior only applies to instructions that are executed, including those that fail their
condition code check. Most ARM implementations prefetch instructions ahead of the currently-executing
instruction. If this prefetching overflows the top of the address space, it does not cause UNPREDICTABLE
behavior unless a prefetched instruction with an overflowed address is actually executed.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, and STM instructions access a sequence of words at increasing memory
addresses, effectively incrementing the memory address by 4 for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE. In other words, programs must not use
these instructions in such a way that they attempt to access the word at address 0x00000000 sequentially after
the word at address @xFFFFFFFC.

Note
In some cases instructions that operate on multiple words can decrement the memory address by 4 after each
word access. If this calculation underflows the address space, by decrementing the address 0x00000000, the
result is UNPREDICTABLE.

The behavior of any unaligned load or store with a calculated address that would access the byte at
OXFFFFFFFF and the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-3

Application Level Memory Model

A3.2 Alignment support
Instructions in the ARM architecture are aligned as follows:
. ARM instructions are word-aligned
. Thumb and ThumbEE instructions are halfword-aligned
. Java bytecodes are byte-aligned.
The data alignment behavior supported by the ARM architecture has changed significantly between ARMv4
and ARMv7. This behavior is indicated by the SCTLR.U bit, see:
. cl, System Control Register (SCTLR) on page B3-96 for a VMSAvV7 implementation
. cl, System Control Register (SCTLR) on page B4-45 for a PMSAv7 implementation
. cl, System Control Register (SCTLR) on page AppxG-34 for architecture versions before ARMv7.
This bit defines the alignment behavior of the memory system for data accesses. Table A3-1 shows the
values of SCTLR.U for the different architecture versions.
Table A3-1 SCTLR.U bit values for different architecture versions
Architecture version SCTLR.U value
Before ARMv6 0
ARMv6 Oorl
ARMV7 1
On an ARMV6 processor, the SCTLR.U bit indicates which of two possible alignment models is selected:
U== The processor implements the legacy alignment model. This is described in Alignment on
page AppxG-6.
Note
The use of U == 0 is deprecated in ARMv6T2, and is obsolete from ARMv7.
U== The processor implements the alignment model described in this section. This model
supports unaligned data accesses.
ARMVv7 requires the processor to implement the alignment model described in this section.
A3-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

A3.2.1 Unaligned data access

An ARMv7 implementation must support unaligned data accesses. The SCTLR.U bit is RAO to indicate
this support. The SCTLR.A bit, the strict alignment bit, controls whether strict alignment is required. The
checking of load and store alignment depends on the value of this bit. For more information, see c/, System
Control Register (SCTLR) on page B3-96 for a VMSA implementation, or c/, System Control Register
(SCTLR) on page B4-45 for a PMSA implementation.

Table A3-2 shows how the checking of load and store alignment depends on the instruction type and the
value of SCTLR.A.

Table A3-2 Alignment requirements of load/store instructions

Result if check fails when:

. Alignment

Instructions check

SCTLR.A==0 SCTLR.A==1
LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, None - -
SWPB, TBB
LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBH Halfword Unaligned access ~ Alignment fault
LDREXH, STREXH Halfword Alignment fault Alignment fault
LDR, LDRT, STR, STRT Word Unaligned access Alignment fault
LDREX, STREX Word Alignment fault Alignment fault
LDREXD, STREXD Doubleword Alignment fault Alignment fault
All forms of LDM, LDRD, PUSH, POP, RFE, SRS, all forms of =~ Word Alignment fault Alignment fault
STM, STRD, SWP
LDC, LDC2, STC, STC2 Word Alignment fault Alignment fault
VLDM, VLDR, VSTM, VSTR Word Alignment fault Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with
standard alignment?

Element size

Unaligned access

Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with
@<align> specified®

As specified by
@<align>

Alignment fault

Alignment fault

a. These element and structure loadétore instructions are only in the Advanced SIMD extension to the ARMv7 ARM and
Thumb instruction sets. ARMv7 does not support the pre-ARMv6 alignment model, so you cannot use that model with

these instructions.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A3-5

Application Level Memory Model

A3.2.2 Cases where unalighed accesses are UNPREDICTABLE

The following cases cause the resulting unaligned accesses to be UNPREDICTABLE, and overrule any

successful load or store behavior described in Unaligned data access on page A3-5:

. Any load instruction that is not faulted by the alignment restrictions and that loads the PC has
UNPREDICTABLE behavior if it the address it loads from is not word-aligned.

. Any unaligned access that is not faulted by the alignment restrictions and that accesses memory with
the Strongly-ordered or Device attribute has UNPREDICTABLE behavior.

Note
These memory attributes are described in Memory types and attributes and the memory order model
on page A3-24.
A3.2.3 Unaligned data access restrictions in ARMv7 and ARMv6

ARMv7 and ARMv6 have the following restrictions on unaligned data accesses:

. Accesses are not guaranteed to be single-copy atomic, see Atomicity in the ARM architecture on
page A3-26. An access can be synthesized out of a series of aligned operations in a shared memory
system without guaranteeing locked transaction cycles.

. Unaligned accesses typically take a number of additional cycles to complete compared to a naturally
aligned transfer. The real-time implications must be analyzed carefully and key data structures might
need to have their alignment adjusted for optimum performance.

. If an unaligned access occurs across a page boundary, the operation can abort on either or both halves
of the access.

Shared memory schemes must not rely on seeing monotonic updates of non-aligned data of loads and stores

for data items larger than byte wide. For more information, see Atomicity in the ARM architecture on

page A3-26.

Unaligned access operations must not be used for accessing Device memory-mapped registers. They must

only be used with care in shared memory structures that are protected by aligned semaphores or

synchronization variables.
A3-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.3

Application Level Memory Model

Endian support

The rules in Address space on page A3-2 require that for a word-aligned address A:

. the word at address A consists of the bytes at addresses A, A+1, A+2 and A+3

. the halfword at address A consists of the bytes at addresses A and A+1

. the halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

. the word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not specify completely the mappings between words, halfwords, and bytes.

A memory system uses one of the two following mapping schemes. This choice is known as the endianness
of the memory system.

In a little-endian memory system:

. the byte or halfword at a word-aligned address is the least significant byte or halfword in the word at
that address

. the byte at a halfword-aligned address is the least significant byte in the halfword at that address.
In a big-endian memory system:

. the byte or halfword at a word-aligned address is the most significant byte or halfword in the word at
that address

. the byte at a halfword-aligned address is the most significant byte in the halfword at that address.

For a word-aligned address A, Table A3-3 and Table A3-4 on page A3-8 show the relationship between:
. the word at address A

. the halfwords at addresses A and A+2

. the bytes at addresses A, A+1, A+2 and A+3.

Table A3-3 shows this relationship for a big-endian memory system, and Table A3-4 on page A3-8 shows
the relationship for a little-endian memory system.

Table A3-3 Big-endian memory system

MSByte MSByte - 1 LSByte + 1 LSByte
Word at Address A
Halfword at Address A Halfword at Address A+2
Byte at Address A Byte at Address A+1 Byte at Address A+2 Byte at Address A+3

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-7

Application Level Memory Model

A3.3.1

A3.3.2

Table A3-4 Little-endian memory system

MSByte MSByte - 1 LSByte + 1 LSByte
Word at Address A
Halfword at Address A+2 Halfword at Address A
Byte at Address A+3 Byte at Address A+2 Byte at Address A+1 Byte at Address A

The big-endian and little-endian mapping schemes determine the order in which the bytes of a word or
halfword are interpreted. For example, a load of a word (4 bytes) from address 0x1000 always results in an
access of the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these four bytes.

Control of the endianness mapping scheme in ARMv7

In ARMv7-A, the mapping of instruction memory is always little-endian. In ARMv7-R, instruction
endianness can be controlled at the system level, see Instruction endianness.

For information about data memory endianness control, see ENDIANSTATE on page A2-19.

Note

Versions of the ARM architecture before ARMv7 had a different mechanism to control the endianness, see
Endian configuration and control on page AppxG-20.

Instruction endianness

Before ARMv7, the ARM architecture included legacy support for an alternative big-endian memory model,
described as BE-32 and controlled by the B bit, bit [7], of the SCTLR, see c1, System Control Register
(SCTLR) on page AppxG-34. ARMv7 does not support BE-32 operation, and bit [7] of the SCTLR is RAZ.

Where legacy object code for ARM processors contains instructions with a big-endian byte order, the
removal of support for BE-32 operation requires the instructions in the object files to have their bytes
reversed for the code to be executed on an ARMv7 processor. This means that:

o each Thumb instruction, whether a 32-bit Thumb instruction or a 16-bit Thumb instruction, must
have the byte order of each halfword of instruction reversed

. each ARM instruction must have the byte order of each word of instruction reversed.

For most situations, this can be handled in the link stage of a tool-flow, provided the object files include
sufficient information to permit this to happen. In practice, this is the situation for all applications with the
ARMV7-A profile.

A3-8

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

For applications of the ARMv7-R profile, there are some legacy code situations where the arrangement of
the bytes in the object files cannot be adjusted by the linker. For these object files to be used by an ARMv7-R
processor the byte order of the instructions must be reversed by the processor at runtime. Therefore, the
ARMVv7-R profile permits configuration of the instruction endianness.

Instruction endianness static configuration, ARMv7-R only

To provide support for legacy big-endian object code, the ARMv7-R profile supports optional byte order
reversal hardware as a static option from reset. The ARMv7-R profile includes a read-only bit in the CP15
Control Register, SCTLR.IE, bit [31]. For more information, see c1, System Control Register (SCTLR) on
page B4-45.

A3.3.3 Element size and endianness
The effect of the endianness mapping on data transfers depends on the size of the data element or elements
transferred by the load/store instructions. Table A3-5 lists the element sizes of all the load/store instructions,
for all instruction sets.
Table A3-5 Element size of load/store instructions
Instructions Element size

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, SWPB, TBB Byte

LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH Halfword

LDR, LDRT, LDREX, STR, STRT, STREX Word

LDRD, LDREXD, STRD, STREXD Word

All forms of LDM, PUSH, POP, RFE, SRS, all forms of STM, SWP Word

LDC, LDC2, STC, STC2, VLDM, VLDR, VSTM, VSTR Word

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4 Element size of the Advanced SIMD access
A3.3.4 Instructions to reverse bytes in a general-purpose register

An application or device driver might have to interface to memory-mapped peripheral registers or shared
memory structures that are not the same endianness as the internal data structures. Similarly, the endianness
of the operating system might not match that of the peripheral registers or shared memory. In these cases,
the processor requires an efficient method to transform explicitly the endianness of the data.

In ARMv7, the ARM and Thumb instruction sets provide this functionality. There are instructions to:

. Reverse word (four bytes) register, for transforming big and little-endian 32-bit representations. See
REV on page A8-272.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-9

Application Level Memory Model

. Reverse halfword and sign-extend, for transforming signed 16-bit representations. See REVSH on
page A8-276.
. Reverse packed halfwords in a register for transforming big- and little-endian 16-bit representations.

See REV16 on page A8-274.

A3.3.5 Endianness in Advanced SIMD
Advanced SIMD element load/store instructions transfer vectors of elements between memory and the
Advanced SIMD register bank. An instruction specifies both the length of the transfer and the size of the
data elements being transferred. This information is used by the processor to load and store data correctly
in both big-endian and little-endian systems.
Consider. for example, the instruction:
VLD1.16 {D0@}, [R1]
This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order,
with the lowest indexed element fetched from the lowest address. The order of bytes in the elements depends
on the endianness configuration, as shown in Figure A3-1. Therefore, the order of the elements in the
registers is the same regardless of the endianness configuration. This means that Advanced SIMD code is
usually independent of endianness.
64-bit register containing four 16-bit elements
| D[15:8] | DI7:0] | Cc[15:8] | C[7:0] | B[15:8] | B[7:0] | Al15:8] | A[7:0] |
0| A[7:0] 0| A[15:8]
1| A[15:8] 1| A[7:0]
3| B[15:8] 3| B[7:0]
4| Cr7:0] VLD1.16 {DO}, [R1] VLD1.16 {DO}, [R1] 4| C[15:8]
5| C[15:8] 5| C[7:0]
6| D[7:0] 6| D[15:8]
7| D[15:8] 7| D[7:0]
Memory system with Memory system with
Little endian addressing (LE) Big endian addressing (BE)
Figure A3-1 Advanced SIMD byte order example
The Advanced SIMD extension supports Little-Endian (LE) and Big-Endian (BE) models.
For information about the alignment of Advanced SIMD instructions see Unaligned data access on
page A3-5.
A3-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Note

Advanced SIMD is an extension to the ARMv7 ARM and Thumb instruction sets. In ARMv7, the SCTLR.B
bit always has the value 0, indicating that ARMv7 does not support the legacy BE-32 endianness model, and
you cannot use this model with Advanced SIMD element and structure load/store instructions.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-11

Application Level Memory Model

A3.4

Synchronization and semaphores

In architecture versions before ARMvG6, support for the synchronization of shared memory depends on the
SWP and SWPB instructions. These are read-locked-write operations that swap register contents with memory,
and are described in SWP, SWPB on page A8-432. These instructions support basic busy/free semaphore
mechanisms, but do not support mechanisms that require calculation to be performed on the semaphore
between the read and write phases.

ARMV6 introduced a new mechanism to support more comprehensive non-blocking synchronization of
shared memory, using synchronization primitives that scale for multiprocessor system designs. ARMv6
provided a pair of synchronization primitives, LDREX and STREX. ARMv7 extends the new model by:

. adding byte, halfword and doubleword versions of the synchronization primitives
o adding a Clear-Exclusive instruction, CLREX
. adding the synchronization primitives to the Thumb instruction set.

Note

From ARMV6, use of the SWP and SWPB instructions is deprecated. ARM strongly recommends that all
software migrates to using the new synchronization primitives described in this section.

In ARMV7, the synchronization primitives provided in the ARM and Thumb instruction sets are:
. Load-Exclusives:
— LDREX, see LDREX on page A8-142
— LDREXB, see LDREXB on page A8-144
— LDREXD, see LDREXD on page A8-146
— LDREXH, see LDREXH on page A8-148
. Store-Exclusives:
— STREX, see STREX on page A8-400
— STREXB, see STREXB on page A8-402
— STREXD, see STREXD on page A8-404
— STREXH, see STREXH on page A8-406
. Clear-Exclusive, CLREX, see CLREX on page A8-70.

Note

This section describes the operation of a Load-Exclusive/Store-Exclusive pair of synchronization primitives
using, as examples, the LDREX and STREX instructions. The same description applies to any other pair of
synchronization primitives:

. LDREXB used with STREXB

. LDREXD used with STREXD

. LDREXH used with STREXH.

Each Load-Exclusive instruction must be used only with the corresponding Store-Exclusive instruction.

A3-12

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.4.1

Application Level Memory Model

The model for the use of a Load-Exclusive/Store-Exclusive instruction pair, accessing a non-aborting
memory address X is:

. The Load-Exclusive instruction reads a value from memory address x.

. The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if
no other observer, process, or thread has performed a more recent store of address x. The
Store-Exclusive operation returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged
block is IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-20.
A Store-Exclusive instruction to the same address clears the tag.

Note

In this section, the term processor includes any observer that can generate a Load-Exclusive or a
Store-Exclusive.

Exclusive access instructions and Non-shareable memory regions

For memory regions that do not have the Shareable attribute, the exclusive access instructions rely on a local
monitor that tags any address from which the processor executes a Load-Exclusive. Any non-aborted
attempt by the same processor to use a Store-Exclusive to modify any address is guaranteed to clear the tag.
A Load-Exclusive performs a load from memory, and:

. the executing processor tags the physical memory address for exclusive access

. the local monitor of the executing processor transitions to its Exclusive Access state.
A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:

If the local monitor is in its Exclusive Access state

. If the address of the Store-Exclusive is the same as the address that has been tagged
in the monitor by an earlier Load-Exclusive, then the store takes place, otherwise it
is IMPLEMENTATION DEFINED whether the store takes place.

. A status value is returned to a register:
— if the store took place the status value is 0

—_ otherwise, the status value is 1.

. The local monitor of the executing processor transitions to its Open Access state.

If the local monitor is in its Open Access state

. no store takes place
. a status value of 1 is returned to a register.
. the local monitor remains in its Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-13

Application Level Memory Model

When a processor writes using any instruction other than a Store-Exclusive:

. if the write is to a physical address that is not covered by its local monitor the write does not affect
the state of the local monitor

. if the write is to a physical address that is covered by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor is in its Exclusive Access state and the processor performs a Store-Exclusive to any
address other than the last one from which it performed a Load-Exclusive, it is IMPLEMENTATION DEFINED
whether the store updates memory, but in all cases the local monitor is reset to its Open Access state. This

mechanism:

. is used on a context switch, see Context switch support on page A3-21

. must be treated as a software programming error in all other cases.
Note

It is UNPREDICTABLE whether a store to a tagged physical address causes a tag in the local monitor to be
cleared if that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-2 shows the state machine for the local monitor. Table A3-6 on page A3-15 shows the effect of
each of the operations shown in the figure.

LoadExcl1(X) LoadExc1(X)

| !

Open Exclusive

Access Access
I |

kil

CLREX CLREX Store(!Tagged_address)
StoreExcl(x) Store(Tagged_address) * Store(Tagged_address) *
Store(x) StoreExcl(Tagged_address)

StoreExcl(!/Tagged_address)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x used
for the operation. For more information see the section Size of the tagged memory block.

Figure A3-2 Local monitor state machine diagram

A3-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Note

For the local monitor state machine, as shown in Figure A3-2 on page A3-14:

. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor
being constructed so that it does not hold any physical address, but instead treats any access as
matching the address of the previous LoadExc].

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations
from other processors.

. It is UNPREDICTABLE whether the transition from Exclusive Access to Open Access state occurs when
the Store or StoreExc1 is from another observer.

Table A3-6 shows the effect of the operations shown in Figure A3-2 on page A3-14.

Table A3-6 Effect of Exclusive instructions and write operations on local monitor

Initial state Operation2a Effect Final state
Open Access CLREX No effect Open Access
Open Access StoreExc1(x) Does not update memory, returns status 1 Open Access
Open Access LoadExc1(x) Loads value from memory, tags address x Exclusive Access
Open Access Store(x) Updates memory, no effect on monitor Open Access
Exclusive Access CLREX Clears tagged address Open Access

Exclusive Access

StoreExc1(t)

Updates memory, returns status O

Open Access

Exclusive Access

StoreExc1(!t)

Updates memory, returns status 0b

Does not update memory, returns status 1b

Open Access

Exclusive Access LoadExc1(x) Loads value from memory, changes tag to address to x ~ Exclusive Access
Exclusive Access Store(!t) Updates memory, no effect on monitor Exclusive Access

Exclusive Accessb
Exclusive Access Store(t) Updates memory

Open Access®

a. In the table:

LoadExc1 represents any Load-Exclusive instruction
StoreExc1 represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.
t is the tagged address, bits [31:a] of the address of the last Load-Exclusive instruction. For more information, see
Tagging and the size of the tagged memory block on page A3-20.
b. IMPLEMENTATION DEFINED alternative actions.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A3-15

Application Level Memory Model

A3.4.2 Exclusive access instructions and Shareable memory regions

For memory regions that have the Shareable attribute, exclusive access instructions rely on:

A local monitor for each processor in the system, that tags any address from which the processor
executes a Load-Exclusive. The local monitor operates as described in Exclusive access instructions
and Non-shareable memory regions on page A3-13, except that for Shareable memory any
Store-Exclusive is then subject to checking by the global monitor if it is described in that section as
doing at least one of:

— updating memory
— returning a status value of 0.

The local monitor can ignore exclusive accesses from other processors in the system.

A global monitor that tags a physical address as exclusive access for a particular processor. This tag
is used later to determine whether a Store-Exclusive to that address that has not been failed by the
local monitor can occur. Any successful write to the tagged address by any other observer in the
shareability domain of the memory location is guaranteed to clear the tag. For each processor in the
system, the global monitor:

— holds a single tagged address

— maintains a state machine.

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory
interfaces.

Note

An implementation can combine the functionality of the global and local monitors into a single unit.

Operation of the global monitor

Load-Exclusive from Shareable memory performs a load from memory, and causes the physical address of
the access to be tagged as exclusive access for the requesting processor. This access also causes the exclusive
access tag to be removed from any other physical address that has been tagged by the requesting processor.
The global monitor only supports a single outstanding exclusive access to Shareable memory per processor.

Store-Exclusive performs a conditional store to memory:

The store is guaranteed to succeed only if the physical address accessed is tagged as exclusive access
for the requesting processor and both the local monitor and the global monitor state machines for the
requesting processor are in the Exclusive Access state. In this case:

— astatus value of 0 is returned to a register to acknowledge the successful store

— the final state of the global monitor state machine for the requesting processor is
IMPLEMENTATION DEFINED

— if the address accessed is tagged for exclusive access in the global monitor state machine for
any other processor then that state machine transitions to Open Access state.

A3-16

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

. If no address is tagged as exclusive access for the requesting processor, the store does not succeed:
— astatus value of 1 is returned to a register to indicate that the store failed

— the global monitor is not affected and remains in Open Access state for the requesting
processor.

. If a different physical address is tagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED whether the store succeeds or not:

— if the store succeeds a status value of O is returned to a register, otherwise a value of 1 is
returned

— if the global monitor state machine for the processor was in the Exclusive Access state before
the Store-Exclusive it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in
the system. The state machine for accesses to Shareable memory by processor (n) can respond to all the
Shareable memory accesses visible to it. This means it responds to:

. accesses generated by the associated processor (n)

. accesses generated by the other observers in the shareability domain of the memory location (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that
can generate a Load-Exclusive or a Store-Exclusive in the system.

Figure A3-3 on page A3-18 shows the state machine for processor(n) in a global monitor. Table A3-7 on
page A3-19 shows the effect of each of the operations shown in the figure.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-17

Application Level Memory Model

LoadExc1(x,n)

|
Open

Access
I

-

LoadExcl(x,n)

Exclusive
Access

ITT

CLREX(n), CLREX(!n),
LoadExc1(x,!n),
StoreExcl(x,n),
StoreExcl(x,!n),
Store(x,n), Store(x,!n)

StoreExcl(Tagged_address,!n)t
Store(Tagged_address,!n)
StoreExc1(Tagged_address,n) *
StoreExc1(!Tagged_address,n) *
Store(Tagged_address,n) *
CLREX(n) *

-

StoreExcl(Tagged_address,!n)t
Store(!Tagged_address,n)
StoreExcl(Tagged_address,n) *
StoreExcl(!Tagged_address,n) *
Store(Tagged_address,n) *
CLREX(n) *
StoreExcl(!Tagged_address,!n)
Store(!/Tagged_address,!n)
CLREX(!n)

I storeExcl(Tagged_Address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExc]l represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x
used for the operation. For more information see the section Size of the tagged memory block.

Figure A3-3 Global monitor state machine diagram for processor(n) in a multiprocessor system

Note

For the global monitor state machine, as shown in Figure A3-3:

. Whether a Store-Exclusive successfully updates memory or not depends on whether the address
accessed matches the tagged Shareable memory address for the processor issuing the Store-Exclusive
instruction. For this reason, Figure A3-3 and Table A3-7 on page A3-19 only show how the (!n)
entries cause state transitions of the state machine for processor(n).

. An Load-Exclusive can only update the tagged Shareable memory address for the processor issuing
the Load-Exclusive instruction.

. The effect of the CLREX instruction on the global monitor is IMPLEMENTATION DEFINED.

. It is IMPLEMENTATION DEFINED:

— whether a modification to a non-shareable memory location can cause a global monitor to

transition from Exclusive Access to Open Access state

— whether a Load-Exclusive to a non-shareable memory location can cause a global monitor to

transition from Open Access to Exclusive Access state.

A3-18

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Application Level Memory Model

Table A3-7 shows the effect of the operations shown in Figure A3-3 on page A3-18.

Table A3-7 Effect of load/store operations on global monitor for processor(n)

Initial Final
ionb Effect
statea OPeration statea
Open CLREX(n), None Open
CLREX(!n)
StoreExc1(x,n) Does not update memory, returns status 1 Open
LoadExc1(x, !n) Loads value from memory, no effect on tag address for processor(n) Open
StoreExcl(x, In) Depends on state machine and tag address for processor issuing Open
STREX¢
Store(x,n), Updates memory, no effect on monitor Open
Store(x,!n)
LoadExc1(x,n) Loads value from memory, tags address x Exclusive
Exclusive LoadExc1(x,n) Loads value from memory, tags address x Exclusive
Exclusive®
CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED.
Open¢
CLREX(!n) None Exclusive
Updates memory, returns status 0¢ Open
StoreExc1(t,!n)
Does not update memory, returns status 1¢ Exclusive
Open
StoreExcl(t,n) Updates memory, returns status 0d
Exclusive
Open
Updates memory, returns status 0¢
Exclusive
StoreExc1(!t,n)
Open
Does not update memory, returns status 1¢
Exclusive
StoreExc1(!t,!n) Depends on state machine and tag address for processor issuing Exclusive
STREX
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-19

Application Level Memory Model

Table A3-7 Effect of load/store operations on global monitor for processor(n) (continued)

Initial Final
erationb Effect

statea OP statea

Exclusive Exclusive®
Store(t,n) Updates memory

Open¢
Store(t,!n) Updates memory Open
Store(!t,n), Updates memory, no effect on monitor Exclusive
Store(!t,!n)
a. Open = Open Access state, Exclusive = Exclusive Access state.

A3.4.3

In the table:

LoadExc1 represents any Load-Exclusive instruction

StoreExc1 represents any Store-Exclusive instruction

Store represents any store operation other than a Store-Exclusive operation.
tis the tagged address for processor(n), bits [31:a] of the address of the last Load-Exclusive instruction issued by
processor(n), see Tagging and the size of the tagged memory block.
The result of a STREX(x, In) or a STREX(t, !n) operation depends on the state machine and tagged address for the processor
issuing the STREX instruction. This table shows how each possible outcome affects the state machine for processor(n).
After a successful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However,
this state has no effect on the subsequent operation of the global monitor.
Effect is IMPLEMENTATION DEFINED. The table shows all permitted implementations.

Tagging and the size of the tagged memory block

As stated in the footnotes to Table A3-6 on page A3-15 and Table A3-7 on page A3-19, when a
Load-Exclusive instruction is executed, the resulting tag address ignores the least significant bits of the
memory address.

Tagged_address = Memory_address[31:a]

The value of a in this assignment is IMPLEMENTATION DEFINED, between a minimum value of 3 and a
maximum value of 11. For example, in an implementation where a == 4, a successful LDREX of address
0x000341B4 gives a tag value of bits [31:4] of the address, giving 0x000341B. This means that the four words
of memory from 0x0003 41B0 to 0x000341BF are tagged for exclusive access.

The size of the tagged memory block called the Exclusives Reservation Granule. The Exclusives
Reservation Granule is IMPLEMENTATION DEFINED between:

. two words, in an implementation with a ==

3 512 words, in an implementation with a == 11.

In some implementations the CTR identifies the Exclusives Reservation Granule, see:
. c0, Cache Type Register (CTR) on page B3-83 for a VMSA implementation
. c0, Cache Type Register (CTR) on page B4-34 for a PMSA implementation.

A3-20

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.4.4

A3.4.5

Application Level Memory Model

Context switch support

After a context switch, software must ensure that the local monitor is in the Open Access state. This requires
it to either:

. execute a CLREX instruction
. execute a dummy STREX to a memory address allocated for this purpose.
Note
. Using a dummy STREX for this purpose is backwards-compatible with the ARMv6 implementation of

the exclusive operations. The CLREX instruction is introduced in ARMv6K.

. Context switching is not an application level operation. However, this information is included here to
complete the description of the exclusive operations.

The STREX or CLREX instruction following a context switch might cause a subsequent Store-Exclusive to fail,
requiring a load ... store sequence to be replayed. To minimize the possibility of this happening, ARM
recommends that the Store-Exclusive instruction is kept as close as possible to the associated
Load-Exclusive instruction, see Load-Exclusive and Store-Exclusive usage restrictions.

Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together, as a pair, for example
a LDREX/STREX pair or a LDREXB/STREXB pair. As mentioned in Context switch support, ARM recommends that
the Store-Exclusive instruction always follows within a few instructions of its associated Load-Exclusive
instructions. To support different implementations of these functions, software must follow the notes and
restrictions given here.

These notes describe use of an LDREX/STREX pair, but apply equally to any other
Load-Exclusive/Store-Exclusive pair:

. The exclusives support a single outstanding exclusive access for each processor thread that is
executed. The architecture makes use of this by not requiring an address or size check as part of the
IsExclusivelocal() function. If the target address of an STREX is different from the preceding LDREX in
the same execution thread, behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only
be relied upon to eventually succeed if they are executed with the same address. Where a context
switch or exception might result in a change of execution thread, a CLREX instruction or a dummy
STREX instruction must be executed to avoid unwanted effects, as described in Context switch support
Using an STREX in this way is the only occasion where software can program an STREX with a different
address from the previously executed LDREX.

. An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in a livelock
situation. As a result, code must avoid placing an explicit store between an LDREX and an STREX in a
single code sequence.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-21

Application Level Memory Model

. If two STREX instructions are executed without an intervening LDREX the second STREX returns a status
value of 1. This means that:

— every STREX must have a preceding LDREX associated with it in a given thread of execution
— itis not necessary for every LDREX to have a subsequent STREX.

. An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any
thread of execution, the transaction size of a Store-Exclusive is the same as the transaction size of the
preceding Load-Exclusive that was executed in that thread. If the transaction size of a
Store-Exclusive is different from the preceding Load-Exclusive in the same execution thread,
behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only be relied upon to
eventually succeed only if they have the same size. Where a context switch or exception might result
in a change of execution thread, the software must execute a CLREX instruction or a dummy STREX
instruction to avoid unwanted effects, as described in Context switch support on page A3-21. Using
an STREX in this way is the only occasion where software can use a Store-Exclusive instruction with
a different transaction size from the previously executed Load-Exclusive instruction.

. An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Code written
for such an implementation must avoid having any explicit memory accesses or cache maintenance
operations between the LDREX and STREX instructions.

. Implementations can benefit from keeping the LDREX and STREX operations close together in a single
code sequence. This minimizes the likelihood of the exclusive monitor state being cleared between
the LDREX instruction and the STREX instruction. Therefore, ARM strongly recommends a limit of 128
bytes between LDREX and STREX instructions in a single code sequence, for best performance.

. Implementations that implement coherent protocols, or have only a single master, might combine the
local and global monitors for a given processor. The IMPLEMENTATION DEFINED and UNPREDICTABLE
parts of the definitions in Exclusive monitors operations on page B2-35 are provided to cover this
behavior.

. The architecture sets an upper limit of 2048 bytes on the size of a region that can be marked as
exclusive. Therefore, for performance reasons, ARM recommends that software separates objects
that will be accessed by exclusive accesses by at least 2048 bytes. This is a performance guideline
rather than a functional requirement.

. LDREX and STREX operations must be performed only on memory with the Normal memory attribute.

. The effect of Data Abort exceptions on the state of monitors is UNPREDICTABLE. ARM recommends
that abort handling code performs a CLREX instruction or a dummy STREX instruction to clear the
monitor state.

. If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between
the LDREX and the STREX, behavior is UNPREDICTABLE.

A3-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.4.6

A3.4.7

A3.4.8

Application Level Memory Model

Semaphores

The Swap (SWP) and Swap Byte (SWPB) instructions must be used with care to ensure that expected behavior
is observed. Two examples are as follows:

1. A system with multiple bus masters that uses Swap instructions to implement semaphores that control
interactions between different bus masters.

In this case, the semaphores must be placed in an uncached region of memory, where any buffering
of writes occurs at a point common to all bus masters using the mechanism. The Swap instruction
then causes a locked read-write bus transaction.

2. A systems with multiple threads running on a uniprocessor that uses the Swap instructions to
implement semaphores that control interaction of the threads.

In this case, the semaphores can be placed in a cached region of memory, and a locked read-write bus
transaction might or might not occur. The Swap and Swap Byte instructions are likely to have better
performance on such a system than they do on a system with multiple bus masters such as that
described in example 1.

Note

From ARMV6, use of the Swap and Swap Byte instructions is deprecated. All new software should use the
Load-Exclusive and Store-Exclusive synchronization primitives described in Synchronization and
semaphores on page A3-12, for example LDREX and STREX.

Synchronization primitives and the memory order model

The synchronization primitives follow the memory order model of the memory type accessed by the
instructions. For this reason:

. Portable code for claiming a spin-lock must include a Data Memory Barrier (DMB) operation,
performed by a DMB instruction, between claiming the spin-lock and making any access that makes
use of the spin-lock.

. Portable code for releasing a spin-lock must include a DMB instruction before writing to clear the
spin-lock.

This requirement applies to code using:

. the Load-Exclusive/Store-Exclusive instruction pairs, for example LDREX/STREX
. the deprecated synchronization primitives, SWP/SWPB.

Use of WFE and SEV instructions by spin-locks

ARMv7 and ARMv6K provide Wait For Event and Send Event instructions, WFE and SEV, that can assist with
reducing power consumption and bus contention caused by processors repeatedly attempting to obtain a
spin-lock. These instructions can be used at application level, but a complete understanding of what they do
depends on system-level understanding of exceptions. They are described in Wait For Event and Send Event
on page B1-44.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-23

Application Level Memory Model

A3.5 Memory types and attributes and the memory order model
ARMV6 defined a set of memory attributes with the characteristics required to support the memory and
devices in the system memory map. In ARMv7 this set of attributes is extended by the addition of the Outer
Shareable attribute for Normal memory.
Note
Whether an ARMv7 implementation supports the Outer Shareable memory attribute is IMPLEMENTATION
DEFINED.
The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the
memory attributes. This model is described in the following sections:
. Memory types
i Summary of ARMv7 memory attributes on page A3-25
. Atomicity in the ARM architecture on page A3-26
. Normal memory on page A3-28
. Device memory on page A3-33
. Strongly-ordered memory on page A3-34
. Memory access restrictions on page A3-35
. Backwards compatibility on page A3-37
. The effect of the Security Extensions on page A3-37.
A3.5.1 Memory types
For each memory region, the most significant memory attribute specifies the memory type. There are three
mutually exclusive memory types:
. Normal
. Device
. Strongly-ordered.
Normal and Device memory regions have additional attributes.
Usually, memory used for program code and for data storage is Normal memory. Examples of Normal
memory technologies are:
. programmed Flash ROM
Note
During programming, Flash memory can be ordered more strictly than Normal memory.
. ROM
. SRAM
. DRAM and DDR memory.
A3-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

System peripherals (I/O) generally conform to different access rules to Normal memory. Examples of I/O
accesses are:

FIFOs where consecutive accesses
— add queued values on write accesses

— remove queued values on read accesses.

interrupt controller registers where an access can be used as an interrupt acknowledge, changing the
state of the controller itself

memory controller configuration registers that are used to set up the timing and correctness of areas
of Normal memory

memory-mapped peripherals, where accessing a memory location can cause side effects in the
system.

In ARMV7, regions of the memory map for these accesses are defined as Device or Strongly-ordered
memory. To ensure system correctness, access rules for Device and Strongly-ordered memory are more
restrictive than those for Normal memory:

both read and write accesses can have side effects
accesses must not be repeated, for example, on return from an exception

the number, order and sizes of the accesses must be maintained.

In addition, for Strongly-ordered memory, all memory accesses are strictly ordered to correspond to the
program order of the memory access instructions.

A3.5.2 Summary of ARMv7 memory attributes

Table A3-8 summarizes the memory attributes. For more information about theses attributes see:

Normal memory on page A3-28 and Shareable attribute for Device memory regions on page A3-34,
for the shareability attribute

Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal memory on
page A3-32, for the cacheability attribute.

Table A3-8 Memory attribute summary

Mer_nory type Shareability = Other attributes Description

attribute

Strongly- - - All memory accesses to
ordered Strongly-ordered memory

occur in program order. All
Strongly-ordered regions are
assumed to be Shareable.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-25

Application Level Memory Model

Table A3-8 Memory attribute summary (continued)

""e'?‘°’y type Shareability Other attributes Description
attribute
Device Shareable - Intended to handle memory-
mapped peripherals that are
shared by several processors.
Non- - Intended to handle memory-
shareable mapped peripherals that are
used only by a single processor.
Normal Outer Cacheability, one of: 2 The Outer Shareable attribute
Shareable qualifies the Shareable attribute
Non-cacheable for Normal memory regions
Write-Through Cacheable and enables two levels of
Write-Back Write-Allocate Cacheable Normal memory sharing.b
Write-Back no Write-Allocate Cacheable
Inner Cacheability, one of: 2 Intended to handle Normal
Shareable memory that is shared between
Non-cacheable several processors.
Write-Through Cacheable
Write-Back Write-Allocate Cacheable
Write-Back no Write-Allocate Cacheable
Non- Cacheability, one of: 2 Intended to handle Normal
shareable memory that is used by only a

Non-cacheable

Write-Through Cacheable

Write-Back Write-Allocate Cacheable
Write-Back no Write-Allocate Cacheable

single processor.

a.

The cacheability attribute is defined independently for inner and outer cache regions.

b. The significance of the Outer Shareable attribute is IMPLEMENTATION DEFINED.

A3.5.3

Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as aromic accesses. The ARM architecture description
refers to two types of atomicity, defined in:

Single-copy atomicity on page A3-27
Multi-copy atomicity on page A3-28.

A3-26

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Single-copy atomicity
A read or write operation is single-copy atomic if the following conditions are both true:

. After any number of write operations to an operand, the value of the operand is the value written by
one of the write operations. It is impossible for part of the value of the operand to come from one
write operation and another part of the value to come from a different write operation.

. When a read operation and a write operation are made to the same operand, the value obtained by the
read operation is one of:

— the value of the operand before the write operation

— the value of the operand after the write operation.

It is never the case that the value of the read operation is partly the value of the operand before the
write operation and partly the value of the operand after the write operation.

In ARMV7, the single-copy atomic processor accesses are:

. all byte accesses

. all halfword accesses to halfword-aligned locations

. all word accesses to word-aligned locations

. memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR instructions are
executed as a sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be
single-copy atomic. A subsequence of two or more word accesses from the sequence might not exhibit
single-copy atomicity.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the
element or structure size. The element accesses are single-copy atomic if and only if both:

. the element size is 32 bits, or smaller
. the elements are naturally aligned.

Accesses to 64-bit elements or structures that are at least word-aligned are executed as a sequence of 32-bit
accesses, each of which is single-copy atomic. Subsequences of two or more 32-bit accesses from the
sequence might not be single-copy atomic.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which
is single-copy atomic, at least at the byte level.

If an instruction is executed as a sequence of accesses according to these rules, some exceptions can be taken
in the sequence and cause execution of the instruction to be abandoned. These exceptions are:

. synchronous Data Abort exceptions

. if low interrupt latency configuration is selected and the accesses are to Normal memory, see Low
interrupt latency configuration on page B1-43:
— IRQ interrupts
— FIQ interrupts

— asynchronous aborts.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-27

Application Level Memory Model

If any of these exceptions are returned from using their preferred exception return, the instruction that
generated the sequence of accesses is re-executed and so any accesses that had already been performed
before the exception was taken are repeated.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes
to memory for the purpose of software synchronization.

For implicit accesses:

. Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or
instruction fetches.

. Instruction fetches are single-copy atomic for each instruction fetched.

Note

32-bit Thumb instructions are fetched as two 16-bit items.

. Translation table walks are performed as 32-bit accesses aligned to 32 bits, each of which is
single-copy atomic.
Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions
are both true:

. All writes to the same location are serialized, meaning they are observed in the same order by all
observers, although some observers might not observe all of the writes.

. A read of a location does not return the value of a write until all observers observe that write.
Writes to Normal memory are not multi-copy atomic.
All writes to Device and Strongly-ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the same location are serialized. Write accesses to Normal memory can be repeated up
to the point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes.

A3.5.4 Normal memory
Normal memory is idempotent, meaning that it exhibits the following properties:
. read accesses can be repeated with no side effects
. repeated read accesses return the last value written to the resource being read
. read accesses can prefetch additional memory locations with no side effects
A3-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

. write accesses can be repeated with no side effects, provided that the contents of the location are
unchanged between the repeated writes

. unaligned accesses can be supported
. accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Normal memory region is defined as being either
Shareable or Non-shareable. In a VMSA implementation, Shareable Normal memory can be either Inner
Shareable or Outer Shareable. In a PMSA implementation, no distinction is made between Inner Shareable
and Outer Shareable regions.

The Normal memory type attribute applies to most memory used in a system.

Accesses to Normal Memory have a weakly consistent model of memory ordering. See a standard text
describing memory ordering issues for a description of weakly consistent memory models, for example
chapter 2 of Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo,
Stanford University Technical Report CSL-TR-95-685. In general, for Normal memory, barrier operations
are required where the order of memory accesses observed by other observers must be controlled. This
requirement applies regardless of the cacheablility and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on
page A3-45 apply to all explicit accesses.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on
page A3-26 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

The architecture permits speculative accesses to memory locations marked as Normal if the access
permissions and domain permit an access to the locations.

A Normal memory region has shareability attributes that define the data coherency properties of the region.
These attributes do not affect the coherency requirements of:

. instruction fetches, see Instruction coherency issues on page A3-53

. translation table walks, if supported, in the base ARMv7 architecture and in versions of the
architecture before ARMV7, see TLB maintenance operations and the memory order model on
page B3-59.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-29

Application Level Memory Model

Non-shareable Normal memory

For a Normal memory region, the Non-shareable attribute identifies Normal memory that is likely to be
accessed only by a single processor.

A region of Normal memory with the Non-shareable attribute does not have any requirement to make data
accesses by different observers coherent, unless the memory is non-cacheable. If other observers share the
memory system, software must use cache maintenance operations if the presence of caches might lead to
coherency issues when communicating between the observers. This cache maintenance requirement is in
addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives do
not take account of the possibility of accesses by more than one observer.

Shareable, Inner Shareable, and Outer Shareable Normal memory

For Normal memory, the Shareable and Outer Shareable memory attributes describe Normal memory that
is expected to be accessed by multiple processors or other system masters:

. In a VMSA implementation, Normal memory that has the Shareable attribute but not the Outer
Shareable attribute assigned is described as having the Inner Shareable attribute.

o In a PMSA implementation, no distinction is made between Inner Shareable and Outer Shareable
Normal memory, and you cannot assign the Outer Shareable attribute to Normal memory regions.

A region of Normal memory with the Shareable attribute is one for which data accesses to memory by
different observers within the same shareability domain are coherent.

The Outer Shareable attribute is introduced in ARMv7, and can be applied only to a Normal memory region
in a VMSA implementation that has the Shareable attribute assigned. It creates three levels of shareability
for a Normal memory region:

Non-shareable

A Normal memory region that does not have the Shareable attribute assigned.

Inner Shareable

A Normal memory region that has the Shareable attribute assigned, but not the Outer
Shareable attribute.

Outer Shareable

A Normal memory region that has both the Shareable and the Outer Shareable attributes
assigned.

These attributes can be used to define sets of observers for which the shareability attributes make the data
or unified caches transparent for data accesses. The sets of observers that are affected by the shareability
attributes are described as shareability domains. The details of the use of these attributes are
system-specific. Example A3-1 on page A3-31 shows how they might be used:

A3-30

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Example A3-1 Use of shareability attributes

In a VMSA implementation, a particular sub-system with two clusters of processors has the requirement

that:

. in each cluster, the data or unified caches of the processors in the cluster are transparent for all data
accesses with the Inner Shareable attribute

. however, between the two clusters, the caches:

— are not transparent for data accesses that have only the Inner Shareable attribute

— are transparent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all
components of the sub-system are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such sub-systems. If the data or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability
domains.

Having two levels of shareability attribute means you can reduce the performance and power overhead for
shared memory regions that do not need to be part of the Outer Shareable shareability domain.

Whether an ARMv7 implementation supports the Outer Shareable attribute is IMPLEMENTATION DEFINED.
If the Outer Shareable attribute is supported, its significance in the implementation is IMPLEMENTATION
DEFINED.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take
account of the possibility of accesses by more than one observer in the same Shareability domain.

Note

The Shareable concept enables system designers to specify the locations in Normal memory that must have
coherency requirements. However, to facilitate porting of software, software developers must not assume
that specifying a memory region as Non-shareable permits software to make assumptions about the
incoherency of memory locations between different processors in a shared memory system. Such
assumptions are not portable between different multiprocessing implementations that make use of the
Shareable concept. Any multiprocessing implementation might implement caches that, inherently, are
shared between different processing elements.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-31

Application Level Memory Model

Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal
memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory can
be marked as being one of:

. Write-Through Cacheable

. Write-Back Cacheable, with an additional qualifier that marks it as one of:
— Write-Back, Write-Allocate
— Write-Back, no Write-Allocate

. Non-cacheable.

If the same memory locations are marked as having different cacheability attributes, for example by the use
of aliases in a virtual to physical address mapping, behavior is UNPREDICTABLE.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the
shareability domain of a region of memory. In some cases, the use of Write-Through Cacheable or
Non-cacheable regions of memory might provide a better mechanism for controlling coherency than the use
of hardware coherency mechanisms or the use of cache maintenance routines. To this end, the architecture
requires the following properties for Non-cacheable or Write-Through Cacheable memory:

. a completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a
level of cache made by an observer accessing the memory system inside the level of cache is visible
to all observers accessing the memory system outside the level of cache without the need of explicit
cache maintenance

. a completed write to a memory location that is Non-cacheable for a level of cache made by an
observer accessing the memory system outside the level of cache is visible to all observers accessing
the memory system inside the level of cache without the need of explicit cache maintenance.

Note

Implementations can also use the cacheability attributes to provide a performance hint regarding the
performance benefit of caching. For example, it might be known to a programmer that a piece of memory
is not going to be accessed again and would be better treated as Non-cacheable. The distinction between
Write-Back Write-Allocate and Write-Back no Write-Allocate memory exists only as a hint for
performance.

The ARM architecture provides independent cacheability attributes for Normal memory for two conceptual
levels of cache, the inner and the outer cache. The relationship between these conceptual levels of cache and
the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the boundaries
between the Inner and Outer Shareability domains. However:

o inner refers to the innermost caches, and always includes the lowest level of cache

. no cache controlled by the Inner cacheability attributes can lie outside a cache controlled by the Outer
cacheability attributes

. an implementation might not have any outer cache.

A3-32

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.5.5

Application Level Memory Model

Example A3-2 to Example A3-4 describe the three possible ways of implementing a system with three
levels of cache, L1 to L3. L1 is the level closest to the processor, see Memory hierarchy on page A3-52.

Example A3-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. the Inner cacheability attribute applied to L1 and L2 cache
. the Outer cacheability attribute applied to L3 cache.

Example A3-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to
L1, L2, and L3 cache. Do not use the Outer cacheability attribute.

Example A3-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. the Inner cacheability attribute applied to L1 cache
. the Outer cacheability attribute applied to L2 and L3 cache.

Device memory

The Device memory type attribute defines memory locations where an access to the location can cause side
effects, or where the value returned for a load can vary depending on the number of loads performed.
Memory-mapped peripherals and I/O locations are examples of memory regions normally marked as being
Device memory.

For explicit accesses from the processor to memory marked as Device:
. all accesses occur at their program size
. the number of accesses is the number specified by the program.

An implementation must not repeat an access to a Device memory location if the program has only one
access to that location. In other words, accesses to Device memory locations are not restartable.

The architecture does not permit speculative accesses to memory marked as Device.

The architecture permits an Advanced SIMD element or structure load instruction to access bytes in Device
memory that are not explicitly accessed by the instruction, provided the bytes accessed are within a 16-byte
window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

Address locations marked as Device are never held in a cache.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-33

Application Level Memory Model

A3.5.6

All explicit accesses to Device memory must comply with the ordering requirements of accesses described
in Ordering requirements for memory accesses on page A3-45.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on
page A3-26 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note

Do not use an instruction that generates a sequence of accesses to access Device memory if the instruction
might generate an abort on any access other than the first one.

Any unaligned access that is not faulted by the alignment restrictions and accesses Device memory has
UNPREDICTABLE behavior.

Shareable attribute for Device memory regions

Device memory regions can be given the Shareable attribute. This means that a region of Device memory
can be described as either:

. Shareable Device memory
. Non-shareable Device memory.

Non-shareable Device memory is defined as only accessible by a single processor. An example of a system
supporting Shareable and Non-shareable Device memory is an implementation that supports both:

. a local bus for its private peripherals
. system peripherals implemented on the main shared system bus.

Such a system might have more predictable access times for local peripherals such as watchdog timers or
interrupt controllers. In particular, a specific address in a Non-shareable Device memory region might
access a different physical peripheral for each processor.

Strongly-ordered memory

The Strongly-ordered memory type attribute defines memory locations where an access to the location can
cause side effects, or where the value returned for a load can vary depending on the number of loads
performed. Examples of memory regions normally marked as being Strongly-ordered are memory-mapped
peripherals and I/O locations.

For explicit accesses from the processor to memory marked as Strongly-ordered:
. all accesses occur at their program size

. the number of accesses is the number specified by the program.

An implementation must not repeat an access to a Strongly-ordered memory location if the program has
only one access to that location. In other words, accesses to Strongly-ordered memory locations are not
restartable.

A3-34

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.5.7

Application Level Memory Model

The architecture does not permit speculative accesses to memory marked as Strongly-ordered.

The architecture permits an Advanced SIMD element or structure load instruction to access bytes in
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the bytes accessed are
within a 16-byte window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by
the instruction.

Address locations in Strongly-ordered memory are not held in a cache, and are always treated as Shareable
memory locations.

All explicit accesses to Strongly-ordered memory must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page A3-45.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on
page A3-26 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note

Do not use an instruction that generates a sequence of accesses to access Strongly-ordered memory if the
instruction might generate an abort on any access other than the first one.

Any unaligned access that is not faulted by the alignment restrictions and accesses Strongly-ordered
memory has UNPREDICTABLE behavior.

Note

See Ordering of instructions that change the CPSR interrupt masks on page AppxG-8 for additional
requirements that apply to accesses to Strongly-ordered memory in ARMv6.

Memory access restrictions
The following restrictions apply to memory accesses:

. For any access X, the bytes accessed by X must all have the same memory type attribute, otherwise
the behavior of the access is UNPREDICTABLE. That is, an unaligned access that spans a boundary
between different memory types is UNPREDICTABLE.

. For any two memory accesses X and Y that are generated by the same instruction, the bytes accessed
by X and Y must all have the same memory type attribute, otherwise the results are UNPREDICTABLE.
For example, an LDC, LDM, LDRD, STC, STM, or STRD that spans a boundary between Normal and Device
memory is UNPREDICTABLE.

. An instruction that generates an unaligned memory access to Device or Strongly-ordered memory is
UNPREDICTABLE.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-35

Application Level Memory Model

To ensure access rules are maintained, an instruction that causes multiple accesses to Device or
Strongly-ordered memory must not cross a 4KB address boundary, otherwise the effect is
UNPREDICTABLE. For this reason, it is important that an access to a volatile memory device is not
made using a single instruction that crosses a 4KB address boundary.

ARM expects this restriction to impose constraints on the placing of volatile memory devices in the
memory map of a system, rather than expecting a compiler to be aware of the alignment of memory
accesses.

For instructions that generate accesses to Device or Strongly-ordered memory, implementations must
not change the sequence of accesses specified by the pseudocode of the instruction. This includes not
changing:

— how many accesses there are

— the time order of the accesses

— the data sizes and other properties of each access.

In addition, processor implementations expect any attached memory system to be able to identify the
memory type of an accesses, and to obey similar restrictions with regard to the number, time order,
data sizes and other properties of the accesses.

Exceptions to this rule are:

— Animplementation of a processor can break this rule, provided that the information it supplies

to the memory system enables the original number, time order, and other details of the accesses
to be reconstructed. In addition, the implementation must place a requirement on attached
memory systems to do this reconstruction when the accesses are to Device or Strongly-ordered
memory.
For example, an implementation with a 64-bit bus might pair the word loads generated by an
LDM into 64-bit accesses. This is because the instruction semantics ensure that the 64-bit access
is always a word load from the lower address followed by a word load from the higher address.
However the implementation must permit the memory systems to unpack the two word loads
when the access is to Device or Strongly-ordered memory.

— Any implementation technique that produces results that cannot be observed to be different
from those described above is legitimate.

— An Advanced SIMD element or structure load instruction can access bytes in Device or
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the
bytes accessed are within a 16-byte window, aligned to 16-bytes, that contains at least one byte
that is explicitly accessed by the instruction.

Any multi-access instruction that loads or stores the PC must access only Normal memory. If the
instruction accesses Device or Strongly-ordered memory the result is UNPREDICTABLE. There is one
exception to this restriction. In the VMSA architecture, when the MMU is disabled any multi-access
instruction that loads or stores the PC functions correctly, see Enabling and disabling the MMU on
page B3-5.

Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered
memory, the result is UNPREDICTABLE. For example, instruction fetches must not be performed to an
area of memory that contains read-sensitive devices, because there is no ordering requirement
between instruction fetches and explicit accesses.

A3-36

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.5.8

A3.5.9

Application Level Memory Model

. Behavior is UNPREDICTABLE if the same memory location:
— is marked as Shareable Normal and Non-shareable Normal
— is marked as having different memory types (Normal, Device, or Strongly-ordered)
— is marked as having different cacheability attributes
— is marked as being Shareable Device and Non-shareable Device memory.

Such memory marking contradictions can occur, for example, by the use of aliases in a virtual to
physical address mapping.

Before ARMv6, it is IMPLEMENTATION DEFINED whether a low interrupt latency mode is supported. From
ARMVv6, low interrupt latency support is controlled by the SCTLR.FI bit. It is IMPLEMENTATION DEFINED
whether multi-access instructions behave correctly in low interrupt latency configurations.

Backwards compatibility

From ARMv6, the memory attributes are significantly different from those in previous versions of the
architecture. Table A3-9 shows the interpretation of the earlier memory types in the light of this definition.

Table A3-9 Backwards compatibility

Previous architectures ARMv6 and ARMv7 attribute

NCNB (Non-cacheable, Non-bufferable) ~ Strongly-ordered

NCB (Non-cacheable, Bufferable) Shareable Device
Write-Through Cacheable, Bufferable Non-shareable Normal, Write-Through Cacheable
Write-Back Cacheable, Bufferable Non-shareable Normal, Write-Back Cacheable

The effect of the Security Extensions

The Security Extensions can be included as part of an ARMv7-A implementation, with a VMSA. They
provide two distinct 4GByte virtual memory spaces:

. a Secure virtual memory space
. a Non-secure virtual memory space.

The Secure virtual memory space is accessed by memory accesses in the Secure state, and the Non-secure
virtual memory space is accessed by memory accesses in the Non-secure state.

By providing different virtual memory spaces, the Security Extensions permit memory accesses made from
the Non-secure state to be distinguished from those made from the Secure state.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-37

Application Level Memory Model

A3.6 Access rights
ARMV7 includes additional attributes for memory regions, that enable:
. Data accesses to be restricted, based on the privilege of the access. See Privilege level access controls
for data accesses.
. Instruction fetches to be restricted, based on the privilege of the process or thread making the fetch.
See Privilege level access controls for instruction accesses.
. On a system that implements the Security Extensions, accesses to be restricted to memory accesses
with the Secure memory attribute. See Memory region security status on page A3-39.
A3.6.1 Privilege level access controls for data accesses
The memory attributes can define that a memory region is:
. not accessible to any accesses
. accessible only to Privileged accesses
. accessible to Privileged and Unprivileged accesses.
The access privilege level is defined separately for explicit read and explicit write accesses. However, a
system that defines the memory attributes is not required to support all combinations of memory attributes
for read and write accesses.
A Privileged access is an access made during privileged execution, as a result of a load or store operation
other than LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, or LDRSBT.
An Unprivileged access is an access made as a result of load or store operation performed in one of these
cases:
. when the processor is in an unprivileged mode
. when the processor is in any mode and the access is made as a result of a LDRT, STRT, LDRBT, STRBT,
LDRHT, STRHT, LDRSHT, or LDRSBT instruction.
A Data Abort exception is generated if the processor attempts a data access that the access rights do not
permit. For example, a Data Abort exception is generated if the processor is in unprivileged mode and
attempts to access a memory region that is marked as only accessible to Privileged accesses.
A3.6.2 Privilege level access controls for instruction accesses
Memory attributes can define that a memory region is:
. Not accessible for execution
. Accessible for execution by Privileged processes only
. Accessible for execution by Privileged and Unprivileged processes.
To define the instruction access rights to a memory region, the memory attributes describe, separately, for
the region:
. its read access rights, see Privilege level access controls for data accesses
A3-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.6.3

Application Level Memory Model

. whether it is suitable for execution.

For example, a region that is accessible for execution by Privileged processes only has the memory
attributes:
. accessible only to Privileged read accesses

o suitable for execution.

This means there is some linkage between the memory attributes that define the accessibility of a region to
explicit memory accesses, and those that define that a region can be executed.

A memory fault occurs if a processor attempts to execute code from a memory location with attributes that
do not permit code execution.

Memory region security status

An additional memory attribute determines whether the memory region is Secure or Non-secure in an
ARMvV7-A system that implements the Security Extensions. When the Security Extensions are
implemented, this attribute is checked by the system hardware to ensure that a region of memory that is
designated as Secure by the system hardware is not accessed by memory accesses with the Non-secure
memory attribute. For more information, see Memory region attributes on page B3-32.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-39

Application Level Memory Model

A3.7

Virtual and physical addressing

ARMVv7 provides three alternative architectural profiles, ARMv7-A, ARMv7-R and ARMv7-M. Each of the
profiles specifies a different memory system. This manual describes two of these profiles:

ARMVv7-A profile

The ARMv7-A memory system incorporates a Memory Management Unit (MMU)),
controlled by CP15 registers. The memory system supports virtual addressing, with the
MMU performing virtual to physical address translation, in hardware, as part of program
execution.

ARMYv7-R profile

The ARMvV7-R memory system incorporates a Memory Protection Unit (MPU), controlled
by CP15 registers. The MPU does not support virtual addressing.

At the application level, the difference between the ARMv7-A and ARMv7-R memory systems is
transparent. Regardless of which profile is implemented, an application accesses the memory map described
in Address space on page A3-2, and the implemented memory system makes the features described in this
chapter available to the application.

For a system-level description of the ARMv7-A and ARMv7-R memory models see:
. Chapter B2 Common Memory System Architecture Features

. Chapter B3 Virtual Memory System Architecture (VMSA)

. Chapter B4 Protected Memory System Architecture (PMSA).

Note
This manual does not describe the ARMv7-M profile. For details of this profile see:

. ARMv7-M Architecture Application Level Reference Manual, for an application-level description
. ARMv7-M Architecture Reference Manual, for a full description.

A3-40

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.8

Application Level Memory Model

Memory access order

ARMV7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined
memory access properties.

The ARMV7 application-level view of the memory attributes is described in:
. Memory types and attributes and the memory order model on page A3-24
. Access rights on page A3-38.

When considering memory access ordering, an important feature of the ARMv6 memory model is the
Shareable memory attribute, that indicates whether a region of memory can be shared between multiple
processors, and therefore requires an appearance of cache transparency in the ordering model.

The key issues with the memory order model depend on the target audience:

. For software programmers, considering the model at the application level, the key factor is that for
accesses to Normal memory barriers are required in some situations where the order of accesses
observed by other observers must be controlled.

. For silicon implementers, considering the model at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and
when to indicate completion of an access.

Note

Implementations remain free to choose the mechanisms required to implement the functionality of
the memory model.

More information about the memory order model is given in the following subsections:
. Reads and writes on page A3-42
. Ordering requirements for memory accesses on page A3-45

. Memory barriers on page A3-47.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in
the system level section of this manual:

. Virtual memory systems based on an MMU, described in Chapter B3 Virtual Memory System
Architecture (VMSA).

. Protected memory systems based on an MPU, described in Chapter B4 Protected Memory System
Architecture (PMSA).

. Caches, described in Caches on page B2-3.

Note

In these system level descriptions, some attributes are described in relation to an MMU. In general, these
descriptions can also be applied to an MPU based system.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-41

Application Level Memory Model

A3.8.1 Reads and writes

Each memory access is either a read or a write. Explicit memory accesses are the memory accesses required
by the function of an instruction. The following can cause memory accesses that are not explicit:

. instruction fetches
. cache loads and writebacks
o translation table walks.

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

Reads
Reads are defined as memory operations that have the semantics of a load.

The memory accesses of the following instructions are reads:

. LDR, LDRB, LDRH, LDRSB, and LDRSH

. LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT

. LDREX, LDREXB, LDREXD, and LDREXH

. LDM, LDRD, POP, and RFE

. LDC, LDC2, VLDM, VLDR, VLD1, VLD2, VLD3, and VLD4

o the return of status values by STREX, STREXB, STREXD, and STREXH
. in the ARM instruction set only, SWP and SWPB

. in the Thumb instruction set only, TBB and TBH.

Hardware-accelerated opcode execution by the Jazelle extension can cause a number of reads to occur,
according to the state of the operand stack and the implementation of the Jazelle hardware acceleration.

Writes
Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:
. STR, STRB, and STRH

. STRT, STRBT, and STRHT

. STREX, STREXB, STREXD, and STREXH

. STM, STRD, PUSH, and SRS

. STC, STC2, VSTM, VSTR, VST1, VST2, VST3, and VST4

o in the ARM instruction set only, SWP and SWPB.

Hardware-accelerated opcode execution by the Jazelle extension can cause a number of writes to occur,
according to the state of the operand stack and the implementation of the Jazelle hardware acceleration.

A3-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order
model. The synchronization primitive instructions are defined as those instructions that are used to ensure
memory synchronization:

. LDREX, STREX, LDREXB, STREXB, LDREXD, STREXD, LDREXH, STREXH.

. SWP, SWPB. Use of these instructions is deprecated from ARMV6.

Before ARMvo6, support consisted of the SWP and SWPB instructions. ARMv6 introduced new Load-Exclusive
and Store-Exclusive instructions LDREX and STREX, and deprecated using the SWP and SWPB instructions.

ARMYvV7 introduces:

. additional Load-Exclusive and Store-Exclusive instructions, LDREXB, LDREXD, LDREXH, STREXB, STREXD,
and STREXH

. the Clear-Exclusive instruction CLREX

. the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions in the Thumb instruction set.

For details of the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions see Synchronization
and semaphores on page A3-12.

The Load-Exclusive and Store-Exclusive instructions are supported to Shareable and Non-shareable
memory. Non-shareable memory can be used to synchronize processes that are running on the same
processor. Shareable memory must be used to synchronize processes that might be running on different
processors.

Observability and completion

An observer is an agent in the system that can access memory. For a processor, the following mechanisms
must be treated as independent observers:

. the mechanism that performs reads or writes to memory

. a mechanism that causes an instruction cache to be filled from memory or that fetches instructions to
be executed directly from memory

. a mechanism that performs translation table walks.
The set of observers that can observe a memory access is defined by the system.
For all memory:

. a write to a location in memory is said to be observed by an observer when a subsequent read of the
location by the same observer will return the value written by the write

. a write to a location in memory is said to be globally observed for a shareability domain when a
subsequent read of the location by any observer in that shareability domain will return the value
written by the write

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-43

Application Level Memory Model

. aread of a location in memory is said to be observed by an observer when a subsequent write to the
location by the same observer will have no effect on the value returned by the read

. aread of a location in memory is said to be globally observed for a shareability domain when a
subsequent write to the location by any observer in that shareability domain will have no effect on
the value returned by the read.

Additionally, for Strongly-ordered memory:

. A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be
observed, and globally observed, only when the read or write:
— meets the general conditions listed
— can begin to affect the state of the memory-mapped peripheral

— can trigger all associated side effects, whether they affect other peripheral devices, processors
or memory.

For all memory, the completion rules are defined as:

. A read or write is complete for a shareability domain when all of the following are true:
— the read or write is globally observed for that shareability domain

— any translation table walks associated with the read or write are complete for that shareability

domain.

. A translation table walk is complete for a shareability domain when the memory accesses associated
with the translation table walk are globally observed for that shareability domain, and the TLB is
updated.

. A cache, branch predictor or TLB maintenance operation is complete for a shareability domain when

the effects of operation are globally observed for that shareability domain and any translation table
walks that arise from the operation are complete for that shareability domain.

The completion of any cache, branch predictor and TLB maintenance operation includes its
completion on all processors that are affected by both the operation and the DSB.

Side effect completion in Strongly-ordered and Device memory

The completion of a memory access in Strongly-ordered or Device memory is not guaranteed to be
sufficient to determine that the side effects of the memory access are visible to all observers. The mechanism
that ensures the visibility of side-effects of a memory accesses is IMPLEMENTATION DEFINED.

A3-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

A3.8.2 Ordering requirements for memory accesses

ARMYV7 and ARMv6 define access restrictions in the permitted ordering of memory accesses. These
restrictions depend on the memory attributes of the accesses involved.

Two terms used in describing the memory access ordering requirements are:

Address dependency

An address dependency exists when the value returned by a read access is used to compute
the virtual address of a subsequent read or write access. An address dependency exists even
if the value read by the first read access does not change the virtual address of the second
read or write access. This might be the case if the value returned is masked off before it is
used, or if it has no effect on the predicted address value for the second access.

Control dependency

A control dependency exists when the data value returned by a read access is used to
determine the condition code flags, and the values of the flags are used for condition code
checking to determine the address of a subsequent read access. This address determination
might be through conditional execution, or through the evaluation of a branch.

Figure A3-4 on page A3-46 shows the memory ordering between two explicit accesses Al and A2, where
Al occurs before A2 in program order. The symbols used in the figure are as follows:

< Accesses must be observed in program order, that is, A1 must be observed before A2.

- Accesses can be observed in any order, provided that the requirements of uniprocessor
semantics, for example respecting dependencies between instructions in a single processor,
are maintained.

The following additional restrictions apply to the ordering of memory accesses that have this

symbol:

. If there is an address dependency then the two memory accesses are observed in
program order by any observer in the common shareability domain of the two
accesses.

This ordering restriction does not apply if there is only a control dependency between
the two read accesses.

If there is both an address dependency and a control dependency between two read
accesses the ordering requirements of the address dependency apply.

. If the value returned by a read access is used as data written by a subsequent write
access, then the two memory accesses are observed in program order.

. It is impossible for an observer in the shareability domain of a memory location to
observe a write access to that memory location if that location would not be written
to in a sequential execution of a program.

. It is impossible for an observer in the shareability domain of a memory location to
observe a write value written to that memory location if that value would not be
written in a sequential execution of a program.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-45

Application Level Memory Model

. It is impossible for an observer in the shareability domain of a memory location to
observe two reads to the same memory location performed by the same observer in
an order that would not occur in a sequential execution of a program.

In Figure A3-4, an access refers to a read or a write access to the specified memory type.
For example, Device access, Non-shareable refers to aread or write access to Non-shareable
Device memory.

Devi -

A2 Normal evice access Strongly:

access ordered

A1 Non-shareable | Shareable access
Normal access - - - -
Device access, Non-shareable - < - <
Device access, Shareable - - < <
Strongly-ordered access - < < <

Figure A3-4 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

Program order for instruction execution
The program order of instruction execution is the order of the instructions in the control flow trace.

Explicit memory accesses in an execution can be either:
Strictly Ordered
Denoted by <. Must occur strictly in order.

Ordered Denoted by <=. Can occur either in order or simultaneously.

Load/store multiple instructions, such as LDM, LDRD, STM, and STRD, generate multiple word accesses, each of
which is a separate access for the purpose of determining ordering.

The rules for determining program order for two accesses Al and A2 are:
If A1 and A2 are generated by two different instructions:

. Al < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in
program order

. A2 < Al if the instruction that generates A2 occurs before the instruction that generates Al in
program order.

If A1 and A2 are generated by the same instruction:

. If A1 and A2 are the load and store generated by a SWP or SWPB instruction:
— Al < A2if Al is the load and A2 is the store
— A2 < Alif A2 is the load and Al is the store.

A3-46

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

. In these descriptions:
—_ an LDM-class instruction is any form of LDM, LDMDA, LDMDB, LDMIB, or POP instruction
— an LDC-class instruction is an LDC, VLDM, or VLDR instruction
— an STM-class instruction is any form of STM, STMDA, STMDB, STMIB, or PUSH instruction
— an STC-class instruction is an STC, VSTM, or VSTR instruction.
If A1 and A2 are two word loads generated by an LDC-class or LDM-class instruction, or two word

stores generated by an STC-class or STM-class instruction, excluding LDM-class and STM-class
instructions with a register list that includes the PC:

— Al <= A2 if the address of A1l is less than the address of A2
— A2 <= Al if the address of A2 is less than the address of Al.

If A1 and A2 are two word loads generated by an LDM-class instruction with a register list that
includes the PC or two word stores generated by an STM-class instruction with a register list that
includes the PC, the program order of the memory accesses is not defined.

. If A1 and A2 are two word loads generated by an LDRD instruction or two word stores generated by
an STRD instruction, the program order of the memory accesses is not defined.

. If A1 and A2 are load or store accesses generated by Advanced SIMD element or structure load/store
instructions, the program order of the memory accesses is not defined.

. For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity
rules described in Single-copy atomicity on page A3-27 mean the operation becomes a sequence of
accesses, then the time-ordering of those accesses is not defined.

A3.8.3 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, used to force
synchronization events by a processor with respect to retiring load/store instructions. The ARM architecture
defines a number of memory barriers that provide a range of functionality, including:

. ordering of issued load/store instructions to the programmers’ model
. completion of preceding load/store instructions to the programmers’ model
. flushing of any instructions prefetched before the memory barrier operation.

ARMv7 and ARMVv6 require three explicit memory barriers to support the memory order model described
in this chapter. In ARMv7 the memory barriers are provided as instructions that are available in the ARM
and Thumb instruction sets, and in ARMv6 the memory barriers are performed by CP15 register writes. The
three memory barriers are:

. Data Memory Barrier, see Data Memory Barrier (DMB) on page A3-48

. Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-49

. Instruction Synchronization Barrier, see Instruction Synchronization Barrier (ISB) on page A3-49.

Depending on the synchronization needed, a program might use memory barriers on their own, or it might
use them in conjunction with cache and memory management maintenance operations that are only
available in privileged modes.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-47

Application Level Memory Model

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load/store
instructions and data or unified cache maintenance operations being executed by the processor. Instruction
fetches or accesses caused by a hardware translation table access are not explicit accesses.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to
as the executing processor, Pe. The DMB instruction takes the required shareability domain and required
access types as arguments. If the required shareability is Full system then the operation applies to all
observers within the system.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. All explicit memory accesses of the required access types from observers in the same
required shareability domain as Pe that are observed by Pe before the DMB instruction.
These accesses include any accesses of the required access types and required
shareability domain performed by Pe.

. All loads of required access types from observers in the same required shareability
domain as Pe that have been observed by any given observer, Py, in the same required
shareability domain as Pe before Py has performed a memory access that is a member

of Group A.
Group B Contains:
. All explicit memory accesses of the required access types by Pe that occur in program

order after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer Px
in the same required shareability domain as Pe that can only occur after Px has
observed a store that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as
determined by the shareability and cacheability of the memory locations accessed by the group members.
Where members of Group A and Group B access the same memory-mapped peripheral, all members of
Group A will be visible at the memory-mapped peripheral before any members of Group B are visible at
that peripheral.

Note

. A memory access might be in neither Group A nor Group B. The DMB does not affect the order of
observation of such a memory access.

. The second part of the definition of Group A is recursive. Ultimately, membership of Group A derives
from the observation by Py of a load before Py performs an access that is a member of Group A as a
result of the first part of the definition of Group A.

A3-48

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

. The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives
from the observation by any observer of an access by Pe that is a member of Group B as a result of
the first part of the definition of Group B.

DMB only affects memory accesses. It has no effect on the ordering of any other instructions executing on the
Pprocessor.

For details of the DMB instruction in the Thumb and ARM instruction sets see DMB on page A8-90.

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory
accesses. The DSB instruction takes the required shareability domain and required access types as arguments.
If the required shareability is Full system then the operation applies to all observers within the system.

A DSB behaves as a DMB with the same arguments, and also has the additional properties defined here.
A DSB completes when both:

. all explicit memory accesses that are observed by Pe before the DSB is executed, are of the required
access types, and are from observers in the same required shareability domain as Pe, are complete for
the set of observers in the required shareability domain

. all cache, branch predictor, and TLB maintenance operations issued by Pe before the DSB are complete
for the required shareability domain.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB
completes.

For details of the DSB instruction in the Thumb and ARM instruction sets see DSB on page A8-92.

Note

Historically, this operation was referred to as Drain Write Buffer or Data Write Barrier (DWB). From
ARMV6, these names and the use of DWB were deprecated in favor of the new Data Synchronization Barrier
name and DSB abbreviation. DSB better reflects the functionality provided from ARMv6, because DSB is
architecturally defined to include all cache, TLB and branch prediction maintenance operations as well as
explicit memory operations.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB
instruction in program order are fetched from cache or memory only after the ISB instruction has completed.
Using an ISB ensures that the effects of context altering operations executed before the ISB are visible to the
instructions fetched after the ISB instruction. Examples of context altering operations that require the
insertion of an ISB instruction to ensure the operations are complete are:

. cache, TLB, and branch predictor maintenance operations
. changes to the CP14 and CP15 registers.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-49

Application Level Memory Model

In addition, any branches that appear in program order after the ISB instruction are written into the branch
prediction logic with the context that is visible after the ISB instruction. This is needed to ensure correct
execution of the instruction stream.

Any context altering operations appearing in program order after the ISB instruction only take effect after
the ISB has been executed.

For details of the ISB instruction in the Thumb and ARM instruction sets see /ISB on page A8-102.

Pseudocode details of memory barriers

The following types define the required shareability domains and required access types used as arguments
for DMB and DSB instructions:

enumeration MBRegDomain {MBRegDomain_FullSystem,
MBRegDomain_OuterShareable,
MBRegDomain_InnerShareable,
MBRegDomain_Nonshareable};

enumeration MBReqTypes {MBReqTypes_A11, MBReqTypes_Writes};
The following procedures perform the memory barriers:
DataMemoryBarrier(MBRegDomain domain, MBReqTypes types)

DataSynchronizationBarrier(MBRegDomain domain, MBReqTypes types)
InstructionSynchronizationBarrier()

A3-50

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A3.9

A3.9.1

Application Level Memory Model

Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore the details
of the system are IMPLEMENTATION DEFINED. ARMv7 defines the application level interface to the memory
system, and supports a hierarchical memory system with multiple levels of cache. This section provides an
application level view of this system. It contains the subsections:

. Introduction to caches

. Memory hierarchy on page A3-52

. Implication of caches for the application programmer on page A3-52
. Preloading caches on page A3-54.

Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:
. main memory address information, commonly known as a tag

. the associated data.

Caches are used to increase the average speed of a memory access. Cache operation takes account of two
principles of locality:

Spatial locality
An access to one location is likely to be followed by accesses to adjacent locations.
Examples of this principle are:
. sequential instruction execution

. accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example
of this principle is the execution of a code loop

To minimize the quantity of control information stored, the spatial locality property is used to group several
locations together under the same tag. This logical block is commonly known as a cache line. When data is
loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall
performance benefits. An access to information already in a cache is known as a cache hit, and other
accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor
wants to access a cacheable location, the cache is checked. If the access is a cache hit, the access occurs in
the cache, otherwise a location is allocated and the cache line loaded from memory. Different cache
topologies and access policies are possible, however, they must comply with the memory coherency model
of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:
. Memory accesses occurring at times other than when the programmer would normally expect them
. There being multiple physical locations where a data item can be held

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-51

Application Level Memory Model

A3.9.2

Memory hierarchy

Memory close to a processor has very low latency, but is limited in size and expensive to implement. Further
from the processor it is easier to implement larger blocks of memory but these have increased latency. To
optimize overall performance, an ARMv7 memory system can include multiple levels of cache in a
hierarchical memory system. Figure A3-5 shows such a system, in an ARMv7-A implementation of a
VMSA, supporting virtual addressing.

Virtual
address Address Physical address
"| Translation

5
CP15 configuration
and control ! ! |

Processor l » Level1 Level 2 Level 3
Cache Cache
DRAM

R15 __Instruction 3 . B <
. Prefetch SRAM
Flash

Load ROM Level 4

RO B > | > < > | > -« for example,
Store CF card, disk

A3.9.3

Figure A3-5 Multiple levels of cache in a memory hierarchy

Note
In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processor, as shown
in Figure A3-5.

Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can
become visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

. when memory locations are updated by other agents in the system

. when memory updates made from the application code must be made visible to other agents in the

system.
For example:

. In a system with a DMA controller that reads memory locations that are held in the data cache of a
processor, a breakdown of coherency occurs when the processor has written new data in the data
cache, but the DMA controller reads the old data held in memory.

o In a Harvard architecture of caches, where there are separate instruction and data caches, a
breakdown of coherency occurs when new instruction data has been written into the data cache, but
the instruction cache still contains the old instruction data.

A3-52

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Application Level Memory Model

Data coherency issues
You can ensure the data coherency of caches in the following ways:

. By not using the caches in situations where coherency issues can arise. You can achieve this by:
— using Non-cacheable or, in some cases, Write-Through Cacheable memory for the caches
— not enabling caches in the system.

. By using cache maintenance operations to manage the coherency issues in software, see Cache
maintenance functionality on page B2-9. Many of these operations are only available to system
software.

. By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for

cacheable locations by observers within the different shareability domains, see Non-shareable
Normal memory on page A3-30 and Shareable, Inner Shareable, and Outer Shareable Normal
memory on page A3-30.

The performance of these hardware coherency mechanisms is highly implementation specific. In
some implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency
between observers within the shareability domains.

Instruction coherency issues

How far ahead of the current point of execution instructions are prefetched from is IMPLEMENTATION
DEFINED. Such prefetching can be either a fixed or a dynamically varying number of instructions, and can
follow any or all possible future execution paths. For all types of memory:

. the processor might have fetched the instructions from memory at any time since the last ISB,
exception entry or exception return executed by that processor

. any instructions fetched in this way might be executed multiple times, if this is required by the
execution of the program, without being refetched from memory

In addition, the ARM architecture does not require the hardware to ensure coherency between instruction
caches and memory, even for regions of memory with Shareable attributes. This means that for cacheable
regions of memory, an instruction cache can hold instructions that were fetched from memory before the

last ISB, exception entry or exception return.

If software requires coherency between instruction execution and memory, it must manage this coherency
using the ISB and DSB memory barriers and cache maintenance operations, see Ordering of cache and
branch predictor maintenance operations on page B2-21. Many of these operations are only available to
system software.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A3-53

Application Level Memory Model

A3.9.4

Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data) and PLI (Preload Instruction) to
permit software to communicate the expected use of memory locations to the hardware. The memory system
can respond by taking actions that are expected to speed up the memory accesses if and when they do occur.
The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations will use
this information to bring the data or instruction locations into caches that have faster access times than
normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the
functional behavior of the device. The instructions do not generate synchronous Data Abort exceptions, but
the memory system operations might, under exceptional circumstances, generate asynchronous aborts. For
more information, see Data Abort exception on page B1-55.

Hardware implementations can provide other implementation-specific mechanisms to prefetch memory
locations in the cache. These must comply with the general cache behavior described in Cache behavior on
page B2-5.

A3-54

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A4
The Instruction Sets

This chapter describes the ARM and Thumb instruction sets. It contains the following sections:

.

.

About the instruction sets on page A4-2

Unified Assembler Language on page A4-4

Branch instructions on page A4-7

Data-processing instructions on page A4-8

Status register access instructions on page A4-18

Load/store instructions on page A4-19

Load/store multiple instructions on page A4-22

Miscellaneous instructions on page A4-23

Exception-generating and exception-handling instructions on page A4-24
Coprocessor instructions on page A4-25

Advanced SIMD and VFP load/store instructions on page A4-26
Advanced SIMD and VFP register transfer instructions on page A4-29
Advanced SIMD data-processing operations on page A4-30

VFP data-processing instructions on page A4-38.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-1

The Instruction Sets

A4.1

A4l

About the instruction sets

ARMV7 contains two main instruction sets, the ARM and Thumb instruction sets. Much of the functionality
available is identical in the two instruction sets. This chapter describes the functionality available in the
instruction sets, and the Unified Assembler Language (UAL) that can be assembled to either instruction set.

The two instruction sets differ in how instructions are encoded:

. Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and
32-bit instructions can be intermixed freely. Many common operations are most efficiently executed
using 16-bit instructions. However:

— Most 16-bit instructions can only access eight of the general-purpose registers, RO-R7. These
are known as the low registers. A small number of 16-bit instructions can access the high
registers, R8-R15.

— Many operations that would require two or more 16-bit instructions can be more efficiently
executed with a single 32-bit instruction.

. ARM instructions are always 32-bit, and are aligned on a four-byte boundary.

The ARM and Thumb instruction sets can interwork freely, that is, different procedures can be compiled or
assembled to different instruction sets, and still be able to call each other efficiently.

ThumbEE is a variant of the Thumb instruction set that is designed as a target for dynamically generated
code. However, it cannot interwork freely with the ARM and Thumb instruction sets.

See:

. Chapter A5 ARM Instruction Set Encoding for encoding details of the ARM instruction set

. Chapter A6 Thumb Instruction Set Encoding for encoding details of the Thumb instruction set
. Chapter A8 Instruction Details for detailed descriptions of the instructions

. Chapter A9 ThumbEE for encoding details of the ThumbEE instruction set.

Changing between Thumb state and ARM state

A processor in Thumb state (that is, executing Thumb instructions) can enter ARM state (and change to
executing ARM instructions) by executing any of the following instructions: BX, BLX, or an LDR or LDM that
loads the PC.

A processor in ARM state (that is, executing ARM instructions) can enter Thumb state (and change to
executing Thumb instructions) by executing any of the same instructions.

In ARMV7, a processor in ARM state can also enter Thumb state (and change to executing Thumb
instructions) by executing an ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC, SBC, or SUB
instruction that has the PC as destination register and does not set the condition flags.

A4-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.1.2

The Instruction Sets

Note

This permits calls and returns between ARM code written for ARMv4 processors and Thumb code running
on ARMV7 processors to function correctly. In new code, ARM recommends that you use BX or BLX
instructions instead. In particular, use BX LR to return from a procedure, not MOV PC, LR.

The target instruction set is either encoded directly in the instruction (for the immediate offset version of
BLX), or is held as bit [0] of an interworking address. For details, see the description of the BXWritePC()
function in Pseudocode details of operations on ARM core registers on page A2-12.

Exception entries and returns can also change between ARM and Thumb states. For details see Exceptions
on page B1-30.

Conditional execution

Most ARM instructions can be conditionally executed. This means that they only have their normal effect
on the programmers’ model operation, memory and coprocessors if the N, Z, C and V flags in the APSR
satisfy a condition specified in the instruction. If the flags do not satisfy this condition, the instruction acts
as a NOP, that is, execution advances to the next instruction as normal, including any relevant checks for
exceptions being taken, but has no other effect.

Most Thumb instructions are unconditional. Conditional execution in Thumb code can be achieved using
any of the following instructions:

. A 16-bit conditional branch instruction, with a branch range of —256 to +254 bytes. For details see B
on page A8-44. Before ARMV6T?2, this was the only mechanism for conditional execution in Thumb
code.

. A 32-bit conditional branch instruction, with a branch range of approximately = 1MB. For details see

B on page A8-44.

. 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch
range of +4 to +130 bytes. For details see CBNZ, CBZ on page A8-66.

. A 16-bit If-Then instruction that makes up to four following instructions conditional. For details see
IT on page A8-104. The instructions that are made conditional by an IT instruction are called its IT
block. Instructions in an IT block must either all have the same condition, or some can have one
condition, and others can have the inverse condition.

For more information about conditional execution see Conditional execution on page A8-8.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-3

The Instruction Sets

A4.2

A4.2.1

Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax
provides a canonical form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes
that instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor
what assembler directives and options are available. See your assembler documentation for these details.

Most earlier ARM assembly language mnemonics are still supported as synonyms, as described in the
instruction details.

Note

Most earlier Thumb assembly language mnemonics are not supported. For details see Appendix C Legacy
Instruction Mnemonics.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than
one can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an

ADD RO,R1,R2 instruction. The most common instruction selection rule is that when both a 16-bit encoding
and a 32-bit encoding are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding
is selected. These are useful when disassembling code, to ensure that subsequent assembly produces the
original code, and in some other situations.

Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

. IT instructions are written before conditional instructions in the correct way for the Thumb
instruction set.

o When assembling to the ARM instruction set, assemblers check that any IT instructions are correct,
but do not generate any code for them.

Although other Thumb instructions are unconditional, all instructions that are made conditional by an IT
instruction must be written with a condition. These conditions must match the conditions imposed by the IT
instruction. For example, an ITTEE EQ instruction imposes the EQ condition on the first two following
instructions, and the NE condition on the next two. Those four instructions must be written with EQ, EQ, NE
and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if
they are the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT
instruction, it is assembled using a branch instruction encoding that does not include a condition field.

Ad-4

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a
fixed offset from the instruction being specified. The assembler must:

1.

Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address
plus 4 for a Thumb instruction, or plus 8 for an ARM instruction. The Align(PC,4) value of an
instruction is its PC value ANDed with 0xFFFFFFFC to force it to be word-aligned. There is no
difference between the PC and A1ign(PC,4) values for an ARM instruction, but there can be for a
Thumb instruction.

Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labelled
instruction or literal data item.

Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC,4) value
and adds the calculated offset to form the required address.

Note

For instructions that can encode a subtraction operation, if the instruction cannot encode the
calculated offset but can encode minus the calculated offset, the instruction encoding specifies a
subtraction of minus the calculated offset.

The syntax of the following instructions includes a label:

B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of
the instruction that they branch to. Their encodings specify a sign-extended immediate offset that is
added to the PC value of the instruction to form the target address of the branch.

CBNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction
that they branch to. Their encodings specify a zero-extended immediate offset that is added to the PC
value of the instruction to form the target address of the branch. They do not support backward
branches.

LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR. The normal assembler syntax of
these load instructions can specify the label of a literal data item that is to be loaded. The encodings
of these instructions specify a zero-extended immediate offset that is either added to or subtracted
from the Align(PC,4) value of the instruction to form the address of the data item. A few such
encodings perform a fixed addition or a fixed subtraction and must only be used when that operation
is required, but most contain a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of O for the normal syntax of these instructions, it must
assemble an encoding that adds O to the ATign(PC,4) value of the instruction. Encodings that subtract
0 from the Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the A1ign(PC,4) value,
or - if it is to be subtracted.

<imm> Is the immediate offset.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-5

The Instruction Sets

This alternative syntax makes it possible to assemble the encodings that subtract O from the
Align(PC,4) value, and to disassemble them to a syntax that can be re-assembled correctly.

ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal
data item whose address is to be calculated. Its encoding specifies a zero-extended immediate offset
that is either added to or subtracted from the A1ign(PC,4) value of the instruction to form the address
of the data item, and some opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of O for the normal syntax of this instruction, it must
assemble the encoding that adds O to the Align(PC,4) value of the instruction. The encoding that
subtracts O from the ATign(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions

SUB <Rd>,PC,#<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts
0 from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Note

ARM recommends that where possible, you avoid using:

the alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, PLDW, and VLDR
instructions

the encodings of these instructions that subtract O from the ATign(PC,4) value.

A4-6

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.3 Branch instructions

The Instruction Sets

Table A4-1 summarizes the branch instructions in the ARM and Thumb instruction sets. In addition to
providing for changes in the flow of execution, some branch instructions can change instruction set.

Table A4-1 Branch instructions

. Range Range
Instruction See (Thumb) (ARM)
Branch to target address B on page A8-44 +/-16MB +/-32MB
Compare and Branch on Nonzero, Compare CBNZ, CBZ on page A8-66 0-126B a
and Branch on Zero
Call a subroutine BL, BLX (immediate) on page A8-58 +/-16MB +/-32MB
Call a subroutine, change instruction setb +/-16MB +/-32MB
Call a subroutine, optionally change instruction ~ BLX (register) on page A8-60 Any Any
set
Branch to target address, change instruction set ~ BX on page A8-62 Any Any
Change to Jazelle state BXJ on page A8-64 - -

Table Branch (byte offsets) TBB, TBH on page A8-446 0-510B a
Table Branch (halfword offsets) 0-131070B

a. These instructions do not exist in the ARM instruction set.
b. The range is determined by the instruction set of the BLX instruction, not of the instruction it branches to.

Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions.
For details see Load/store instructions on page A4-19, Load/store multiple instructions on page A4-22,
Standard data-processing instructions on page A4-8, and Shift instructions on page A4-10.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-7

The Instruction Sets

A4.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

. Standard data-processing instructions. These instructions perform basic data-processing operations,
and share a common format with some variations.

. Shift instructions on page A4-10.

. Saturating instructions on page A4-13.

. Packing and unpacking instructions on page A4-14.

. Miscellaneous data-processing instructions on page A4-15.

. Parallel addition and subtraction instructions on page A4-16.

. Divide instructions on page A4-17.

For extension data-processing instructions, see Advanced SIMD data-processing operations on page A4-30

and VFP data-processing instructions on page A4-38.

A4.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, a first operand register Rn, and a second

operand. The second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:

. Encoded directly in the instruction.

. A modified immediate constant that uses 12 bits of the instruction to encode a range of constants.
Thumb and ARM instructions have slightly different ranges of modified immediate constants. For
details see Modified immediate constants in Thumb instructions on page A6-17 and Modified
immediate constants in ARM instructions on page AS5-9.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. For details see Shift and rotate operations on page A2-5.

In Thumb code, the amount to shift by is always a constant encoded in the instruction. In ARM code, the

amount to shift by is either a constant encoded in the instruction, or the value of a register Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the

destination register. In the ARM instruction set, the destination register can be the PC, causing the result to

be treated as an address to branch to. In the Thumb instruction set, this is only permitted for some 16-bit
forms of the ADD and MOV instructions.
A4-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

These instructions can optionally set the condition code flags, according to the result of the operation. If
they do not set the flags, existing flag settings from a previous instruction are preserved.

Table A4-2 summarizes the main data-processing instructions in the Thumb and ARM instruction sets.
Generally, each of these instructions is described in three sections in Chapter A8 Instruction Details, one
section for each of the following:

. INSTRUCTION (immediate) where the second operand is a modified immediate constant.
. INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.
. INSTRUCTION (register-shifted register) where the second operand is a register shifted by a value

obtained from another register. These are only available in the ARM instruction set.

Table A4-2 Standard data-processing instructions

Instruction Mnemonic Notes

Add with Carry ADC -

Add ADD Thumb instruction set permits use of a modified immediate
constant or a zero-extended 12-bit immediate constant.

Form PC-relative Address ADR First operand is the PC. Second operand is an immediate constant.
Thumb instruction set uses a zero-extended 12-bit immediate
constant. Operation is an addition or a subtraction.

Bitwise AND AND -

Bitwise Bit Clear BIC -

Compare Negative CMN Sets flags. Like ADD but with no destination register.

Compare cMP Sets flags. Like SUB but with no destination register.

Bitwise Exclusive OR EOR -

Copy operand to destination MOV Has only one operand, with the same options as the second
operand in most of these instructions. If the operand is a shifted
register, the instruction is an LSL, LSR, ASR, or ROR instruction
instead. For details see Shift instructions on page A4-10.

The ARM and Thumb instruction sets permit use of a modified
immediate constant or a zero-extended 16-bit immediate constant.

Bitwise NOT MUN Has only one operand, with the same options as the second
operand in most of these instructions.

Bitwise OR NOT ORN Not available in the ARM instruction set.

Bitwise OR ORR -

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-9

The Instruction Sets

Table A4-2 Standard data-processing instructions (continued)

Instruction Mnemonic Notes

Reverse Subtract RSB Subtracts first operand from second operand. This permits
subtraction from constants and shifted registers.

Reverse Subtract with Carry RSC Not available in the Thumb instruction set.
Subtract with Carry SBC -
Subtract SUB Thumb instruction set permits use of a modified immediate

constant or a zero-extended 12-bit immediate constant.

Test Equivalence TEQ Sets flags. Like EOR but with no destination register.

Test TST Sets flags. Like AND but with no destination register.

A4.4.2 Shift instructions

Table A4-3 lists the shift instructions in the ARM and Thumb instruction sets.

Table A4-3 Shift instructions

Instruction See

Arithmetic Shift Right ASR (immediate) on page A8-40

Arithmetic Shift Right ASR (register) on page A8-42

Logical Shift Left LSL (immediate) on page A8-178
Logical Shift Left LSL (register) on page A8-180
Logical Shift Right LSR (immediate) on page A8-182
Logical Shift Right LSR (register) on page A8-184
Rotate Right ROR (immediate) on page A8-278
Rotate Right ROR (register) on page A8-280

Rotate Right with Extend RRX on page A8-282

In the ARM instruction set only, the destination register of these instructions can be the PC, causing the
result to be treated as an address to branch to.

A4-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.4.3 Multiply instructions

The Instruction Sets

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are
same whether the operands are signed or unsigned.

. Table A4-4 summarizes the multiply instructions where there is no distinction between signed and

unsigned quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

. Table A4-5 summarizes the signed multiply instructions.

. Table A4-6 on page A4-12 summarizes the unsigned multiply instructions.

Table A4-4 General multiply instructions

Instruction

See

Operation (number of bits)

Multiply Accumulate

MLA on page A8-190

32=32+32x32

Multiply and Subtract ~ MLS on page A8-192 32=32-32x32
Multiply MUL on page A8-212 32=32x32
Table A4-5 Signed multiply instructions
Instruction See Operation (number of bits)

Signed Multiply Accumulate (halfwords)

SMLABB, SMLABT,
SMIATB, SMLATT on
page A8-330

32=32+16x16

Signed Multiply Accumulate Dual

SMLAD on page A8-332

32=32+16x16+16x 16

Signed Multiply Accumulate Long

SMLAL on page A8-334

64 =64 +32x 32

Signed Multiply Accumulate Long (halfwords)

SMLALBB, SMLALBT,
SMLALTB, SMLALTT on
page A8-336

64=64+16x 16

Signed Multiply Accumulate Long Dual

SMLALD on page A8-338

64=64+16x16+16x 16

Signed Multiply Accumulate (word by
halfword)

SMLAWB, SMLAWT on
page A8-340

32=32+32x162

Signed Multiply Subtract Dual

SMLSD on page A8-342

32=32+16x16-16x 16

Signed Multiply Subtract Long Dual

Signed Most Significant Word Multiply
Accumulate

SMLSLD on page A8-344

SMMLA on page A8-346

64=064+16x16-16x16

32=32+32x32b

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-11

The Instruction Sets

Table A4-5 Signed multiply instructions (continued)

Instruction

See

Operation (number of bits)

Signed Most Significant Word Multiply
Subtract

SMMLS on page A8-348

32=32-32x32°b

Signed Most Significant Word Multiply

SMMUL on page A8-350

32=32x32b

Signed Dual Multiply Add

SMUAD on page A8-352

32=16x16+16x 16

Signed Multiply (halfwords) SMULBB, SMULBT, 32=16x 16
SMULTB, SMULTT on
page A8-354
Signed Multiply Long SMULL on page A8-356 64 =32x32
Signed Multiply (word by halfword) SMULWB, SMULWT on 32=32x162

page A8-358

Signed Dual Multiply Subtract

SMUSD on page A8-360

32=16x16-16x 16

a. The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.
b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

Table A4-6 Unsigned multiply instructions

Instruction

See

Operation (number of bits)

Unsigned Multiply Accumulate Accumulate Long

UMAAL on page A8-482

64=32+32+32x32

Unsigned Multiply Accumulate Long

UMLAL on page A8-484

64 =64 +32x32

Unsigned Multiply Long

UMULL on page A8-486

64 =32x32

A4-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A4.4.4 Saturating instructions

The Instruction Sets

Table A4-7 lists the saturating instructions in the ARM and Thumb instruction sets. For more information,
see Pseudocode details of saturation on page A2-9.

Table A4-7 Saturating instructions

Instruction

See

Operation

Signed Saturate

SSAT on page A8-362

Saturates optionally shifted 32-bit value to selected range

Signed Saturate 16

Unsigned Saturate

SSATI16 on page A8-364

USAT on page A8-504

Saturates two 16-bit values to selected range

Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate 16

USAT16 on page A8-506

Saturates two 16-bit values to selected range

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-13

The Instruction Sets

A4.4.5 Packing and unpacking instructions
Table A4-8 lists the packing and unpacking instructions in the ARM and Thumb instruction sets. These are
all available from ARMv6T?2 in the Thumb instruction set, and from ARMv6 onwards in the ARM
instruction set.
Table A4-8 Packing and unpacking instructions
Instruction See Operation
Pack Halfword PKH on page A8-234 Combine halfwords
Signed Extend and Add Byte SXTAB on page A8-434 Extend 8 bits to 32 and add
Signed Extend and Add Byte 16 SXTABI6 on page A8-436 Dual extend 8 bits to 16 and add
Signed Extend and Add Halfword SXTAH on page A8-438 Extend 16 bits to 32 and add
Signed Extend Byte SXTB on page A8-440 Extend 8 bits to 32
Signed Extend Byte 16 SXTB16 on page A8-442 Dual extend 8 bits to 16
Signed Extend Halfword SXTH on page A8-444 Extend 16 bits to 32
Unsigned Extend and Add Byte UXTAB on page A8-514 Extend 8 bits to 32 and add
Unsigned Extend and Add Byte 16 UXTABI6 on page A8-516 Dual extend 8 bits to 16 and add
Unsigned Extend and Add Halfword ~ UXTAH on page A8-518 Extend 16 bits to 32 and add
Unsigned Extend Byte UXTB on page A8-520 Extend 8 bits to 32
Unsigned Extend Byte 16 UXTB16 on page A8-522 Dual extend 8 bits to 16
Unsigned Extend Halfword UXTH on page A8-524 Extend 16 bits to 32
A4-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.4.6 Miscellaneous data-processing instructions

The Instruction Sets

Table A4-9 lists the miscellaneous data-processing instructions in the ARM and Thumb instruction sets.
Immediate values in these instructions are simple binary numbers.

Table A4-9 Miscellaneous data-processing instructions

Instruction See Notes
Bit Field Clear BFC on page A8-46 -
Bit Field Insert BFI on page A8-48 -

Count Leading Zeros

CLZ on page A8-72

Move Top

MOVT on page A8-200

Moves 16-bit immediate value to top
halfword. Bottom halfword unchanged.

Reverse Bits

RBIT on page A8-270

Byte-Reverse Word

REV on page A8-272

Byte-Reverse Packed Halfword

REV16 on page A8-274

Byte-Reverse Signed Halfword

REVSH on page A8-276

Signed Bit Field Extract

Select Bytes using GE flags

SBFX on page A8-308

SEL on page A8-312

Unsigned Bit Field Extract

UBFX on page A8-466

Unsigned Sum of Absolute Differences

USADS on page A8-500

Unsigned Sum of Absolute Differences
and Accumulate

USADAS on page A8-502

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-15

The Instruction Sets

A4.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to
a destination register, treating the register values as sets of two halfwords or four bytes. They are available
in ARMv6 and above.

These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:

S Signed arithmetic modulo 28 or 216.

Q Signed saturating arithmetic.

SH Signed arithmetic, halving the results.

u Unsigned arithmetic modulo 28 or 216,
uQ Unsigned saturating arithmetic.

UH Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the
bottom halfwords of the same two operands to form the bottom halfword of the result.

ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts
bottom halfwords.

SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds
bottom halfwords.

SUB16 Subtracts each halfword of the second operand from the corresponding halfword of the first
operand to form the corresponding halfword of the result.

ADD8 Adds each byte of the second operand to the corresponding byte of the first operand to form
the corresponding byte of the result.

SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand
to form the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand.

See also Advanced SIMD parallel addition and subtraction on page A4-31.

A4-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Ad4.4.8

The Instruction Sets

Divide instructions

In the ARMV7-R profile, the Thumb instruction set includes signed and unsigned integer divide instructions
that are implemented in hardware. For details of the instructions see:

. SDIV on page A8-310
. UDIV on page A8-468.

Note
. SDIV and UDIV are UNDEFINED in the ARMv7-A profile.
. The ARMvV7-M profile also includes the SDIV and UDIV instructions.

In the ARMV7-R profile, the SCTLR.DZ bit enables divide by zero fault detection, see cI, System Control
Register (SCTLR) on page B4-45:

DZ == Divide-by-zero returns a zero result.

DZ == SDIV and UDIV generate an Undefined Instruction exception on a divide-by-zero.

The SCTLR.DZ bit is cleared to zero on reset.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-17

The Instruction Sets

A4.5 Status register access instructions

The MRS and MSR instructions move the contents of the Application Program Status Register (APSR) to or
from a general-purpose register.

The APSR is described in The Application Program Status Register (APSR) on page A2-14.

The condition flags in the APSR are normally set by executing data-processing instructions, and are
normally used to control the execution of conditional instructions. However, you can set the flags explicitly
using the MSR instruction, and you can read the current state of the flags explicitly using the MRS instruction.

For details of the system level use of status register access instructions CPS, MRS, and MSR, see Chapter B6
System Instructions.

A4-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.6 Load/store instructions
Table A4-10 summarizes the general-purpose register load/store instructions in the ARM and Thumb
instruction sets. See also:
. Load/store multiple instructions on page A4-22
. Advanced SIMD and VFP load/store instructions on page A4-26.
Load/store instructions have several options for addressing memory. For more information, see Addressing
modes on page A4-20.
Table A4-10 Load/store instructions
Data type Load Store 029 Store Load- Store-
unprivileged unprivileged Exclusive Exclusive
32-bit word LDR STR LDRT STRT LDREX STREX
16-bit halfword - STRH - STRHT - STREXH
16-bit unsigned halfword LDRH - LDRHT - LDREXH -
16-bit signed halfword LDRSH - LDRSHT - - -
8-bit byte - STRB - STRBT - STREXB
8-bit unsigned byte LDRB - LDRBT - LDREXB -
8-bit signed byte LDRSB - LDRSBT - - -
Two 32-bit words LDRD STRD - - - -
64-bit doubleword - - - - LDREXD STREXD

A4.6.1

A4.6.2

Loads to the PC

The LDR instruction can be used to load a value into the PC. The value loaded is treated as an interworking
address, as described by the LoadWritePC() pseudocode function in Pseudocode details of operations on
ARM core registers on page A2-12.

Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of
memory respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a
register. Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to
32 bits.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-19

The Instruction Sets

A4.6.3 Unprivileged loads and stores

In an unprivileged mode, unprivileged loads and stores operate in exactly the same way as the corresponding

ordinary operations. In a privileged mode, unprivileged loads and stores are treated as though they were

executed in an unprivileged mode. For more information, see Privilege level access controls for data
accesses on page A3-38.

A4.6.4 Exclusive loads and stores
Exclusive loads and stores provide for shared memory synchronization. For more information, see
Synchronization and semaphores on page A3-12.

A4.6.5 Addressing modes

The address for a load or store is formed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers.

For loads, the base register can be the PC. This permits PC-relative addressing for position-independent

code. Instructions marked (literal) in their title in Chapter A8 Instruction Details are PC-relative loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base
register value. Immediate offset addressing is useful for accessing data elements that
are a fixed distance from the start of the data object, such as structure fields, stack
offsets and input/output registers.

Register The offset is a value from a general-purpose register. This register cannot be the PC.
The value can be added to, or subtracted from, the base register value. Register
offsets are useful for accessing arrays or blocks of data.

Scaled register The offset is a general-purpose register, other than the PC, shifted by an immediate
value, then added to or subtracted from the base register. This means an array index
can be scaled by the size of each array element.

The offset and base register can be used in three different ways to form the memory address. The addressing

modes are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory
address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory
address. The base register is then updated with this new address, to permit automatic
indexing through an array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then
added to or subtracted from the base register. The result is stored back in the base
register, to permit automatic indexing through an array or memory block.

A4-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

Note

Not every variant is available for every instruction, and the range of permitted immediate values and the
options for scaled registers vary from instruction to instruction. See Chapter A8 Instruction Details for full
details for each instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-21

The Instruction Sets

A4.7 Load/store multiple instructions
Load Multiple instructions load a subset, or possibly all, of the general-purpose registers from memory.
Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.
The memory locations are consecutive word-aligned words. The addresses used are obtained from a base
register, and can be either above or below the value in the base register. The base register can optionally be
updated by the total size of the data transferred.
Table A4-11 summarizes the load/store multiple instructions in the ARM and Thumb instruction sets.
Table A4-11 Load/store multiple instructions
Instruction See
Load Multiple, Increment After or Full Descending LDM / LDMIA / LDMFD on page A8-110
Load Multiple, Decrement After or Full Ascending 2 LDMDA / LDMFA on page A8-112
Load Multiple, Decrement Before or Empty Ascending LDMDB / LDMEA on page A8-114
Load Multiple, Increment Before or Empty Descending @ LDMIB / LDMED on page A8-116
Pop multiple registers off the stack b POP on page A8-246
Push multiple registers onto the stack ¢ PUSH on page A8-248
Store Multiple, Increment After or Empty Ascending STM / STMIA / STMEA on page A8-374
Store Multiple, Decrement After or Empty Descending @~ STMDA / STMED on page A8-376
Store Multiple, Decrement Before or Full Descending STMDB / STMFD on page A8-378
Store Multiple, Increment Before or Full Ascending 2 STMIB / STMFA on page A8-380
a. Not available in the Thumb instruction set.
b. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.
c. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register
updating.
System level variants of the LDM and STM instructions load and store User mode registers from a privileged
mode. Another system level variant of the LDM instruction performs an exception return. For details, see
Chapter B6 System Instructions.
A4.7.1 Loads to the PC
The LDM, LDMDA, LDMDB, LDMIB, and POP instructions can be used to load a value into the PC. The value loaded
is treated as an interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode
details of operations on ARM core registers on page A2-12.
A4-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.8 Miscellaneous instructions

Table A4-12 summarizes the miscellaneous instructions in the ARM and Thumb instruction sets.

Table A4-12 Miscellaneous instructions

Instruction

See

Clear-Exclusive

CLREX on page A8-70

Debug hint

DBG on page A8-88

Data Memory Barrier

DMB on page A8-90

Data Synchronization Barrier

DSB on page A8-92

Instruction Synchronization Barrier

If Then (makes following instructions conditional)

ISB on page A8-102

IT on page A8-104

No Operation

NOP on page A8-222

Preload Data

PLD, PLDW (immediate) on page A8-236
PLD (literal) on page A8-238
PLD, PLDW (register) on page A8-240

Preload Instruction

PLI (immediate, literal) on page A8-242
PLI (register) on page A8-244

Set Endianness

SETEND on page A8-314

Send Event

SEV on page A8-316

Supervisor Call

SVC (previously SWI) on page A8-430

Swap, Swap Byte. Use deprecated. 2

‘Wait For Event

SWP, SWPB on page A8-432

WFE on page A8-808

Wait For Interrupt

WEFI on page A8-810

Yield

YIELD on page A8-812

a. Use LoadStore-Exclusive instructions instead, see Load/store instructions on page A4-19.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-23

The Instruction Sets

A4.9 Exception-generating and exception-handling instructions
The following instructions are intended specifically to cause a processor exception to occur:

. The Supervisor Call (SVC, previously SWI) instruction is used to cause an SVC exception to occur. This
is the main mechanism for User mode code to make calls to privileged operating system code. For
more information, see Supervisor Call (SVC) exception on page B1-52.

. The Breakpoint instruction BKPT provides for software breakpoints. For more information, see About
debug events on page C3-2.

. In privileged system level code, the Secure Monitor Call (SMC, previously SMI) instruction. For more
information, see Secure Monitor Call (SMC) exception on page B1-53.

System level variants of the SUBS and LDM instructions can be used to return from exceptions. From ARMV6,
the SRS instruction can be used near the start of an exception handler to store return information, and the RFE
instruction can be used to return from an exception using the stored return information. For details of these
instructions, see Chapter B6 System Instructions.

A4-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.10 Coprocessor instructions
There are three types of instruction for communicating with coprocessors. These permit the processor to:
. Initiate a coprocessor data-processing operation. For details see CDP, CDP2 on page A8-68.

. Transfer general-purpose registers to and from coprocessor registers. For details, see:
— MCR, MCR2 on page A8-186
— MCRR, MCRR2 on page A8-188
— MRC, MRC2 on page A8-202
— MRRC, MRRC?2 on page A8-204.

. Load or store the values of coprocessor registers. For details, see:
— LDC, LDC2 (immediate) on page A8-106
— LDC, LDC2 (literal) on page A8-108
— STC, STC2 on page A8-372.

The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so
each coprocessor is assigned a particular number.

Note

One coprocessor can use more than one of the 16 numbers if a large coprocessor instruction set is required.

Coprocessors 10 and 11 are used, together, for VFP and some Advanced SIMD functionality. There are
different instructions for accessing these coprocessors, of similar types to the instructions for the other
coprocessors, that is, to:

. Initiate a coprocessor data-processing operation. For details see VFP data-processing instructions on
page A4-38.
. Transfer general-purpose registers to and from coprocessor registers. For details, see Advanced SIMD

and VFP register transfer instructions on page A4-29.

. Load or store the values of coprocessor registers. For details, see Advanced SIMD and VFP load/store
instructions on page A4-26.

Coprocessors execute the same instruction stream as the processor, ignoring non-coprocessor instructions
and coprocessor instructions for other coprocessors. Coprocessor instructions that cannot be executed by
any coprocessor hardware cause an Undefined Instruction exception.

For more information about specific coprocessors see Coprocessor support on page A2-68.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-25

The Instruction Sets

A4.11 Advanced SIMD and VFP load/store instructions

Table A4-13 summarizes the extension register load/store instructions in the Advanced SIMD and VFP

instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of
elements, see Element and structure load/store instructions on page A4-27.

Table A4-13 Extension register load/store instructions

Instruction

See

Operation

Vector Load Multiple

VLDM on page A8-626

Load 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)
Load 1-16 consecutive 32-bit registers (VFP only)

Vector Load Register

VLDR on page A8-628

Load one 64-bit register (Adv. SIMD and VFP)
Load one 32-bit register (VFP only)

Vector Store Multiple

VSTM on page A8-784

Store 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)
Store 1-16 consecutive 32-bit registers (VFP only)

Vector Store Register

VSTR on page A8-786

Store one 64-bit register (Adv. SIMD and VFP)
Store one 32-bit register (VFP only)

A4-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.11.1 Element and structure load/store instructions

Table A4-14 shows the element and structure load/store instructions available in the Advanced SIMD
instruction set. Loading and storing structures of more than one element automatically de-interleaves or
interleaves the elements, see Figure A4-1 on page A4-28 for an example of de-interleaving. Interleaving is
the inverse process.

Table A4-14 Element and structure load/store instructions

Instruction See

Load single element

Multiple elements VLDI (multiple single elements) on page A8-602

To one lane VLD (single element to one lane) on page A8-604

To all lanes VLD (single element to all lanes) on page A8-606
Load 2-element structure

Multiple structures ~ VLD2 (multiple 2-element structures) on page A8-608

To one lane VLD?2 (single 2-element structure to one lane) on page A8-610

To all lanes VLD?2 (single 2-element structure to all lanes) on page A8-612

Load 3-element structure
Multiple structures ~ VLD3 (multiple 3-element structures) on page A8-614

To one lane VLD3 (single 3-element structure to one lane) on page A8-616

To all lanes VLD3 (single 3-element structure to all lanes) on page A8-618

Load 4-element structure

Multiple structures ~ VLD4 (multiple 4-element structures) on page A8-620

To one lane VLD4 (single 4-element structure to one lane) on page A8-622

To all lanes VLD4 (single 4-element structure to all lanes) on page A8-624
Store single element

Multiple elements VSTI (multiple single elements) on page A8-768

From one lane VST1I (single element from one lane) on page A8-770

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-27

The Instruction Sets

Table A4-14 Element and structure load/store instructions (continued)

Instruction See

Store 2-element structure

Multiple structures VST2 (multiple 2-element structures) on page A8-772

From one lane VST2 (single 2-element structure from one lane) on page A8-774

Store 3-element structure
Multiple structures ~ VST3 (multiple 3-element structures) on page A8-776

From one lane VST3 (single 3-element structure from one lane) on page A8-778

Store 4-element structure

Multiple structures ~ VST4 (multiple 4-element structures) on page A8-780

From one lane VST4 (single 4-element structure from one lane) on page A8-782

A[0].x
Al0].y
A[0].z \
A[1].x _\\
" Al1l.y
emory All].z \ \
A[2].x _\\ v
Al2]y
-

A[3].x
Al3ly
A[3].z X3 . Xo DO
\\\ . Y3| V2| V1| Yo| D1
23 22 Zo D2 Registers

Figure A4-1 De-interleaving an array of 3-element structures

A4-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A4.12

The Instruction Sets

Advanced SIMD and VFP register transfer instructions

Table A4-15 summarizes the extension register transfer instructions in the Advanced SIMD and VFP
instruction sets. These instructions transfer data from ARM core registers to extension registers, or from

extension registers to ARM core registers.

Advanced SIMD vectors, and single-precision and double-precision VFP registers, are all views of the same
extension register set. For details see Advanced SIMD and VFP extension registers on page A2-21.

Table A4-15 Extension register transfer instructions

Instruction

See

Copy element from ARM core register to every element of
Advanced SIMD vector

VDUP (ARM core register) on page A8-594

Copy byte, halfword, or word from ARM core register to
extension register

VMOV (ARM core register to scalar) on
page A8-644

Copy byte, halfword, or word from extension register to ARM
core register

VMOV (scalar to ARM core register) on
page A8-646

Copy from single-precision VFP register to ARM core register,
or from ARM core register to single-precision VFP register

VMOV (between ARM core register and
single-precision register) on page A8-648

Copy two words from ARM core registers to consecutive
single-precision VFP registers, or from consecutive
single-precision VFP registers to ARM core registers

VMOV (between two ARM core registers and
two single-precision registers) on page A8-650

Copy two words from ARM core registers to doubleword
extension register, or from doubleword extension register to
ARM core registers

VMOV (between two ARM core registers and a
doubleword extension register) on page A8-652

Copy from Advanced SIMD and VFP extension System Register
to ARM core register

VMRS on page A8-658
VMRS on page B6-27 (system level view)

Copy from ARM core register to Advanced SIMD and VFP
extension System Register

VMSR on page A8-660
VMSR on page B6-29 (system level view)

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A4-29

The Instruction Sets

A4.13 Advanced SIMD data-processing operations

Advanced SIMD data-processing operations process registers containing vectors of elements of the same
type packed together, enabling the same operation to be performed on multiple items in parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure A4-2 shows an operation on two
64-bit operand vectors, generating a 64-bit vector result.

Note

Figure A4-2 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and 128-bit
vectors that consist of four 32-bit elements. Other element sizes produce similar figures, but with one, two,
eight, or sixteen operations performed in parallel instead of four.

0 Jom

JUUU
PHHY
L [[[Joo

Figure A4-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the
inputs. In this case, the number of elements in the result vector is the same as the number of elements in the
operand vectors, but each element, and the whole vector, is double the size.

Figure A4-3 shows an example of an Advanced SIMD instruction operating on 64-bit registers, and
generating a 128-bit result.

R T L

vl
| |

Figure A4-3 Advanced SIMD instruction producing wider result

>
»
|
Ve
>

X
or]

There are also Advanced SIMD instructions that have variants that produce vectors containing elements half
the size of the inputs. Figure A4-4 on page A4-31 shows an example of an Advanced SIMD instruction
operating on one 128-bit register, and generating a 64-bit result.

A4-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

| | | | Jor

5 7
Dd

Figure A4-4 Advanced SIMD instruction producing narrower result

Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are
described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the ARM standard floating-point
arithmetic defined in Floating-point data types and arithmetic on page A2-32.

A4.13.1 Advanced SIMD parallel addition and subtraction

Table A4-16 shows the Advanced SIMD parallel add and subtract instructions.

Table A4-16 Advanced SIMD parallel add and subtract instructions

Instruction See

Vector Add VADD (integer) on page A8-536
VADD (floating-point) on page A8-538

Vector Add and Narrow, returning High Half VADDHN on page A8-540

Vector Add Long, Vector Add Wide VADDL, VADDW on page A8-542

Vector Halving Add, Vector Halving Subtract VHADD, VHSUB on page A8-600

Vector Pairwise Add and Accumulate Long VPADAL on page A8-682

Vector Pairwise Add VPADD (integer) on page A8-684
VPADD (floating-point) on page A8-686

Vector Pairwise Add Long VPADDL on page A8-688

Vector Rounding Add and Narrow, returning High Half VRADDHN on page A8-726

Vector Rounding Halving Add VRHADD on page A8-734

Vector Rounding Subtract and Narrow, returning High Half =~ VRSUBHN on page A8-748
Vector Saturating Add VOADD on page A8-700

Vector Saturating Subtract VOSUB on page A8-724

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-31

The Instruction Sets

Table A4-16 Advanced SIMD parallel add and subtract instructions (continued)

Instruction See
Vector Subtract VSUB (integer) on page A8-788
VSUB (floating-point) on page A8-790
Vector Subtract and Narrow, returning High Half VSUBHN on page A8-792
Vector Subtract Long, Vector Subtract Wide VSUBL, VSUBW on page A8-794

A4.13.2 Bitwise Advanced SIMD data-processing instructions

Table A4-17 shows bitwise Advanced SIMD data-processing instructions. These operate on the doubleword
(64-bit) or quadword (128-bit) extension registers, and there is no division into vector elements.

Table A4-17 Bitwise Advanced SIMD data-processing instructions

Instruction

See

Vector Bitwise AND

VAND (register) on page A8-544

Vector Bitwise Bit Clear (AND complement)

VBIC (immediate) on page A8-546
VBIC (register) on page A8-548

Vector Bitwise Exclusive OR

VEOR on page A8-596

Vector Bitwise Insert if False

Vector Bitwise Insert if True

VBIF, VBIT, VBSL on page A8-550

Vector Bitwise Move

VMOV (immediate) on page A8-640
VMOV (register) on page A8-642

Vector Bitwise NOT

VMVN (immediate) on page A8-668
VMVN (register) on page A8-670

Vector Bitwise OR

VORR (immediate) on page A8-678
VORR (register) on page A8-680

Vector Bitwise OR NOT

VORN (register) on page A8-676

Vector Bitwise Select

VBIF, VBIT, VBSL on page A8-550

A4-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

The Instruction Sets

A4.13.3 Advanced SIMD comparison instructions

Table A4-18 shows Advanced SIMD comparison instructions.

Table A4-18 Advanced SIMD comparison instructions

Instruction See

Vector Absolute Compare VACGE, VACGT, VACLE,VACLT on page A8-534
Vector Compare Equal VCEQ (register) on page A8-552

Vector Compare Equal to Zero VCEQ (immediate #0) on page A8-554

Vector Compare Greater Than or Equal VCGE (register) on page A8-556

Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page A8-558

Vector Compare Greater Than VCGT (register) on page A8-560
Vector Compare Greater Than Zero VCGT (immediate #0) on page A8-562
Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page A8-564
Vector Compare Less Than Zero VCLT (immediate #0) on page A8-568
Vector Test Bits VTST on page A8-802

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-33

The Instruction Sets

A4.13.4 Advanced SIMD shift instructions

Table A4-19 lists the shift instructions in the Advanced SIMD instruction set.

Table A4-19 Advanced SIMD shift instructions

Instruction

See

Vector Saturating Rounding Shift Left

Vector Saturating Rounding Shift Right and Narrow

VORSHL on page A8-714

VORSHRN, VORSHRUN on page A8-716

Vector Saturating Shift Left

VOSHL (register) on page A8-718
VOSHL, VOSHLU (immediate) on page A8-720

Vector Saturating Shift Right and Narrow

VOSHRN, VOSHRUN on page A8-722

Vector Rounding Shift Left

VRSHL on page A8-736

Vector Rounding Shift Right

Vector Rounding Shift Right and Accumulate

VRSHR on page A8-738

VRSRA on page A8-746

Vector Rounding Shift Right and Narrow

VRSHRN on page A8-740

Vector Shift Left VSHL (immediate) on page A8-750
VSHL (register) on page A8-752

Vector Shift Left Long VSHLL on page A8-754

Vector Shift Right VSHR on page A8-756

Vector Shift Right and Narrow

VSHRN on page A8-758

Vector Shift Left and Insert

VSLI on page A8-760

Vector Shift Right and Accumulate

VSRA on page A8-764

Vector Shift Right and Insert

VSRI on page A8-766

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A4.13.5 Advanced SIMD multiply instructions

The Instruction Sets

Table A4-20 summarizes the Advanced SIMD multiply instructions.

Table A4-20 Advanced SIMD multiply instructions

Instruction

See

Vector Multiply Accumulate

Vector Multiply Accumulate Long

Vector Multiply Subtract

Vector Multiply Subtract Long

VMLA, VMLAL, VMLS, VMLSL (integer) on
page A8-634

VMLA, VMLS (floating-point) on page A8-636
VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638

Vector Multiply

Vector Multiply Long

VMUL, VMULL (integer and polynomial) on
page A8-662

VMUL (floating-point) on page A8-664
VMUL, VMULL (by scalar) on page A8-666

Vector Saturating Doubling Multiply Accumulate Long

Vector Saturating Doubling Multiply Subtract Long

VODMILAL, VODMLSL on page A8-702

Vector Saturating Doubling Multiply Returning High Half

VODMULH on page A8-704

Vector Saturating Rounding Doubling Multiply Returning

High Half

VORDMULH on page A8-712

Vector Saturating Doubling Multiply Long

VODMULL on page A8-706

Advanced SIMD multiply instructions can operate on vectors of:

. 8-bit, 16-bit, or 32-bit unsigned integers

. 8-bit, 16-bit, or 32-bit signed integers

. 8-bit or 16-bit polynomials over {0,1} (VMUL and VMULL only)
. single-precision (32-bit) floating-point numbers.

They can also act on one vector and one scalar.

Long instructions have doubleword (64-bit) operands, and produce quadword (128-bit) results. Other
Advanced SIMD multiply instructions can have either doubleword or quadword operands, and produce

results of the same size.

VFP multiply instructions can operate on:

. single-precision (32-bit) floating-point numbers

. double-precision (64-bit) floating-point numbers.

Some VFP implementations do not support double-precision numbers.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-35

The Instruction Sets

A4.13.6 Miscellaneous Advanced SIMD data-processing instructions

Table A4-21 shows miscellaneous Advanced SIMD data-processing instructions.

Table A4-21 Miscellaneous Advanced SIMD data-processing instructions

Instruction

See

Vector Absolute Difference and Accumulate

Vector Absolute Difference

VABA, VABAL on page A8-526

VABD, VABDL (integer) on page A8-528
VABD (floating-point) on page A8-530

Vector Absolute

VABS on page A8-532

Vector Convert between floating-point and
fixed point

VCVT (between floating-point and fixed-point, Advanced SIMD) on
page A8-580

Vector Convert between floating-point and
integer

VCVT (between floating-point and integer, Advanced SIMD) on
page A8-576

Vector Convert between half-precision and
single-precision

VCVT (between half-precision and single-precision, Advanced
SIMD) on page A8-586

Vector Count Leading Sign Bits

VCLS on page A8-566

Vector Count Leading Zeros

VCLZ on page A8-570

Vector Count Set Bits

Vector Duplicate scalar

VCNT on page A8-574

VDUP (scalar) on page A8-592

Vector Extract

VEXT on page A8-598

Vector Move and Narrow

VMOVN on page A8-656

Vector Move Long

VMOVL on page A8-654

Vector Maximum, Minimum

Vector Negate

VMAX, VMIN (integer) on page A8-630
VMAX, VMIN (floating-point) on page A8-632

VNEG on page A8-672

Vector Pairwise Maximum, Minimum

VPMAX, VPMIN (integer) on page A8-690
VPMAX, VPMIN (floating-point) on page A8-692

Vector Reciprocal Estimate

VRECPE on page A8-728

Vector Reciprocal Step

Vector Reciprocal Square Root Estimate

VRECPS on page A8-730

VRSQORTE on page A8-742

A4-36

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

The Instruction Sets

Table A4-21 Miscellaneous Advanced SIMD data-processing instructions (continued)

Instruction

See

Vector Reciprocal Square Root Step

VRSQRTS on page A8-744

Vector Reverse

VREV16, VREV32, VREV64 on page A8-732

Vector Saturating Absolute

VQABS on page A8-698

Vector Saturating Move and Narrow

VOMOVN, VOMOVUN on page A8-708

Vector Saturating Negate

Vector Swap

VONEG on page A8-710

VSWP on page A8-796

Vector Table Lookup

VTBL, VTBX on page A8-798

Vector Transpose

VTRN on page A8-800

Vector Unzip

VUZP on page A8-804

Vector Zip

VZIP on page A8-806

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A4-37

The Instruction Sets

A4.14 VFP data-processing instructions

Table A4-22 summarizes the data-processing instructions in the VFP instruction set.

For details of the floating-point arithmetic used by VFP instructions, see Floating-point data types and

arithmetic on page A2-32.

Table A4-22 VFP data-processing instructions

Instruction

See

Absolute value

VABS on page A8-532

Add

VADD (floating-point) on page A8-538

Compare (optionally with exceptions enabled)

VCMP, VCMPE on page A8-572

Convert between floating-point and integer

VCVT, VCVTR (between floating-point and integer, VFP) on
page A8-578

Convert between floating-point and fixed-point

VCVT (between floating-point and fixed-point, VFP) on
page A8-582

Convert between double-precision and
single-precision

VCVT (between double-precision and single-precision) on
page A8-584

Convert between half-precision and single-precision

VCVTB, VCVTT (between half-precision and
single-precision, VFP) on page A8-588

Divide

VDIV on page A8-590

Multiply Accumulate, Multiply Subtract

VMLA, VMLS (floating-point) on page A8-636

Move immediate value to extension register

Copy from one extension register to another

VMOV (immediate) on page A8-640

VMOV (register) on page A8-642

Multiply

VMUL (floating-point) on page A8-664

Negate (invert the sign bit)

VNEG on page A8-672

Multiply Accumulate and Negate, Multiply Subtract
and Negate, Multiply and Negate

VNMLA, VNMLS, VNMUL on page A8-674

Square Root

VSORT on page A8-762

Subtract

VSUB (floating-point) on page A8-790

A4-38

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Chapter A5
ARM Instruction Set Encoding

This chapter describes the encoding of the ARM instruction set. It contains the following sections:

.

.

ARM instruction set encoding on page A5-2

Data-processing and miscellaneous instructions on page A5-4
Load/store word and unsigned byte on page A5-19

Media instructions on page A5-21

Branch, branch with link, and block data transfer on page A5-27
Supervisor Call, and coprocessor instructions on page A5-28
Unconditional instructions on page A5-30.

Note

Architecture variant information in this chapter describes the architecture variant or extension in
which the instruction encoding was introduced into the ARM instruction set. A// means that the
instruction encoding was introduced in ARMv4 or earlier, and so is in all variants of the ARM
instruction set covered by this manual.

In the decode tables in this chapter, an entry of - for a field value means the value of the field does
not affect the decoding.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-1

ARM Instruction Set Encoding

A5.1 ARM instruction set encoding
31 30 29 28 27 26 2524 23 22212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond opl op
The ARM instruction stream is a sequence of word-aligned words. Each ARM instruction is a single 32-bit
word in that stream.
Table AS5-1 shows the major subdivisions of the ARM instruction set, determined by bits [31:25,4].
Most ARM instructions can be conditional, with a condition determined by bits [31:28] of the instruction,
the cond field. For details see The condition field. This applies to all instructions except those with the cond
field equal to Ob1111.
Table A5-1 ARM instruction encoding
cond opl op Instruction classes
not 1111 00x - Data-processing and miscellaneous instructions on page A5-4.
010 - Load/store word and unsigned byte on page A5-19.
011 0 Load/store word and unsigned byte on page A5-19.
1 Media instructions on page AS-21.
10x - Branch, branch with link, and block data transfer on page A5-27.
11x - Supervisor Call, and coprocessor instructions on page A5-28.
Includes VFP instructions and Advanced SIMD data transfers, see Chapter A7 Advanced
SIMD and VFP Instruction Encoding.
1111 - - If the cond field is Ob1111, the instruction can only be executed unconditionally, see
Unconditional instructions on page A5-30.
Includes Advanced SIMD instructions, see Chapter A7 Advanced SIMD and VFP
Instruction Encoding.
A5.1.1 The condition field
Every conditional instruction contains a 4-bit condition code field in bits 31 to 28:
31 30 29 28 27 26 25 24 23 22212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond
This field contains one of the values 0b0000-0b1110 described in Table A8-1 on page A8-8. Most
instruction mnemonics can be extended with the letters defined in the mnemonic extension field.
If the always (AL) condition is specified, the instruction is executed irrespective of the value of the condition
code flags. The absence of a condition code on an instruction mnemonic implies the AL condition code.
A5-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.1.2

A5.1.3

A5.1.4

ARM Instruction Set Encoding

UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

. Unpredictable behavior. The instruction is described as UNPREDICTABLE.

. An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.
An instruction is UNPREDICTABLE if:

. it is declared as UNPREDICTABLE in an instruction description or in this chapter

. the pseudocode for that encoding does not indicate that a different special case applies, and a bit
marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1 respectively.

Unless otherwise specified:
. ARM instructions introduced in an architecture variant are UNDEFINED in earlier architecture variants.

. ARM instructions introduced in one or more architecture extensions are UNDEFINED if none of those
extensions are implemented.

The PC and the use of 0b1111 as a register specifier
In ARM instructions, the use of Ob1111 as a register specifier specifies the PC.

Many instructions are UNPREDICTABLE if they use Ob1111 as a register specifier. This is specified by
pseudocode in the instruction description.

Note

Use of the PC as the base register in any store instruction is deprecated in ARMv7.

The SP and the use of 0b1101 as a register specifier

In ARM instructions, the use of Ob1101 as a register specifier specifies the SP.

ARM deprecates:
. using SP for any purpose other than as a stack pointer
. using the SP in ARM instructions in ways other that those listed in 32-bit Thumb instruction support

for R13 on page A6-4, except that ARM does not deprecate the use of instructions of the following
form that write a word-aligned address to SP:

SUB SP, <Rd>, #<const>

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-3

ARM Instruction Set Encoding

A5.2 Data-processing and miscellaneous instructions
31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

cond 0 O|op opl op2

Table A5-2 shows the allocation of encodings in this space.

Table A5-2 Data-processing and miscellaneous instructions

op opi op2 Instruction or instruction class Variant

0 not 10xx0 xxx0 Data-processing (register) on page AS5-5 -

0xx1 Data-processing (register-shifted register) on page AS5-7 -

10xx0 Oxxx Miscellaneous instructions on page A5-18 -

1xx0 Halfword multiply and multiply-accumulate on page A5-13 -

0xxxx 1001 Multiply and multiply-accumulate on page AS5-12 -

1xXXX 1001 Synchronization primitives on page A5-16 -

not Oxx1x 1011 Extra load/store instructions on page A5-14 -

11x1 Extra load/store instructions on page AS5-14 -

Oxx1x 1011 Extra load/store instructions (unprivileged) on page A5-15 -

11x1 Extra load/store instructions (unprivileged) on page A5-15 -

1 not 10xx0 - Data-processing (immediate) on page A5-8 -
10000 - 16-bit immediate load (MOV (immediate) on page A8-194) voT2
10100 - High halfword 16-bit immediate load (MOVT on page A8-200) v6T2
10x10 - MSR (immediate), and hints on page A5-17 -

A5-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.2.1

Data-processing (register)

ARM Instruction Set Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O

cond

000

opl

op2

op3 |0

If opl == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-3 shows the allocation of encodings in this space. These encodings are in all architecture variants.

Table A5-3 Data-processing (register) instructions

op1 op2 op3 Instruction See
0000x - - Bitwise AND AND (register) on page A8-36
0001x - - Bitwise Exclusive OR EOR (register) on page A8-96
0010x - - Subtract SUB (register) on page A8-422
0011x - - Reverse Subtract RSB (register) on page A8-286
0100x - - Add ADD (register) on page A8-24
0101x - - Add with Carry ADC (register) on page A8-16
0110x - - Subtract with Carry SBC (register) on page A8-304
0111x - - Reverse Subtract with Carry ~ RSC (register) on page A8-292
10001 - - Test TST (register) on page A8-456
10011 - - Test Equivalence TEQ (register) on page A8-450
10101 - - Compare CMP (register) on page A8-82
10111 - - Compare Negative CMN (register) on page A8-76
1100x - - Bitwise OR ORR (register) on page A8-230
1101x 00000 00 Move MOV (register) on page A8-196
not 00000 00 Logical Shift Left LSL (immediate) on page A8-178
- 01 Logical Shift Right LSR (immediate) on page A8-182
- 10 Arithmetic Shift Right ASR (immediate) on page A8-40
00000 11 Rotate Right with Extend RRX on page A8-282
not 00000 11 Rotate Right ROR (immediate) on page A8-278

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-5

ARM Instruction Set Encoding

Table A5-3 Data-processing (register) instructions (continued)

op1 op2 op3 Instruction See
1110x - - Bitwise Bit Clear BIC (register) on page A8-52
11ix - - Bitwise NOT MVN (register) on page A8-216

A5-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.2.2 Data-processing (register-shifted register)

ARM Instruction Set Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O

cond

000

opl

0|op2 |1

If opl == 0b10xx0, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-4 shows the allocation of encodings in this space. These encodings are in all architecture variants.

Table A5-4 Data-processing (register-shifted register) instructions

opi op2 Instruction See
0000x - Bitwise AND AND (register-shifted register) on page A8-38
0001x - Bitwise Exclusive OR EOR (register-shifted register) on page A8-98
0010x - Subtract SUB (register-shifted register) on page A8-424
0011x - Reverse Subtract RSB (register-shifted register) on page A8-288
0100x - Add ADD (register-shifted register) on page A8-26
0101x - Add with Carry ADC (register-shifted register) on page A8-18
0110x - Subtract with Carry SBC (register-shifted register) on page A8-306
0111x - Reverse Subtract with Carry ~ RSC (register-shifted register) on page A8-294
10001 - Test TST (register-shifted register) on page A8-458
10011 - Test Equivalence TEQ (register-shifted register) on page A8-452
10101 - Compare CMP (register-shifted register) on page A8-84
10111 - Compare Negative CMN (register-shifted register) on page A8-78
1100x - Bitwise OR ORR (register-shifted register) on page A8-232
1101x 00 Logical Shift Left LSL (register) on page A8-180

01 Logical Shift Right LSR (register) on page A8-184

10 Arithmetic Shift Right ASR (register) on page A8-42

11 Rotate Right ROR (register) on page A8-280
1110x - Bitwise Bit Clear BIC (register-shifted register) on page A8-54
1111x - Bitwise NOT MVN (register-shifted register) on page A8-218

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-7

ARM Instruction Set Encoding

A5.2.3 Data-processing (immediate)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 001 op Rn
If op == 0b10xx0, see Data-processing and miscellaneous instructions on page AS-4.
Table A5-5 shows the allocation of encodings in this space. These encodings are in all architecture variants.
Table A5-5 Data-processing (immediate) instructions
op Rn Instruction See
0000x - Bitwise AND AND (immediate) on page A8-34
0001x - Bitwise Exclusive OR EOR (immediate) on page A8-94
0010x not 1111 Subtract SUB (immediate, ARM) on page A8-420
1111 Form PC-relative address ADR on page A8-32
0011x - Reverse Subtract RSB (immediate) on page A8-284
0100x not1111 Add ADD (immediate, ARM) on page A8-22
1111 Form PC-relative address ADR on page A8-32
0101x - Add with Carry ADC (immediate) on page A8-14
0110x - Subtract with Carry SBC (immediate) on page A8-302
0111x - Reverse Subtract with Carry ~ RSC (immediate) on page A8-290
10001 - Test TST (immediate) on page A8-454
10011 - Test Equivalence TEQ (immediate) on page A8-448
10101 - Compare CMP (immediate) on page A8-80
10111 - Compare Negative CMN (immediate) on page A8-74
1100x - Bitwise OR ORR (immediate) on page A8-228
1101x - Move MOV (immediate) on page A8-194
1110x - Bitwise Bit Clear BIC (immediate) on page A8-50
1111x - Bitwise NOT MVN (immediate) on page A8-214
These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This
provides a more useful range of values. For details see Modified immediate constants in ARM instructions
on page A5-9.
A5-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.2.4 Modified immediate constants in ARM instructions
1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

rotation |a b ¢ d e f g h

Table A5-6 shows the range of modified immediate constants available in ARM data-processing
instructions, and how they are encoded in the a, b, ¢, d, e, f, g, h, and rotation fields in the instruction.

Table A5-6 Encoding of modified immediates in ARM processing instructions

rotation <const> 2

0000 00000000 00000000 00000000 abcdefgh
0001 gh 0 00000000 000 00abcdef
0010 efgh0000 00000000 00000000 000Qabcd
0011 cdefgh00 00000000 00000000 000000ab
0100 abcdefgh 00000000 00000000 00000000

8-bit values shifted to other even-numbered positions

1001 00000000 00abcdef gh000000 00000000

8-bit values shifted to other even-numbered positions

1110 00000000 00000000 0000abcd efgho00o

1111 00 0 00000000 Qab cdefgh0o

a. In this table, the immediate constant value is shown in binary form, to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value
is specified in the usual way (a decimal number by default).

Note

The range of values available in ARM modified immediate constants is slightly different from the range of
values available in 32-bit Thumb instructions. See Modified immediate constants in Thumb instructions on
page A6-17.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-9

ARM Instruction Set Encoding

Carry out

A logical instruction with rotation == 0b0000 does not affect APSR.C. Otherwise, a logical instruction that
sets the flags sets APSR.C to the value of bit [31] of the modified immediate constant.

Constants with multiple encodings

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the
encoding with the lowest unsigned value of the rotation field. This is the encoding that appears first in
Table A5-6 on page A5-9. For example, the constant #3 must be encoded with (rotation, abcdefgh) ==
(0b0000, 0b00000011), not (0b0001, 0b00001100), (0b0010, 0b00110000), or (0b0011, 0b11000000).

In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and
permitted constants outside that range are encoded with rotation !=0b0000. A flag-setting logical instruction
with a modified immediate constant therefore leaves APSR.C unchanged if the constant is in the range 0-255
and sets it to the most significant bit of the constant otherwise. This matches the behavior of Thumb
modified immediate constants for all constants that are permitted in both the ARM and Thumb instruction
sets.

An alternative syntax is available for a modified immediate constant that permits the programmer to specify
the encoding directly. In this syntax, #<const> is instead written as #<byte>,#<rot>, where:

<byte> is the numeric value of abcdefgh, in the range 0-255
<rot> is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all ARM data-processing instructions with modified immediate constants to be
disassembled to assembler syntax that will assemble to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have
different effects on APSR.C to those obtained with the normal #<const> syntax. For example,

ANDS R1,R2,#12,#2 has the same behavior as ANDS R1,R2,#3 except that it sets APSR.C to O instead of leaving
it unchanged. Such variants of flag-setting logical instructions do not have equivalents in the Thumb
instruction set, and their use is deprecated.

Operation

// ARMExpandImm()
/] ==m=m==m=m====

bits(32) ARMExpandImm(bits(12) imm12)

// APSR.C argument to following function call does not affect the imm32 result.
(imm32, -) = ARMExpandImm_C(imm12, APSR.C);

return imm32;

// ARMExpandImm_C()
e ——

(bits(32), bit) ARMExpandImm_C(bits(12) imml2, bit carry_in)

A5-10

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

unrotated_value = ZeroExtend(imm12<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2xUInt(imml2<11:8>), carry_in);

return (imm32, carry_out);

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-11

ARM Instruction Set Encoding

A5.2.5 Multiply and multiply-accumulate
3130 29 28 27 26 2524 23222120 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

cond

0000 op

1 001

Table AS-7 shows the allocation of encodings in this space.

Table A5-7 Multiply and multiply-accumulate instructions

op Instruction See Variant
000x Multiply MUL on page A8-212 All
001x Multiply Accumulate MLA on page A8-190 All
0100 Unsigned Multiply Accumulate Accumulate Long UMAAL on page A8-482 v6
0101 UNDEFINED - -
0110 Multiply and Subtract MLS on page A8-192 voT2
0111 UNDEFINED - -
100x Unsigned Multiply Long UMULL on page A8-486 All
101x Unsigned Multiply Accumulate Long UMLAL on page A8-484 All
110x Signed Multiply Long SMULL on page A8-356 All
111x Signed Multiply Accumulate Long SMLAL on page A8-334 All

A5-12

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

ARM Instruction Set Encoding

A5.2.6 Saturating addition and subtraction
31 30 29 28 27 26 25 24 232221 20 19 18 17 16 15 14 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 00 1({0] op |O 0101

Table A5-8 shows the allocation of encodings in this space. These encodings are all available in ARMVSTE
and above, and are UNDEFINED in earlier variants of the architecture.

Table A5-8 Saturating addition and subtraction instructions

op Instruction See

00 Saturating Add QADD on page A8-250
01 Saturating Subtract QOSUB on page A8-264
10 Saturating Double and Add ODADD on page A8-258

11 Saturating Double and Subtract =~ QDSUB on page A8-260

A5.2.7 Halfword multiply and multiply-accumulate
3130 29 28 27 26 25 24 23222120 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 00 1{0]opl|O 1 op| 0

Table A5-9 shows the allocation of encodings in this space.

These encodings are signed multiply (SMUL) and signed multiply-accumulate (SMLA) instructions, operating
on 16-bit values, or mixed 16-bit and 32-bit values. The results and accumulators are 32-bit or 64-bit.

These encodings are all available in ARMvSTE and above, and are UNDEFINED in earlier variants of the

architecture.
Table A5-9 Halfword multiply and multiply-accumulate instructions
opl op Instruction See
00 - Signed 16-bit multiply, 32-bit accumulate SMIABB, SMLABT, SMLATB, SMLATT on

page A8-330

01 0 Signed 16-bit x 32-bit multiply, 32-bit accumulate =~ SMLAWB, SMLAWT on page A8-340

01 1 Signed 16-bit x 32-bit multiply, 32-bit result SMULWB, SMULWT on page A8-358

10 - Signed 16-bit multiply, 64-bit accumulate SMLALBB, SMLALBT, SMLALTB, SMLALTT
on page A8-336

11 - Signed 16-bit multiply, 32-bit result SMULBB, SMULBT, SMULTB, SMULTT on
page A8-354

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-13

ARM Instruction Set Encoding

A5.2.8 Extra load/store instructions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 000 opl Rn 1|{op2 |1
If op1l == 0b0xx1x or op2 == 0b00, see Data-processing and miscellaneous instructions on page A5-4.
Table A5-10 shows the allocation of encodings in this space.

Table A5-10 Extra load/store instructions
op2 opi Rn Instruction See Variant
01 xx0x0 - Store Halfword STRH (register) on page A8-412 All

xx0x1 - Load Halfword LDRH (register) on page A8-156 All
xx1x0 - Store Halfword STRH (immediate, ARM) on page A8-410 All
xx1x1 not1111 Load Halfword LDRH (immediate, ARM) on page A8-152 All
1111 Load Halfword LDRH (literal) on page A8-154 All

10 xx0x0 - Load Dual LDRD (register) on page A8-140 v5TE
xx0x1 - Load Signed Byte LDRSB (register) on page A8-164 All

xx1x0 not 1111 Load Dual LDRD (immediate) on page A8-136 v5STE

1111 Load Dual LDRD (literal) on page A8-138 v5TE
xx1x1 not 1111 Load Signed Byte LDRSB (immediate) on page A8-160 All
1111 Load Signed Byte LDRSB (literal) on page A8-162 All
11 xx0x0 - Store Dual STRD (register) on page A8-398 All
xx0x1 - Load Signed Halfword =~ LDRSH (register) on page A8-172 All
xx1x0 - Store Dual STRD (immediate) on page A8-396 All
xx1x1 not 1111 Load Signed Halfword LDRSH (immediate) on page A8-168 All
1111 Load Signed Halfword = LDRSH (literal) on page A8-170 All

A5-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.2.9 Extra load/store instructions (unprivileged)
3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0000 1 |op Rt 1{op2 |1

If op2 == 0b00, see Data-processing and miscellaneous instructions on page A5-4.

Table A5-11 shows the allocation of encodings in this space. The instruction encodings are all available in
ARMvV6T?2 and above, and are UNDEFINED in earlier variants of the architecture.

Table A5-11 Extra load/store instructions (unprivileged)

op2 op Rt Instruction See
01 0 - Store Halfword Unprivileged STRHT on page A8-414
1 - Load Halfword Unprivileged LDRHT on page A8-158

1x 0 xxxX0 UNPREDICTABLE -

xxx 1 UNDEFINED -

10 1 - Load Signed Byte Unprivileged LDRSBT on page A8-166

11 1 - Load Signed Halfword Unprivileged =~ LDRSHT on page A8-174

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-15

ARM Instruction Set Encoding

A5.2.10 Synchronization primitives
3130 29 28 27 26 25 24 23 222120 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0001 op 1 001

Table AS-12 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

Table A5-12 Synchronization primitives

op Instruction See Variant
0x00 Swap Word, Swap Byte SWP, SWPB on page A8-4322 All
1000 Store Register Exclusive STREX on page A8-400 v6

1001 Load Register Exclusive LDREX on page A8-142 vb

1010 Store Register Exclusive Doubleword ~ STREXD on page A8-404 voK
1011 Load Register Exclusive Doubleword ~ LDREXD on page A8-146 voK
1100 Store Register Exclusive Byte STREXB on page A8-402 voK
1101 Load Register Exclusive Byte LDREXB on page A8-144 v6K
1110 Store Register Exclusive Halfword STREXH on page A8-406 voK
1111 Load Register Exclusive Halfword LDREXH on page A8-148 voK

a. Use of these instructions is deprecated.

A5-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.2.11

MSR (immediate), and hints

ARM Instruction Set Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O

cond

001

1 Ojop|1 O opl

op2

Table A5-13 shows the allocation of encodings in this space.

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

Table A5-13 MSR (immediate), and hints

op opl op2 Instruction See Variant
0 0000 00000000 No Operation hint NOP on page A8-222 voK, v6T2
00000001 Yield hint YIELD on page A8-812 v6K
00000010 Wait For Event hint WFE on page A8-808 voK
00000011 Wait For Interrupt hint WEFI on page A8-810 voK
00000100 Send Event hint SEV on page A8-316 voK
1111xxxx Debug hint DBG on page A8-88 v7
0100 - Move to Special Register, MSR (immediate) on page A8-208 All
application level
1x00 -
xx01 - Move to Special Register, system MSR (immediate) on page B6-12 All
level
xxIx -
1 - - Move to Special Register, system MSR (immediate) on page B6-12 All
level
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-17

ARM Instruction Set Encoding

A5.2.12 Miscellaneous instructions
313029 28 27 26 2524 2322212019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

cond

00Ol O] op |O opl

0| op2

Table AS-14 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

Table A5-14 Miscellaneous instructions

op2 op opl Instruction or instruction class See Variant
000 xO0 =xxxx Move Special Register to Register MRS on page A8-206 All
MRS on page B6-10
01 xx00 Move to Special Register, application level =~ MSR (register) on page A8-210 All
xx01 Move to Special Register, system level MSR (register) on page B6-14 All
xx1x
11 - Move to Special Register, system level MSR (register) on page B6-14 All
oor o1 - Branch and Exchange BX on page A8-62 v4T
11 - Count Leading Zeros CLZ on page A8-72 v6
010 01 - Branch and Exchange Jazelle BXJ on page A8-64 v5TEJ
011 o1 - Branch with Link and Exchange BLX (register) on page A8-60 v5T
101 - - Saturating addition and subtraction Saturating addition and -
subtraction on page A5-13
111 01 - Breakpoint BKPT on page A8-56 v5T
11 - Secure Monitor Call SMC (previously SMI) on Security
page B6-18 Extensions
A5-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.3

Load/store word and unsigned byte
31 30 29 28 27 26 2524 2322212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0

ARM Instruction Set Encoding

cond

01

A

opl Rn

B

These instructions have either A == 0 or B == 0. For instructions with A == 1 and B == 1, see Media
instructions on page AS5-21.

Table A5-15 shows the allocation of encodings in this space. These encodings are in all architecture

variants.
Table A5-15 Single data transfer instructions

op1 B Rn Instruction See

xx0x0 not 0x010 - - Store Register STR (immediate, ARM) on
page A8-384

xx0x0 not 0x010 0 - Store Register STR (register) on page A8-386

0x010 - - Store Register Unprivileged STRT on page A8-416

0x010 0o -

xx0x1 not 0x011 - not 1111 Load Register (immediate) LDR (immediate, ARM) on
page A8-120

xx0x1 not 0x011 - 1111 Load Register (literal) LDR (literal) on page A8-122

xx0x1 not 0x011 0 - Load Register LDR (register) on page A8-124

0x011 - - Load Register Unprivileged LDRT on page A8-176

0x011 0 -

xx1x0 not 0x110 - - Store Register Byte (immediate) STRB (immediate, ARM) on
page A8-390

xx1x0not 0x110 0 - Store Register Byte (register) STRB (register) on page A8-392

0x110 - - Store Register Byte Unprivileged STRBT on page A8-394

0x110 0o -

xx1x1 not Ox111 - not 1111 Load Register Byte (immediate) LDRB (immediate, ARM) on
page A8-128

xx1x1 not Ox111 - 1111 Load Register Byte (literal) LDRB (literal) on page A8-130

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-19

ARM Instruction Set Encoding

Table A5-15 Single data transfer instructions (continued)

A opi B Rn Instruction See

1 xx1x1 not Ox111 0 - Load Register Byte (register) LDRB (register) on page A8-132
0 Ox111 - - Load Register Byte Unprivileged =~ LDRBT on page A8-134

1 Ox111 0o -

A5-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.4 Media instructions
31 30 29 28 27 26 2524 2322212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 011 opl Rd op2 1 Rn
Table A5-16 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

Table A5-16 Media instructions
op1 op2 Rd Rn Instructions See Variant
000xx - - - - Parallel addition and -

subtraction, signed on
page AS5-22
001xx - - - - Parallel addition and -
subtraction, unsigned on
page A5-23
Olxxx - - - - Packing, unpacking, -
saturation, and reversal on
page A5-24
10xxx - - - - Signed multiplies on -
page A5-26
11000 000 1111 - Unsigned Sum of Absolute USADS on page A8-500 v6
Differences
000 notl1111 - Unsigned Sum of Absolute USADAS on page A8-502 v6
Differences and Accumulate
1101x x10 - - Signed Bit Field Extract SBFX on page A8-308 voT2
1110x x00 - 1111 Bit Field Clear BFC on page A8-46 voT2
- not 1111 Bit Field Insert BFI on page A8-48 v6T2
1111x x10 - - Unsigned Bit Field Extract UBFX on page A8-466 voT2
111 111 - - Permanently UNDEFINED. This space will not be allocated in future.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-21

ARM Instruction Set Encoding

A5.4.1 Parallel addition and subtraction, signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 01100 0fopl op2 |1
Table AS5-17 shows the allocation of encodings in this space. These encodings are all available in ARMv6
and above, and are UNDEFINED in earlier variants of the architecture.
Other encodings in this space are UNDEFINED.
Table A5-17 Signed parallel addition and subtraction instructions
opl op2 Instruction See
01 000 Add 16-bit SADD16 on page A8-296
01 001 Add and Subtract with Exchange SASX on page A8-300
01 010 Subtract and Add with Exchange SSAX on page A8-366
01 011 Subtract 16-bit SSUBI6 on page A8-368
01 100 Add 8-bit SADDS on page A8-298
01 111 Subtract 8-bit SSUBS on page A8-370
Saturating instructions
10 000 Saturating Add 16-bit QADDI6 on page A8-252
10 001 Saturating Add and Subtract with Exchange = QASX on page A8-256
10 010 Saturating Subtract and Add with Exchange = QSAX on page A8-262
10 011 Saturating Subtract 16-bit QOSUBI6 on page A8-266
10 100 Saturating Add 8-bit QADDS on page A8-254
10 111 Saturating Subtract 8-bit QSUBS on page A8-268
Halving instructions
11 000 Halving Add 16-bit SHADD16 on page A8-318
11 001 Halving Add and Subtract with Exchange SHASX on page A8-322
11 010 Halving Subtract and Add with Exchange SHSAX on page A8-324
11 011 Halving Subtract 16-bit SHSUBI16 on page A8-326
11 100 Halving Add 8-bit SHADDS on page A8-320
11 111 Halving Subtract 8-bit SHSUBS on page A8-328
A5-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A5.4.2

Parallel addition and subtraction, unsigned

ARM Instruction Set Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O

cond

01

1 001

opl

op2 |1

Table A5-18 shows the allocation of encodings in this space. These encodings are all available in ARMv6
and above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

Table A5-18 Unsigned parallel addition and subtractions instructions

opl op2 Instruction See

01 000 Add 16-bit UADD16 on page A8-460
01 001 Add and Subtract with Exchange UASX on page A8-464

01 010 Subtract and Add with Exchange USAX on page A8-508

01 011 Subtract 16-bit USUBI6 on page A8-510
01 100 Add 8-bit UADDS on page A8-462
01 111 Subtract 8-bit USUBS on page A8-512

Saturating instructions

10 000 Saturating Add 16-bit UQADDI6 on page A8-488
10 001 Saturating Add and Subtract with Exchange =~ UQASX on page A8-492

10 010 Saturating Subtract and Add with Exchange =~ UQSAX on page A8-494

10 011 Saturating Subtract 16-bit UQSUBI6 on page A8-496
10 100 Saturating Add 8-bit UQADDS on page A8-490
10 111 Saturating Subtract 8-bit UQSUBS on page A8-498

Halving instructions

11 000 Halving Add 16-bit UHADD16 on page A8-470
11 001 Halving Add and Subtract with Exchange UHASX on page A8-474

11 010 Halving Subtract and Add with Exchange UHSAX on page A8-476

11 011 Halving Subtract 16-bit UHSUBI6 on page A8-478
11 100 Halving Add 8-bit UHADDS on page A8-472
11 111 Halving Subtract 8-bit UHSUBS on page A8-480

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A5-23

ARM Instruction Set Encoding

A5.4.3 Packing, unpacking, saturation, and reversal
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 0110 1| opl A op2 |1
Table AS5-19 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

Table A5-19 Packing, unpacking, saturation, and reversal instructions
opl op2 A Instructions See Variant
000 xx0 - Pack Halfword PKH on page A8-234 v6
0lx xx0 - Signed Saturate SSAT on page A8-362 v6
11Ix xx0 - Unsigned Saturate USAT on page A8-504 vo
000 OI1 mnotl1l11l Signed Extend and Add Byte 16 SXTABI6 on page A8-436 v6

1111 Signed Extend Byte 16 SXTB16 on page A8-442 v6

101 - Select Bytes SEL on page A8-312 v6

010 001 - Signed Saturate 16 SSAT16 on page A8-364 v6
011 not1111 Signed Extend and Add Byte SXTAB on page A8-434 v6

1111 Signed Extend Byte SXTB on page A8-440 v6

011 001 - Byte-Reverse Word REV on page A8-272 v6
011 not1111 Signed Extend and Add Halfword SXTAH on page A8-438 v6

1111 Signed Extend Halfword SXTH on page A8-444 v6

011 101 - Byte-Reverse Packed Halfword REV16 on page A8-274 v6
100 011 not1111 Unsigned Extend and Add Byte 16 UXTABI6 on page A8-516 v6
1111 Unsigned Extend Byte 16 UXTBI16 on page A8-522 v6

110 001 - Unsigned Saturate 16 USAT16 on page A8-506 v6
011 not1111 Unsigned Extend and Add Byte UXTAB on page A8-514 v6

1111 Unsigned Extend Byte UXTB on page A8-520 v6

A5-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

Table A5-19 Packing, unpacking, saturation, and reversal instructions (continued)

opl op2 A Instructions See Variant
111 001 - Reverse Bits RBIT on page A8-270 voT2
011 not 1111 Unsigned Extend and Add Halfword =~ UXTAH on page A8-518 v6
1111 Unsigned Extend Halfword UXTH on page A8-524 v6
101 - Byte-Reverse Signed Halfword REVSH on page A8-276 v6
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-25

ARM Instruction Set Encoding

A5.4.4 Signed multiplies
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 0111 0| opl A op2 |1
Table AS5-20 shows the allocation of encodings in this space. These encodings are all available in ARMv6T?2
and above, and are UNDEFINED in earlier variants of the architecture.
Other encodings in this space are UNDEFINED.
Table A5-20 Signed multiply instructions
opl op2 A Instruction See
000 00x notllll Signed Multiply Accumulate Dual SMLAD on page A8-332
1111 Signed Dual Multiply Add SMUAD on page A8-352
0l1x not1111 Signed Multiply Subtract Dual SMLSD on page A8-342
1111 Signed Dual Multiply Subtract SMUSD on page A8-360
100 00x - Signed Multiply Accumulate Long Dual SMLALD on page A8-338
0lx - Signed Multiply Subtract Long Dual SMLSLD on page A8-344
101 00x not1111 Signed Most Significant Word Multiply Accumulate ~ SMMLA on page A8-346
1111 Signed Most Significant Word Multiply SMMUL on page A8-350
11x - Signed Most Significant Word Multiply Subtract SMMLS on page A8-348
A5-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.5 Branch, branch with link, and block data transfer
31 30 29 28 27 26 25 24 232221201918 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

cond

10

op R

Table A5-21 shows the allocation of encodings in this space. These encodings are in all architecture

variants.

Table A5-21 Branch, branch with link, and block data transfer instructions

op R Instructions See
0000x0 - Store Multiple Decrement After STMDA / STMED on page A8-376
0000x1 - Load Multiple Decrement After LDMDA / LDMFA on page A8-112
0010x0 - Store Multiple (Increment After) STM /STMIA / STMEA on page A8-374
0010x1 - Load Multiple (Increment After) LDM / LDMIA / LDMFD on page A8-110
0100x0 - Store Multiple Decrement Before =~ STMDB /STMFD on page A8-378
0100x1 - Load Multiple Decrement Before =~ LDMDB /LDMEA on page A8-114
0110x0 - Store Multiple Increment Before ~ STMIB / STMFA on page A8-380
0110x1 - Load Multiple Increment Before =~ LDMIB / LDMED on page A8-116
Oxx1x0 - Store Multiple (user registers) STM (user registers) on page B6-22
Oxx1x1 O Load Multiple (user registers) LDM (user registers) on page B6-7

1 Load Multiple (exception return) LDM (exception return) on page B6-5
10xxxx - Branch B on page A8-44
11xxxx - Branch with Link BL, BLX (immediate) on page A8-58

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-27

ARM Instruction Set Encoding

A5.6 Supervisor Call, and coprocessor instructions
31 30 29 28 27 26 2524 23 22212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 11 opl Rn coproc op
Table A5-22 shows the allocation of encodings in this space.

Table A5-22 Supervisor Call, and coprocessor instructions
op1 op coproc Rn Instructions See Variant
Oxxxxx2 - 101x - Advanced SIMD, VFP Extension register load/store

instructions on page A7-26
Oxxxx02 - not 101x - Store Coprocessor STC, STC2 on page A8-372 All
Oxxxx12 - not 101x not 1111 Load Coprocessor LDC, LDC?2 (immediate) on All
page A8-106
1111 Load Coprocessor LDC, LDC2 (literal) on All
page A8-108
00000x - - - UNDEFINED - -
00010x - 101x - Advanced SIMD, VFP 64-bit transfers between ARM core and
extension registers on page A7-32
000100 - not 101x - Move to Coprocessor from MCRR, MCRR2 on v5TE
two ARM core registers page A8-188
000101 - not 101x - Move to two ARM core MRRC, MRRC2 on v5TE
registers from Coprocessor page A8-204
10xxxx 0 101x - - VFP data-processing instructions on
page A7-24
not 101x - Coprocessor data operations CDP, CDP2 on page A8-68 All
1 101x - Advanced SIMD, VFP 8, 16, and 32-bit transfer between ARM
core and extension registers on
page A7-31
10xxx0 1 not 101x - Move to Coprocessor from MCR, MCR2 on All
ARM core register page A8-186
A5-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

Table A5-22 Supervisor Call, and coprocessor instructions (continued)

opi op coproc Rn Instructions See Variant
10xxx1 1 not 101x - Move to ARM core register ~ MRC, MRC2 on All
from Coprocessor page A8-202
11xxxx - - - Supervisor Call SVC (previously SWI) on All
page A8-430

a. But not 000x0x

For more information about specific coprocessors see Coprocessor support on page A2-68.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-29

ARM Instruction Set Encoding

A5.7 Unconditional instructions
31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
1 111 opl Rn op
Table A5-23 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED in ARMvS5 and above.
All encodings in this space are UNPREDICTABLE in ARMv4 and ARMv4T.

Table A5-23 Unconditional instructions
op1 op Rn Instruction See Variant
OXXXXXXX - - - Miscellaneous instructions, memory hints, and

Advanced SIMD instructions on page A5-31
100xx1x0 - - Store Return State SRS on page B6-20 v6
100xx0x1 - - Return From Exception RFE on page B6-16 vo
101xxxxx - - Branch with Link and Exchange BL, BLX (immediate) on v5

page A8-58
11000x11 - not 1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on v5
page A8-106
11001xx1 - 1111 Load Coprocessor (literal) LDC, LDC2 (literal) on v5
page A8-108
1101xxx1 - 1111
11000x10 - - Store Coprocessor STC, STC2 on page A8-372 v5
11001xx0
1101xxx0
11000100 - - Move to Coprocessor from two MCRR, MCRR?2 on page A8-188 v6
ARM core registers
11000101 - - Move to two ARM core registers ~ MRRC, MRRC2 on page A8-204 v6
from Coprocessor
1110xxxx 0 - Coprocessor data operations CDP, CDP2 on page A8-68 v5
1110xxx0 1 - Move to Coprocessor from MCR, MCR?2 on page A8-186 v5
ARM core register
1110xxx1 1 - Move to ARM core register from ~ MRC, MRC2 on page A8-202 v5
Coprocessor
A5-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

ARM Instruction Set Encoding

A5.7.1 Miscellaneous instructions, memory hints, and Advanced SIMD instructions
31 30 29 28 27 26 25 24 23 22212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
11110 opl Rn op2
Table A5-24 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED in ARMvS5 and above. All these encodings are
UNPREDICTABLE in ARMv4 and ARMVA4T.

Table A5-24 Hints, and Advanced SIMD instructions
opi op2 Rn Instruction See Variant
0010000 xx0x xxx0 Change Processor State CPS on page B6-3 v6
0010000 0000 xxxI Set Endianness SETEND on page A8-314 v6
0lxxxxx - - See Advanced SIMD data-processing instructions on page A7-10 v7
100xxx0 - - See Advanced SIMD element or structure load/store instructionson V7

page A7-27
100x001 - - Unallocated memory hint (treat as NOP) MPa
Extensions
100x101 - - Preload Instruction PLI (immediate, literal) on v7
page A8-242
101x001 - not 1111 Preload Data with intent to PLD, PLDW (immediate) on MPa
Write page A8-236 Extensions
1111 UNPREDICTABLE - -
101x101 - not 1111 Preload Data PLD, PLDW (immediate) on v5TE
page A8-236
1111 Preload Data PLD (literal) on page A8-238 v5TE
1010111 0001 - Clear-Exclusive CLREX on page A8-70 voK
0100 - Data Synchronization Barrier ~ DSB on page A8-92 v6T2
0101 - Data Memory Barrier DMB on page A8-90 v7
0110 - Instruction Synchronization ISB on page A8-102 voT2
Barrier
10xxx11 - - UNPREDICTABLE except as shown above -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A5-31

ARM Instruction Set Encoding

Table A5-24 Hints, and Advanced SIMD instructions (continued)

op1 op2 Rn Instruction See Variant
110x001 xxx0 - Unallocated memory hint (treat as NOP) MPa
Extensions

110x101 xxx0 - Preload Instruction PLI (register) on page A8-244 v7
111x001 xxx0 - Preload Data with intent to PLD, PLDW (register) on MPa

Write page A8-240 Extensions
111x101 xxx0 - Preload Data PLD, PLDW (register) on v5TE

page A8-240

11xxx11 xxx0 - UNPREDICTABLE - -

a. Multiprocessing Extensions.

A5-32

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Chapter A6
Thumb Instruction Set Encoding

This chapter introduces the Thumb instruction set and describes how it uses the ARM programmers’ model.
It contains the following sections:

. Thumb instruction set encoding on page A6-2
. 16-bit Thumb instruction encoding on page A6-6
. 32-bit Thumb instruction encoding on page A6-14.

For details of the differences between the Thumb and ThumbEE instruction sets see Chapter A9 ThumbEE.

Note

. Architecture variant information in this chapter describes the architecture variant or extension in
which the instruction encoding was introduced into the Thumb instruction set.

. In the decode tables in this chapter, an entry of - for a field value means the value of the field does
not affect the decoding.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-1

Thumb Instruction Set Encoding

A6.1

A6.1.1

Thumb instruction set encoding

The Thumb instruction stream is a sequence of halfword-aligned halfwords. Each Thumb instruction is
either a single 16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords
in that stream.

If bits [15:11] of the halfword being decoded take any of the following values, the halfword is the first
halfword of a 32-bit instruction:

. 0b11101
. 0Ob11110
. Obl11111.

Otherwise, the halfword is a 16-bit instruction.

For details of the encoding of 16-bit Thumb instructions see 16-bit Thumb instruction encoding on
page A6-6.

For details of the encoding of 32-bit Thumb instructions see 32-bit Thumb instruction encoding on
page A6-14.

UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:
. Unpredictable behavior. The instruction is described as UNPREDICTABLE.
. An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.

An instruction is UNPREDICTABLE if:

. a bit marked (0) or (1) in the encoding diagram of an instruction is not O or 1 respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

. it is declared as UNPREDICTABLE in an instruction description or in this chapter.
Unless otherwise specified:

. Thumb instructions introduced in an architecture variant are either UNPREDICTABLE or UNDEFINED in
earlier architecture variants.

. A Thumb instruction that is provided by one or more of the architecture extensions is either
UNPREDICTABLE or UNDEFINED in an implementation that does not include any of those extensions.

In both cases, the instruction is UNPREDICTABLE if it is a 32-bit instruction in an architecture variant before
ARMYv6T2, and UNDEFINED otherwise.

AB-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.1.2 Use of 0b1111 as a register specifier

The use of Ob1111 as a register specifier is not normally permitted in Thumb instructions. When a value of
Ob1111 is permitted, a variety of meanings is possible. For register reads, these meanings are:

Read the PC value, that is, the address of the current instruction + 4. The base register of the table
branch instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory
immediately after the instruction.

Note
Use of the PC as the base register in the STC instruction is deprecated in ARMv7.

Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0]

forced to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and
LDRSH instructions can be the word-aligned PC. This enables PC-relative data addressing. In addition,
some encodings of the ADD and SUB instructions permit their source registers to be Ob1111 for the same

purpose.

Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages,
with a special case in the pseudocode for the more general instruction cross-referencing the other

page.

For register writes, these meanings are:

The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt
as Ob1111. The loaded value is treated as an address, and the effect of execution is a branch to that
address. bit [0] of the loaded value selects whether to execute ARM or Thumb instructions after the
branch.

Some other instructions write the PC in similar ways, either implicitly (for example branch
instructions) or by using a register mask rather than a register specifier (LDM). The address to branch
to can be:

— a loaded value, for example, RFE

— aregister value, for example, BX

— the result of a calculation, for example, TBB or TBH.

The method of choosing the instruction set used after the branch can be:

— similar to the LDR case, for LDM or BX

— afixed instruction set other than the one currently being used, for example, the immediate form
of BLX

— unchanged, for example branch instructions

— set from the (J,T) bits of the SPSR, for RFE and SUBS PC,LR,#imm8.

Discard the result of a calculation. This is done in some cases when one instruction is a special case
of another, more general instruction, but with the result discarded. In these cases, the instructions are

listed on separate pages, with a special case in the pseudocode for the more general instruction
cross-referencing the other page.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-3

Thumb Instruction Set Encoding

o If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is Ob1111, the
instruction is a memory hint instead of a load operation.

. If the destination register specifier of an MRC instruction is Ob1111, bits [31:28] of the value
transferred from the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits [27:0]
are discarded.

A6.1.3 Use of 0b1101 as a register specifier

R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer, and R13 is normally

identified as SP in Thumb instructions. In 32-bit Thumb instructions, if you use R13 as a general-purpose

register beyond the architecturally defined constraints described in this section, the results are

UNPREDICTABLE.

The restrictions applicable to R13 are described in:

. RI13[1:0] definition

. 32-bit Thumb instruction support for R13.

See also 16-bit Thumb instruction support for R13 on page A6-5.

R13[1:0] definition

Bits [1:0] of R13 are SBZP. Writing a nonzero value to bits [1:0] causes UNPREDICTABLE behavior.

32-bit Thumb instruction support for R13

R13 instruction support is restricted to the following:

. R13 as the source or destination register of a MOV instruction. Only register to register transfers without
shifts are supported, with no flag setting:

MoV SP,<Rm>
MoV <Rn>, SP
. Using the following instructions to adjust R13 up or down by a multiple of 4:
ADD{W} SP,SP,#<imm>
SUB{W} SP,SP,#<imm>
ADD SP,SP,<Rm>
ADD SP,SP,<Rm>,LSL #<n> ; For <n> =1,2,3
SUB SP,SP, <Rm>
SUB SP,SP,<Rm>,LSL #<n> ; For <n> =1,2,3

. R13 as a base register <Rn> of any load/store instruction. This supports SP-based addressing for load,
store, or memory hint instructions, with positive or negative offsets, with and without writeback.

o R13 as the first operand <Rn> in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract
instructions support SP-based address generation, with the address going into a general-purpose
register. C(MN and CMP are useful for stack checking in some circumstances.

. R13 as the transferred register <Rt> in any LDR or STR instruction.

AB-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

16-bit Thumb instruction support for R13

For 16-bit data-processing instructions that affect high registers, R13 can only be used as described in 32-bit
Thumb instruction support for R13 on page A6-4. Any other use is deprecated. This affects the high register
forms of CMP and ADD, where the use of R13 as <Rm> is deprecated.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-5

Thumb Instruction Set Encoding

A6.2 16-bit Thumb instruction encoding

151413121110 9 8 7 6 5 4 3 2 1 O

Opcode

Table A6-1 shows the allocation of 16-bit instruction encodings.

Table A6-1 16-bit Thumb instruction encoding

Opcode Instruction or instruction class Variant
00xxxX Shift (immediate), add, subtract, move, and compare on page A6-7 -
010000 Data-processing on page A6-8 -
010001 Special data instructions and branch and exchange on page A6-9 -
01001x Load from Literal Pool, see LDR (literal) on page A8-122 v4T
0101xx Load/store single data item on page A6-10 -
011xxx

100xxx

10100x Generate PC-relative address, see ADR on page A8-32 v4T
10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-28 v4T
1011xx Miscellaneous 16-bit instructions on page A6-11 -
11000x Store multiple registers, see STM / STMIA / STMEA on page A8-374 2 v4T
11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 2 v4T
1101xx Conditional branch, and Supervisor Call on page A6-13 -
11100x Unconditional Branch, see B on page A8-44 v4T

a. In ThumbEE, 16-bit loadétore multiple instructions are not available. This encoding is used for special
ThumbEE instructions. For details see Chapter A9 ThumbEE.

AB-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A6.2.1

1514 13121110 9 8 7 6 5 4 3 2 1 O

00 Opcode

Table A6-2 shows the allocation of encodings in this space.

Thumb Instruction Set Encoding

Shift (immediate), add, subtract, move, and compare

All these instructions are available since the Thumb instruction set was introduced in ARMvAT.

Table A6-2 16-bit Thumb shift (immediate), add, subtract, move, and compare instructions

Opcode Instruction See

000xx Logical Shift Left LSL (immediate) on page A8-178

001xx Logical Shift Right LSR (immediate) on page A8-182

010xx Arithmetic Shift Right ASR (immediate) on page A8-40

01100 Add register ADD (register) on page A8-24

01101 Subtract register SUB (register) on page A8-422

01110 Add 3-bit immediate ADD (immediate, Thumb) on page A8-20
01111 Subtract 3-bit immediate =~ SUB (immediate, Thumb) on page A8-418
100xx Move MOV (immediate) on page A8-194

101xx Compare CMP (immediate) on page A8-80

110xx Add 8-bit immediate ADD (immediate, Thumb) on page A8-20
111xx Subtract 8-bit immediate =~ SUB (immediate, Thumb) on page A8-418

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-7

Thumb Instruction Set Encoding

A6.2.2 Data-processing

1514 13121110 9 8 7 6 5 4 3 2 1 O

01 00 0 0| Opcode

Table A6-3 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

Table A6-3 16-bit Thumb data-processing instructions

Opcode Instruction See

0000 Bitwise AND AND (register) on page A8-36
0001 Bitwise Exclusive OR EOR (register) on page A8-96
0010 Logical Shift Left LSL (register) on page A8-180
0011 Logical Shift Right LSR (register) on page A8-184
0100 Arithmetic Shift Right ASR (register) on page A8-42
0101 Add with Carry ADC (register) on page A8-16
0110 Subtract with Carry SBC (register) on page A8-304
0111 Rotate Right ROR (register) on page A8-280
1000 Test TST (register) on page A8-456
1001 Reverse Subtract from O RSB (immediate) on page A8-284
1010 Compare High Registers ~ CMP (register) on page A8-82
1011 Compare Negative CMN (register) on page A8-76
1100 Bitwise OR ORR (register) on page A8-230
1101 Multiply Two Registers ~ MUL on page A8-212

1110 Bitwise Bit Clear BIC (register) on page A8-52
1111 Bitwise NOT MVN (register) on page A8-216

A6-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.2.3 Special data instructions and branch and exchange

1514 13121110 9 8 7 6 5 4 3 2 1 O

010001

Opcode

Table A6-4 shows the allocation of encodings in this space.

Table A6-4 16-bit Thumb special data instructions and branch and exchange

Opcode Instruction See Variant
0000 Add Low Registers ADD (register) on page A8-24 v6T2 a
0001 Add High Registers ADD (register) on page A8-24 v4T
001x
0100 UNPREDICTABLE - -
0101 Compare High Registers CMP (register) on page A8-82 v4T
011x
1000 Move Low Registers MOYV (register) on page A8-196 v6a
1001 Move High Registers MOV (register) on page A8-196 v4T
101x
110x Branch and Exchange BX on page A8-62 v4T
111x Branch with Link and Exchange BLX (register) on page A8-60 v5T a
a. UNPREDICTABLE in earlier variants.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A6-9

Thumb Instruction Set Encoding

A6.2.4 Load/store single data item
1514 13121110 9 8 7 6 5 4 3 2 1 O
OpA opB
These instructions have one of the following values in opA:
. 0b0101
. 0b011x
. 0b100x.
Table A6-5 shows the allocation of encodings in this space.
All these instructions are available since the Thumb instruction set was introduced in ARMv4T.
Table A6-5 16-bit Thumb Load/store instructions
opA opB Instruction See
0101 000 Store Register STR (register) on page A8-386
001 Store Register Halfword STRH (register) on page A8-412
010 Store Register Byte STRB (register) on page A8-392
011 Load Register Signed Byte LDRSB (register) on page A8-164
100 Load Register LDR (register) on page A8-124
101 Load Register Halfword LDRH (register) on page A8-156
110 Load Register Byte LDRB (register) on page A8-132
111 Load Register Signed Halfword =~ LDRSH (register) on page A8-172
0110 Oxx Store Register STR (immediate, Thumb) on page A8-382
1xx Load Register LDR (immediate, Thumb) on page A8-118
0111 Oxx Store Register Byte STRB (immediate, Thumb) on page A8-388
1xx Load Register Byte LDRB (immediate, Thumb) on page A8-126
1000 Oxx Store Register Halfword STRH (immediate, Thumb) on page A8-408
1xx Load Register Halfword LDRH (immediate, Thumb) on page A8-150
1001 Oxx Store Register SP relative STR (immediate, Thumb) on page A8-382
1xx Load Register SP relative LDR (immediate, Thumb) on page A8-118
AB6-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.2.5 Miscellaneous 16-bit instructions

1514 13 12 11 10 9 8 7 6 5 4 3 2

1 0

1 01

1 Opcode

Thumb Instruction Set Encoding

Table A6-6 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A6-6 Miscellaneous 16-bit instructions

Opcode Instruction See Variant
0110010 Set Endianness SETEND on page A8-314 v6
0110011 Change Processor State CPS on page B6-3 v6
00000xx Add Immediate to SP ADD (SP plus immediate) on page A8-28 v4T
00001xx Subtract Immediate from SP SUB (SP minus immediate) on page A8-426 v4T
0001xxx Compare and Branch on Zero CBNZ, CBZ on page A8-66 voT2
001000x Signed Extend Halfword SXTH on page A8-444 v6
001001x Signed Extend Byte SXTB on page A8-440 v6
001010x Unsigned Extend Halfword UXTH on page A8-524 v6
001011x Unsigned Extend Byte UXTB on page A8-520 v6
0011xxx Compare and Branch on Zero CBNZ, CBZ on page A8-66 voT2
010xxxx Push Multiple Registers PUSH on page A8-248 v4T
1001xxx Compare and Branch on Nonzero = CBNZ, CBZ on page A8-66 voT2
101000x Byte-Reverse Word REV on page A8-272 v6
101001x Byte-Reverse Packed Halfword REV16 on page A8-274 v6
101011x Byte-Reverse Signed Halfword REVSH on page A8-276 v6
1011xxx Compare and Branch on Nonzero = CBNZ, CBZ on page A8-66 voT2
110xxxx Pop Multiple Registers POP on page A8-246 v4T
1110xxx Breakpoint BKPT on page A8-56 v5
1111xxx If-Then, and hints If-Then, and hints on page A6-12 -
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-11

Thumb Instruction Set Encoding

If-Then, and hints

1514 13121110 9 8 7 6 5 4 3 2 1 O

1011|1111

OpA

opB

Table A6-7 shows the allocation of encodings in this space.

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

Table A6-7 Miscellaneous 16-bit instructions

opA opB Instruction See Variant
- not 0000 If-Then IT on page A8-104 v6T2
0000 0000 No Operation hint NOP on page A8-222 v6T2
0001 0000 Yield hint YIELD on page A8-812 v7

0010 0000 Wait For Event hint WFE on page A8-808 v7

0011 0000 Wait For Interrupt hint ~ WFI on page A8-810 v7

0100 0000 Send Event hint SEV on page A8-316 v7

AB-12

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Thumb Instruction Set Encoding

A6.2.6 Conditional branch, and Supervisor Call

1514 13121110 9 8 7 6 5 4 3 2 1 O

1101

Opcode

Table A6-8 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMvAT.

Table A6-8 Conditional branch and Supervisor Call instructions

Opcode Instruction See

not 111x Conditional branch B on page A8-44

1110 Permanently UNDEFINED. This space will not be allocated in future.

1111 Supervisor Call SVC (previously SWI) on page A8-430

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB6-13

Thumb Instruction Set Encoding

A6.3 32-bit Thumb instruction encoding
151413121110 9 8 7 6 5 4 3 2 1 0 15 14131211109 8 7 6 5 4 3 2 1 O

1 1 1]|opl op2 op

If opl == 0b00, a 16-bit instruction is encoded, see 16-bit Thumb instruction encoding on page A6-6.

Table A6-9 shows the allocation of encodings in this space.

Table A6-9 32-bit Thumb instruction encoding

opl op2 op Instruction class, see

01 00xx0xx - Load/store multiple on page A6-23
00xx1xx - Load/store dual, load/store exclusive, table branch on page A6-24
Olxxxxx - Data-processing (shifted register) on page A6-31
IXxXxxx - Coprocessor instructions on page A6-40

10 xOxxxxx 0 Data-processing (modified immediate) on page A6-15

xIxxxxx 0 Data-processing (plain binary immediate) on page A6-19
- 1 Branches and miscellaneous control on page A6-20
11 000xxx0 - Store single data item on page A6-30
001xxx0 - Advanced SIMD element or structure load/store instructions on page A7-27
00xx001 - Load byte, memory hints on page A6-28
00xx011 - Load halfword, memory hints on page A6-26
00xx101 - Load word on page A6-25
00xx111 - UNDEFINED
010xxxx - Data-processing (register) on page A6-33
0110xxx - Multiply, multiply accumulate, and absolute difference on page A6-38
Olllxxx - Long multiply, long multiply accumulate, and divide on page A6-39
IXXXxxx - Coprocessor instructions on page A6-40

AB-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.1 Data-processing (modified immediate)
151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0

Thumb Instruction Set Encoding

1

1

1

10 0

op

S Rn 0

Rd

Table A6-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

In the Rn, Rd and S columns, - indicates that the field value of the field does affect the decoding.

These encodings are all available in ARMv6T2 and above.

Table A6-10 32-bit modified immediate data-processing instructions

op Rn Rd S Instruction See
0000 - not 1111 x Bitwise AND AND (immediate) on page A8-34
- 1111 0 UNPREDICTABLE -
- 1111 1 Test TST (immediate) on page A8-454
0001 - - - Bitwise Bit Clear BIC (immediate) on page A8-50
0010 not 1111 - - Bitwise OR ORR (immediate) on page A8-228
1111 - - Move MOV (immediate) on page A8-194
0011 notl1111 - - Bitwise OR NOT ORN (immediate) on page A8-224
1111 - - Bitwise NOT MVN (immediate) on page A8-214
0100 - not 1111 x Bitwise Exclusive OR EOR (immediate) on page A8-94
1111 0 UNPREDICTABLE -
1 Test Equivalence TEQ (immediate) on page A8-448
1000 - not 1111 - Add ADD (immediate, Thumb) on page A8-20
1111 0 UNPREDICTABLE -
1 Compare Negative CMN (immediate) on page A8-74
1010 - - - Add with Carry ADC (immediate) on page A8-14
1011 - - - Subtract with Carry SBC (immediate) on page A8-302

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-15

Thumb Instruction Set Encoding

Table A6-10 32-bit modified immediate data-processing instructions (continued)

op Rn Rd S Instruction See
1101 - not 1111 - Subtract SUB (immediate, Thumb) on page A8-418
1111 0 UNPREDICTABLE -
1 Compare CMP (immediate) on page A8-80
1110 - - - Reverse Subtract RSB (immediate) on page A8-284

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This
provides a more useful range of values. For details see Modified immediate constants in Thumb instructions
on page A6-17.

AB-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.3.2 Modified immediate constants in Thumb instructions
1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

i imm3 abcdef gh

Table A6-11 shows the range of modified immediate constants available in Thumb data-processing
instructions, and how they are encoded in the a, b, c, d, e, f, g, h, i, and imm?3 fields in the instruction.

Table A6-11 Encoding of modified immediates in Thumb data-processing instructions

izimm3:a <const> 2

0000x 00000000 00000000 00000000 abcdefgh
0001x 00000000 abcdefgh 00000000 abcdefgh b
0010x abcdefgh 00000000 abcdefgh 00000000 b
0011x abcdefgh abcdefgh abcdefgh abcdefgh b
01000 1bcdefgh 00000000 00000000 00000000
01001 0lbcdefg h0000000 00000000 00000000 ©
01010 001bcdef gh000000 00000000 00000000
01011 0001bcde fgh00000 00000000 00000000 °

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defghooo ¢
11110 00000000 00000000 0000001b cdefgh0o
11111 00000000 00000000 00000001 bcdefgho ©

a. In this table, the immediate constant value is shown in binary form, to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value is
specified in the usual way (a decimal number by default).

b. Not available in ARM instructions. UNPREDICTABLE if abcdefgh == 00000000.

c. Not available in ARM instructions if h == 1.

Note

The range of values available in Thumb modified immediate constants is slightly different from the range
of values available in ARM instructions. See Modified immediate constants in ARM instructions on
page A5-9 for the ARM values.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-17

Thumb Instruction Set Encoding

Carry out

A logical instruction with i:imm3:a == 00xxx’ does not affect the carry flag. Otherwise, a logical
instruction that sets the flags sets the Carry flag to the value of bit [31] of the modified immediate constant.

Operation

// ThumbExpandImm()
[/ —

bits(32) ThumbExpandImm(bits(12) imml2)

// APSR.C argument to following function call does not affect the imm32 result.

(imm32, -) = ThumbExpandImm_C(imm12, APSR.C);
return imm32;

// ThumbExpandImm_C()
e

(bits(32), bit) ThumbExpandImm_C(bits(12) imml2, bit carry_in)
if imml2<11:10> == ‘00’ then

case imm12<9:8> of
when ‘00’
imm32 = ZeroExtend(imml12<7:0>, 32);
when ‘01’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = ‘00000000’ : imm12<7:0> : ‘00000000’ : imm12<7:0>;
when ‘10’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = imm12<7:0> : ‘00000000’ : imml2<7:0> : ‘00000000’ ;
when ‘11’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
carry_out = carry_in;

else

unrotated_value = ZeroExtend(‘1’:imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

AB-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A6.3.3 Data-processing (plain binary immediate)

1514 13 1211 10 9 8 7 6 5 4 3 2 1

Thumb Instruction Set Encoding

0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 1|10

1

op Rn 0

Table A6-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-12 32-bit unmodified immediate data-processing instructions

op Rn Instruction See

00000 not 1111 Add Wide (12-bit) ADD (immediate, Thumb) on page A8-20
1111 Form PC-relative Address ADR on page A8-32

00100 - Move Wide (16-bit) MOV (immediate) on page A8-194

01010 not 1111 Subtract Wide (12-bit) SUB (immediate, Thumb) on page A8-418
1111 Form PC-relative Address ADR on page A8-32

01100 - Move Top (16-bit) MOVT on page A8-200

100x0a - Signed Saturate SSAT on page A8-362

10010% - Signed Saturate (two 16-bit) ~ SSATI6 on page A8-364

10100 - Signed Bit Field Extract SBFX on page A8-308

10110 not 1111 Bit Field Insert BFI on page A8-48
1111 Bit Field Clear BFC on page A8-46

110x02a - Unsigned Saturate USAT on page A8-504

11010b - Unsigned Saturate 16 USAT16 on page A8-506

11100 - Unsigned Bit Field Extract UBFX on page A8-466

a. In the second halfword of the instruction, bits [14:12.7:6] != 0b00000.
b. In the second halfword of the instruction, bits [14:12.7:6] == 0b00000.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A6-19

Thumb Instruction Set Encoding

A6.3.4 Branches and miscellaneous control
151413121110 9 8 7 6 5 4 3 2 1

0 1514131211109 8 7 6 5 4 3 2 1 O

1 11

10

op

1| opl op2

Table A6-13 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A6-13 Branches and miscellaneous control instructions

opl op op2 Instruction See Variant
0x0 notx1llxxx - Conditional branch B on page A8-44 v6T2
0111000 xx00 Move to Special Register, MSR (register) on page A8-210 All
application level
xx01 Move to Special Register, MSR (register) on page B6-14 All
system level
xx1x
0111001 -
0111010 - - Change Processor State, and hints -
on page A6-21
0111011 - - Miscellaneous control instructions -
on page A6-21
0111100 - Branch and Exchange Jazelle BXJ on page A8-64 voT2
0111101 - Exception Return SUBS PC, LR and related voT2
instructions on page B6-25
011111x - Move from Special Register MRS on page A8-206 v6T2
000 1111111 - Secure Monitor Call SMC (previously SMI) on Security
page B6-18 Extensions
010 1111111 - Permanently UNDEFINED. This space will not be allocated in future.
ox1 - - Branch B on page A8-44 voT2
1x0 - - Branch with Link and v5T 2
Exchange BL, BLX (immediate) on
page A8-58
Ix1 - - Branch with Link v4T
a. UNDEFINED in ARMvA4T.
AB-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Change Processor State, and hints
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111 0{01 11010 10 0 opl op2

Table A6-14 shows the allocation of encodings in this space. Other encodings in this space are unallocated
hints that execute as NOPs. These unallocated hint encodings are reserved and software must not use them.

Table A6-14 Change Processor State, and hint instructions

op1 op2 Instruction See Variant

not 000 - Change Processor State CPS on page B6-3 voT2

000 00000000 No Operation hint NOP on page A8-222 v6T2
00000001 Yield hint YIELD on page A8-812 v7
00000010 Wait For Event hint WFE on page A8-808 v7

00000011 Wait For Interrupt hint ~ WFI on page A8-810 v7

00000100 Send Event hint SEV on page A8-316 v7

1111xxxx Debug hint DBG on page A8-88 v7

Miscellaneous control instructions
1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1j1f{t{t|ojof1|{1|1|o]1]1 1{o| |0 op

Table A6-15 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED
in ARMv7. They are UNPREDICTABLE in ARMv6.

Table A6-15 Miscellaneous control instructions

op Instruction See Variant
0000 Leave ThumbEE state 2 ENTERX, LEAVEX on page A9-7 ThumbEE
0001 Enter ThumbEE state ENTERX, LEAVEX on page A9-7 ThumbEE
0010 Clear-Exclusive CLREX on page A8-70 v7

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-21

Thumb Instruction Set Encoding

Table A6-15 Miscellaneous control instructions (continued)

op Instruction See Variant
0100 Data Synchronization Barrier DSB on page A8-92 v7
0101 Data Memory Barrier DMB on page A8-90 v7
0110 Instruction Synchronization Barrier ~ ISB on page A8-102 v7

a. This instruction is a NOP in Thumb state.

AB-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.5 Load/store multiple
1211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

15 14 13

Thumb Instruction Set Encoding

1 11

0100 op (O] (L Rn

Table A6-16 shows the allocation of encodings in this space.

These encodings are all available in ARMv6T2 and above.

Table A6-16 Load/store multiple instructions

op Rn Instruction See
00 - Store Return State SRS on page B6-20
- Return From Exception RFE on page B6-16
01 - Store Multiple (Increment After, Empty Ascending) STM / STMIA / STMEA on
page A8-374
not 1101 Load Multiple (Increment After, Full Descending) LDM / LDMIA / LDMFD on
page A8-110
1101 Pop Multiple Registers from the stack POP on page A8-246
10 not 1101 Store Multiple (Decrement Before, Full Descending) STMDB / STMFD on
page A8-378
1101 Push Multiple Registers to the stack. PUSH on page A8-248
- Load Multiple (Decrement Before, Empty Ascending) LDMDB /LDMEA on
page A8-114
11 - Store Return State SRS on page B6-20

Return From Exception

RFE on page B6-16

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-23

Thumb Instruction Set Encoding

A6.3.6 Load/store dual, load/store exclusive, table branch

1514 13121110 9 8 7 6 5 4 3 2 1

0 1514131211109 8 7 6 5 4 3 2 1 O

1

11

0100

opl | 1] op2 Rn

op3

Table A6-17 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A6-17 Load/store double or exclusive, table branch

opl op2 op3 Rn Instruction See Variant
00 00 - - Store Register Exclusive STREX on page A8-400 v6T2
01 - - Load Register Exclusive LDREX on page A8-142 voT2
0x 10 - - Store Register Dual STRD (immediate) on v6T2
1x %0 page A8-396
0x 11 - not 1111 Load Register Dual (immediate) LDRD (immediate) on voT2
page A8-136
1x x1 - not 1111
0x 11 - 1111 Load Register Dual (literal) LDRD (literal) on v6T2
page A8-138
1x x1 - 1111
01 00 0100 - Store Register Exclusive Byte STREXB on page A8-402 v7
0101 - Store Register Exclusive Halfword ~ STREXH on page A8-406 v7
0111 - Store Register Exclusive STREXD on page A8-404 v7
Doubleword
01 0000 - Table Branch Byte TBB, TBH on page A8-446 v6oT2
0001 - Table Branch Halfword TBB, TBH on page A8-446 voT2
0100 - Load Register Exclusive Byte LDREXB on page A8-144 v7
0101 - Load Register Exclusive Halfword ~ LDREXH on page A8-148 v7
o111 - Load Register Exclusive LDREXD on page A8-146 v7
Doubleword
AB-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.7 Load word
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

Thumb Instruction Set Encoding

1

1

1{1 1 0 0] opl

1 0|1 Rn

op2

Table A6-18 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-18 Load word

opl op2 Rn Instruction See
01 - not 1111 Load Register LDR (immediate, Thumb) on page A8-118
00 Ixx1xx not 1111
1100xx not 1111
1110xx not 1111 Load Register Unprivileged = LDRT on page A8-176
000000 not1111 Load Register LDR (register) on page A8-124
0x - 1111 Load Register LDR (literal) on page A8-122

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-25

Thumb Instruction Set Encoding

A6.3.8 Load halfword, memory hints
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1 1 1|1 1 0 0]opl [0 1]1 Rn Rt op2

Table A6-19 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Except where otherwise noted, these encodings are available in ARMv6T?2 and above.

Table A6-19 Load halfword, preload

opl op2 Rn Rt Instruction See

0x - 1111 not 1111 Load Register Halfword LDRH (literal) on page A8-154

01 - not 1111 not 1111 Load Register Halfword LDRH (immediate, Thumb) on
page A8-150

00 Ixxlxx not1111 mnotl1111

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Halfword LDRHT on page A8-158
Unprivileged
000000 not1111 not1111 Load Register Halfword LDRH (register) on page A8-156
1x - 1111 not 1111 Load Register Signed LDRSH (literal) on page A8-170
Halfword
11 - not 1111 not1111 Load Register Signed LDRSH (immediate) on page A8-168
Halfword

10 Ixx1xx not1111 notlll1

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Signed LDRSHT on page A8-174
Halfword Unprivileged
000000 not1111 not1111 Load Register Signed LDRSH (register) on page A8-172
Halfword
0x - 1111 1111 UNPREDICTABLE -
01 - not 1111 1111 Preload Data with intent to PLD, PLDW (immediate) on
Write2 page A8-236
00 1100xx not 1111 1111 Preload Data with intent to PLD, PLDW (immediate) on
Writea page A8-236
000000 not 1111 1111 Preload Data with intent to PLD, PLDW (register) on
Writea page A8-240

AB-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Table A6-19 Load halfword, preload (continued)

op1l op2 Rn Rt Instruction See

00 Ixx1xx not1111 1111 UNPREDICTABLE -
1110xx not 1111 1111

1x - 1111 1111 Unallocated memory hint (treat as NOP)

10 1100xx not 1111 1111
000000 not 1111 1111

10 Ixx1xx mnot1111 1111 UNPREDICTABLE -
1110xx not 1111 1111

11 - not 1111 1111 Unallocated memory hint (treat as NOP)

a. Available in ARMv7 with the Multiprocessing Extensions. In the ARMv7 base architecture and in ARMv6T? these are
unallocated memory hints (treat as NOP).

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-27

Thumb Instruction Set Encoding

A6.3.9 Load byte, memory hints
1514 13 121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1 1|1 1 0 0]opl |0 O]1 Rn Rt op2

Table A6-20 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-20 Load byte, preload

op1l op2 Rn Rt Instruction See

0x - 1111 not 1111 Load Register Byte LDRB (literal) on page A8-130

01 - not 1111 not 1111 Load Register Byte LDRB (immediate, Thumb) on
page A8-126

00 IxxIxx mnotl1l11l notllll

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Byte LDRBT on page A8-134
Unprivileged
000000 not1111 not1111 Load Register Byte LDRB (register) on page A8-132
Ix - 1111 not 1111 Load Register Signed Byte ~ LDRSB (literal) on page A8-162
11 - not 1111 not 1111 Load Register Signed Byte ~ LDRSB (immediate) on page A8-160

10 IxxIxx not1l11l notl1l1l

1100xx not 1111 not 1111

1110xx not 1111 not 1111 Load Register Signed Byte =~ LDRSBT on page A8-166
Unprivileged

000000 not1111 mnot1111 Load Register Signed Byte =~ LDRSB (register) on page A8-164

0x - 1111 1111 Preload Data PLD (literal) on page A8-238
01 - not 1111 1111 Preload Data PLD, PLDW (immediate) on
page A8-236
00 1100xx not1111 1111 Preload Data PLD, PLDW (immediate) on
page A8-236
000000 not1111 1111 Preload Data PLD, PLDW (register) on page A8-240
IxxIxx mnotl1l111 1111 UNPREDICTABLE -

1110xx not 1111 1111

AB-28 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Table A6-20 Load byte, preload (continued)

opl op2 Rn Rt Instruction See
1x - 1111 1111 Preload Instruction PLI (immediate, literal) on page A8-242
11 - not 1111 1111
10 1100xx not 1111 1111
000000 not 1111 1111 Preload Instruction PLI (register) on page A8-244
Ixx1xx not 1111 1111 UNPREDICTABLE -
1110xx not 1111 1111

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-29

Thumb Instruction Set Encoding

A6.3.10 Store single data item
151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0

1 1 1|1 100|0| opl |O

op2

Table A6-21 show the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-21 Store single data item

op1l op2 Instruction See
100 - Store Register Byte STRB (immediate, Thumb) on page A8-388
000 1xx1xx

1100xx

1110xx Store Register Byte Unprivileged STRBT on page A8-394

Oxxxxx Store Register Byte STRB (register) on page A8-392
101 - Store Register Halfword STRH (immediate, Thumb) on page A8-408
001 Ixx1xx

1100xx

1110xx Store Register Halfword Unprivileged =~ STRHT on page A8-414
001 Oxxxxx Store Register Halfword STRH (register) on page A8-412
110 - Store Register (immediate) STR (immediate, Thumb) on page A8-382
010 1xxlxx

1100xx

1110xx Store Register Unprivileged STRT on page A8-416

Oxxxxx Store Register (register) STR (register) on page A8-386

A6-30

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.3.11 Data-processing (shifted register)
1514 13 121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11 1(01 01 op S Rn Rd

Table A6-22 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-22 Data-processing (shifted register)

op Rn Rd S Instruction See
0000 - not 1111 x Bitwise AND AND (register) on page A8-36
1111 0 UNPREDICTABLE -
1 Test TST (register) on page A8-456
0001 - - - Bitwise Bit Clear BIC (register) on page A8-52
0010 not 1111 - - Bitwise OR ORR (register) on page A8-230
1111 - - Move MOV (register) on page A8-196
0011 not1111 - - Bitwise OR NOT ORN (register) on page A8-226
1111 - - Bitwise NOT MVN (register) on page A8-216
0100 - not 1111 - Bitwise Exclusive OR EOR (register) on page A8-96
1111 0 UNPREDICTABLE -
1 Test Equivalence TEQ (register) on page A8-450
0110 - - - Pack Halfword PKH on page A8-234
1000 - not 1111 - Add ADD (register) on page A8-24
1111 0 UNPREDICTABLE -
1 Compare Negative CMN (register) on page A8-76
1010 - - - Add with Carry ADC (register) on page A8-16
1011 - - - Subtract with Carry SBC (register) on page A8-304

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-31

Thumb Instruction Set Encoding

Table A6-22 Data-processing (shifted register) (continued)

op Rn Rd S Instruction See
1101 - not 1111 - Subtract SUB (register) on page A8-422
1111 0 UNPREDICTABLE -
1 Compare CMP (register) on page A8-82
1110 - - - Reverse Subtract RSB (register) on page A8-286

AB-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.12 Data-processing (register)

1514 13 1211 10 9 8 7 6 5 4 3 2 1

Thumb Instruction Set Encoding

0 151413121110 9 8 7 6 5 4 3 2 1 O

1

1

1{1 10 1|0

opl Rn 1

1 11 op2

If, in the second halfword of the instruction, bits [15:12] !=0b1111, the instruction is UNDEFINED.

Table A6-23 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-23 Data-processing (register)

opl op2 Rn Instruction See
000x 0000 - Logical Shift Left LSL (register) on page A8-180
001x 0000 - Logical Shift Right LSR (register) on page A8-184
010x 0000 - Arithmetic Shift Right ASR (register) on page A8-42
01lx 0000 - Rotate Right ROR (register) on page A8-280
0000 Ixxx mnotll111 Signed Extend and Add Halfword SXTAH on page A8-438
1111 Signed Extend Halfword SXTH on page A8-444
0001 Ixxx mnotl111l Unsigned Extend and Add Halfword UXTAH on page A8-518
1111 Unsigned Extend Halfword UXTH on page A8-524
0010 1xxx notl1111 Signed Extend and Add Byte 16 SXTABI16 on page A8-436
1111 Signed Extend Byte 16 SXTB16 on page A8-442
0011 Ixxx mnotlll1l Unsigned Extend and Add Byte 16 UXTABI6 on page A8-516
1111 Unsigned Extend Byte 16 UXTBI16 on page A8-522
0100 1xxx notl1111 Signed Extend and Add Byte SXTAB on page A8-434
1111 Signed Extend Byte SXTB on page A8-440
0101 1xxx not1111 Unsigned Extend and Add Byte UXTAB on page A8-514
1111 Unsigned Extend Byte UXTB on page A8-520

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

AB-33

Thumb Instruction Set Encoding

Table A6-23 Data-processing (register) (continued)

opi op2 Rn Instruction See
Ixxx 00xx - - Parallel addition and subtraction, signed on
page A6-35
Olxx - - Parallel addition and subtraction, unsigned on
page A6-36
10xx 10xx - - Miscellaneous operations on page A6-37

AB-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A6.3.13 Parallel addition and subtraction, signed
1 01514131211109 8 7 6 5 4 3 2 1 0

1514 13 1211 10 9 8 7 6 5 4 3 2

Thumb Instruction Set Encoding

11 1110 1|0 1| opl

1 111

0 0] op2

If, in the second halfword of the instruction, bits [15:12] !=0b1111, the instruction is UNDEFINED.

Table A6-24 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-24 Signed parallel addition and subtraction instructions

op1 op2 Instruction See

001 00 Add 16-bit SADD16 on page A8-296
010 00 Add, Subtract SASX on page A8-300
110 00 Subtract, Add SSAX on page A8-366
101 00 Subtract 16-bit SSUBI6 on page A8-368
000 00 Add 8-bit SADDS on page A8-298
100 00 Subtract 8-bit SSUBS on page A8-370

Saturating instructions

001 01 Saturating Add 16-bit QADDI16 on page A8-252
010 01 Saturating Add, Subtract =~ QASX on page A8-256
110 01 Saturating Subtract, Add OSAX on page A8-262
101 01 Saturating Subtract 16-bit ~ QSUBI6 on page A8-266
000 01 Saturating Add 8-bit QADDS on page A8-254
100 01 Saturating Subtract 8-bit QOSUBS on page A8-268

Halving instructions

001 10 Halving Add 16-bit SHADDI6 on page A8-318
010 10 Halving Add, Subtract SHASX on page A8-322
110 10 Halving Subtract, Add SHSAX on page A8-324
101 10 Halving Subtract 16-bit SHSUBI16 on page A8-326
000 10 Halving Add 8-bit SHADDS on page A8-320
100 10 Halving Subtract 8-bit SHSUBS on page A8-328

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

AB-35

Thumb Instruction Set Encoding

A6.3.14 Parallel addition and subtraction, unsigned
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1 1110 1|0 1| opl 1111 01

op2

If, in the second halfword of the instruction, bits [15:12] !'=0b1111, the instruction is UNDEFINED.

Table A6-25 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-25 Unsigned parallel addition and subtraction instructions

opl op2 Instruction See

001 00 Add 16-bit UADDI6 on page A8-460
010 00 Add, Subtract UASX on page A8-464
110 00 Subtract, Add USAX on page A8-508
101 00 Subtract 16-bit USUBI6 on page A8-510
000 00 Add 8-bit UADDS on page A8-462
100 00 Subtract 8-bit USUBS on page A8-512

Saturating instructions

001 01 Saturating Add 16-bit UQADDI16 on page A8-488
010 01 Saturating Add, Subtract UQASX on page A8-492
110 01 Saturating Subtract, Add UQSAX on page A8-494
101 01 Saturating Subtract 16-bit UQSUBI6 on page A8-496
000 01 Saturating Add 8-bit UQADDS on page A8-490
100 01 Saturating Subtract 8-bit UQSUBS on page A8-498

Halving instructions

001 10 Halving Add 16-bit UHADD16 on page A8-470
010 10 Halving Add, Subtract UHASX on page A8-474
110 10 Halving Subtract, Add UHSAX on page A8-476
101 10 Halving Subtract 16-bit UHSUBI6 on page A8-478
000 10 Halving Add 8-bit UHADDS on page A8-472
100 10 Halving Subtract 8-bit UHSUBS on page A8-480

A6-36

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A6.3.15 Miscellaneous operations

Thumb Instruction Set Encoding

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

1 1 1110 1|01 0]opl

1 111

1 0] op2

If, in the second halfword of the instruction, bits [15:12] !=0b1111, the instruction is UNDEFINED.

Table A6-26 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.

Table A6-26 Miscellaneous operations

opl op2 Instruction See
00 00 Saturating Add QADD on page A8-250
01 Saturating Double and Add ODADD on page A8-258
10 Saturating Subtract OSUB on page A8-264
11 Saturating Double and Subtract ~ QDSUB on page A8-260
01 00 Byte-Reverse Word REV on page A8-272
01 Byte-Reverse Packed Halfword ~ REVI16 on page A8-274
10 Reverse Bits RBIT on page A8-270
11 Byte-Reverse Signed Halfword ~ REVSH on page A8-276
10 00 Select Bytes SEL on page A8-312
11 00 Count Leading Zeros CLZ on page A8-72

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-37

Thumb Instruction Set Encoding

A6.3.16 Multiply, multiply accumulate, and absolute difference
151413121110 9 8 7 6 5 4 3 2 1
101

0 1514131211109 8 7 6 5 4 3 2 1

0

1

1 1|1

1 0] opl Ra

0 0| op2

If, in the second halfword of the instruction, bits [7:6] != 0b00, the instruction is UNDEFINED.

Table A6-27 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-27 Multiply, multiply accumulate, and absolute difference operations

opl op2 Ra Instruction See
000 00 not 1111 Multiply Accumulate MILA on page A8-190
1111 Multiply MUL on page A8-212
01 - Multiply and Subtract MLS on page A8-192
001 - not 1111 Signed Multiply Accumulate (Halfwords) SMLABB, SMLABT, SMLATB,
SMLATT on page A8-330
1111 Signed Multiply (Halfwords) SMULBB, SMULBT, SMULTB,
SMULTT on page A8-354
010 Ox not 1111 Signed Multiply Accumulate Dual SMLAD on page A8-332
1111 Signed Dual Multiply Add SMUAD on page A8-352
011 Ox not 1111 Signed Multiply Accumulate (Word by halfword) SMLAWB, SMLAWT on
page A8-340
1111 Signed Multiply (Word by halfword) SMULWB, SMULWT on
page A8-358
100 Ox not 1111 Signed Multiply Subtract Dual SMLSD on page A8-342
1111 Signed Dual Multiply Subtract SMUSD on page A8-360
101 0x not 1111 Signed Most Significant Word Multiply Accumulate ~ SMMLA on page A8-346
1111 Signed Most Significant Word Multiply SMMUL on page A8-350
110 Ox - Signed Most Significant Word Multiply Subtract SMMLS on page A8-348
111 00 not 1111 Unsigned Sum of Absolute Differences USADS on page A8-500
1111 Unsigned Sum of Absolute Differences, Accumulate =~ USADAS on page A8-502
A6-38 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

A6.3.17 Long multiply, long multiply accumulate, and divide

1514 13 1211 10 9 8 7 6 5 4 3 2 1

0 151413121110 9 8 7 6 5 4 3 2 1 O

1

1

1{1 10 1]1 1] opl

op2

Table A6-28 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A6-28 Multiply, multiply accumulate, and absolute difference operations

opl op2 Instruction See Variant
000 0000 Signed Multiply Long SMULL on page A8-356 voT2
001 1111 Signed Divide SDIV on page A8-310 v7-Ra
010 0000 Unsigned Multiply Long UMULL on page A8-486 voT2
011 1111 Unsigned Divide UDIV on page A8-468 v7-Ra
100 0000 Signed Multiply Accumulate Long SMLAL on page A8-334 voT2
10xx Signed Multiply Accumulate Long SMLALBB, SMLALBT, SMLALTB, v6T2
(Halfwords) SMLALTT on page A8-336
110x Signed Multiply Accumulate Long Dual SMLALD on page A8-338 v6T2
101 110x Signed Multiply Subtract Long Dual SMLSLD on page A8-344 v6T2
110 0000 Unsigned Multiply Accumulate Long UMLAL on page A8-484 voT2
0110 Unsigned Multiply Accumulate Accumulate UMAAL on page A8-482 voT2
Long
a. UNDEFINED in ARMv7-A.
ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB6-39

Thumb Instruction Set Encoding

A6.3.18 Coprocessor instructions

1514 13121110 9 8 7 6 5 4 3 2 1

0 1514131211109 8 7 6 5 4 3 2 1 O

1 11 11

opl Rn

coproc op

Table A6-29 shows the allocation of encodings in this space. These encodings are all available in ARMv6T2

and above.
Table A6-29 Coprocessor instructions
op1 op coproc Rn Instructions See
000x1x - 101x - Advanced SIMD, VFP Extension register load/store
001xxX instructions on page A7-26
01xxxx
000x10 - not 101x - Store Coprocessor STC, STC2 on page A8-372
001xx0
01xxx0
000x11 - not 101x not1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on
001xx1 page A8-106
01xxx1
000x11 - not 101x 1111 Load Coprocessor (literal) LDC, LDC2 (literal) on page A8-108
001xx1
01xxx1
00000x - - - UNDEFINED -
00010x - 101x - Advanced SIMD, VFP 64-bit transfers between ARM core
and extension registers on page A7-32
000100 - not 101x - Move to Coprocessor fromtwo ~ MCRR, MCRR2 on page A8-188
ARM core registers
ooo1or - not 101x - Move to two ARM core MRRC, MRRC?2 on page A8-204
registers from Coprocessor
10xxxx 0 101x - VFP VFP data-processing instructions on
page A7-24
not 101x - Coprocessor data operations CDP, CDP2 on page A8-68
AB-40 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Thumb Instruction Set Encoding

Table A6-29 Coprocessor instructions (continued)

op1 op coproc Rn Instructions See
10xxxx 1 101x - Advanced SIMD, VFP 8, 16, and 32-bit transfer between
ARM core and extension registers on
page A7-31
10xxx0 1 not 101x - Move to Coprocessor from MCR, MCR?2 on page A8-186
ARM core register
10xxx1 1 not 101x - Move to ARM core register MRC, MRC2 on page A8-202

from Coprocessor

I1xxxx - - - Advanced SIMD Advanced SIMD data-processing
instructions on page A7-10

For more information about specific coprocessors see Coprocessor support on page A2-68.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. AB-41

Thumb Instruction Set Encoding

AB-42 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A7
Advanced SIMD and VFP
Instruction Encoding

This chapter gives an overview of the Advanced SIMD and VFP instruction sets. It contains the following
sections:

.

Overview on page A7-2

Advanced SIMD and VFP instruction syntax on page A7-3

Register encoding on page A7-8

Advanced SIMD data-processing instructions on page A7-10

VFP data-processing instructions on page A7-24

Extension register load/store instructions on page A7-26

Advanced SIMD element or structure load/store instructions on page A7-27

8, 16, and 32-bit transfer between ARM core and extension registers on page A7-31
64-bit transfers between ARM core and extension registers on page A7-32.

Note

The Advanced SIMD architecture extension, its associated implementations, and supporting

™

software, are commonly referred to as NEON™ technology.

In the decode tables in this chapter, an entry of - for a field value means the value of the field does
not affect the decoding.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-1

Advanced SIMD and VFP Instruction Encoding

A7.1

A7.11

A7.1.2

Overview

All Advanced SIMD and VFP instructions are available in both ARM state and Thumb state.

Advanced SIMD

The following sections describe the classes of instruction in the Advanced SIMD extension:

VFP

Advanced SIMD data-processing instructions on page A7-10

Advanced SIMD element or structure load/store instructions on page A7-27
Extension register load/store instructions on page A7-26

8, 16, and 32-bit transfer between ARM core and extension registers on page A7-31
64-bit transfers between ARM core and extension registers on page A7-32.

The following sections describe the classes of instruction in the VFP extension:

Extension register load/store instructions on page A7-26

8, 16, and 32-bit transfer between ARM core and extension registers on page A7-31
64-bit transfers between ARM core and extension registers on page A7-32

VFP data-processing instructions on page A7-24.

A7-2

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A7.2

A7.2.1

Advanced SIMD and VFP Instruction Encoding

Advanced SIMD and VFP instruction syntax

Advanced SIMD and VFP instructions use the general conventions of the ARM instruction set.
Advanced SIMD and VFP data-processing instructions use the following general format:
V{<modifier>}<operation>{<shape>}<c><g>{.<dt>} {<dest>,} <srcl>, <src2>

All Advanced SIMD and VFP instructions begin with a V. This distinguishes Advanced SIMD vector and
VFP instructions from ARM scalar instructions.

The main operation is specified in the <operation> field. It is usually a three letter mnemonic the same as or
similar to the corresponding scalar integer instruction.

The <c> and <g> fields are standard assembler syntax fields. For details see Standard assembler syntax fields
on page AS8-7.
Advanced SIMD Instruction modifiers

The <modifier> field provides additional variants of some instructions. Table A7-1 provides definitions of
the modifiers. Modifiers are not available for every instruction.

Table A7-1 Advanced SIMD instruction modifiers

<modifier> Meaning

The operation uses saturating arithmetic.

R The operation performs rounding.
D The operation doubles the result (before accumulation, if any).
H The operation halves the result.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-3

Advanced SIMD and VFP Instruction Encoding

A7.2.2 Advanced SIMD Operand shapes
The <shape> field provides additional variants of some instructions. Table A7-2 provides definitions of the
shapes. Operand shapes are not available for every instruction.

Table A7-2 Advanced SIMD operand shapes
<shape> Meaning Typical register shape
(none) The operands and result are all the same width. Dd,Dn,Dm Qd, Qn, Qm
L Long operation - result is twice the width of both operands Qd, Dn, Dm
N Narrow operation - result is half the width of both operands Dd, Qn, Qm
W Wide operation - result and first operand are twice the width of the ~ Qd, Qn, Dm

second operand
A7.2.3 Data type specifiers
The <dt> field normally contains one data type specifier. This indicates the data type contained in
. the second operand, if any
. the operand, if there is no second operand
. the result, if there are no operand registers.
The data types of the other operand and result are implied by the <dt> field combined with the instruction
shape. For information about data type formats see Data types supported by the Advanced SIMD extension
on page A2-25.
In the instruction syntax descriptions in Chapter A8 Instruction Details, the <dt> field is usually specified
as a single field. However, where more convenient, it is sometimes specified as a concatenation of two fields,
<type><size>.
A7-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Syntax flexibility

There is some flexibility in the data type specifier syntax:

.

VSUBW.I16.116.S8 Q3,Q5,D0

instead of:

VSUBW.S8 Q3,Q5,D0

The F32 data type can be abbreviated to F.

The F64 data type can be abbreviated to D.

Advanced SIMD and VFP Instruction Encoding

Where an instruction does not require a data type, you can provide one.

You can specify three data types, specifying the result and both operand data types. For example:

You can specify two data types, specifying the data types of the two operands. The data type of the
result is implied by the instruction shape.

You can specify two data types, specifying the data types of the single operand and the result.

Where an instruction requires a less specific data type, you can instead specify a more specific type,
as shown in Table A7-3.

In all cases, if you provide additional information, the additional information must match the instruction

shape. Disassembly does not regenerate this additional information.

Table A7-3 Data type specification flexibility

Specified data type Permitted more specific data types

None Any

I<size> - .S<size> U<size> -

.8 I8 .S8 .U8 .P8

.16 116 .516 .U16 .P16 .F16

.32 I32 .S32 .U32 - .F32or .F
.64 164 .S64 .U64 - .F64 or .D

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-5

Advanced SIMD and VFP Instruction Encoding

A7.2.4 Register specifiers

The <dest>, <srcl>, and <src2> fields contain register specifiers, or in some cases scalar specifiers or register
lists. Table A7-4 shows the register and scalar specifier formats that appear in the instruction descriptions.

If <dest> is omitted, it is the same as <srcl>.

Table A7-4 Advanced SIMD and VFP register specifier formats

<specifier> Usual meaning 2

<Qd> A quadword destination register for the result vector (Advanced SIMD only).

<Qn> A quadword source register for the first operand vector (Advanced SIMD only).

<Qm> A quadword source register for the second operand vector (Advanced SIMD only).
<Dd> A doubleword destination register for the result vector.

<Dn> A doubleword source register for the first operand vector.

<Dm> A doubleword source register for the second operand vector.

<Sd> A singleword destination register for the result vector (VFP only).

<Sn> A singleword source register for the first operand vector (VFP only).

<Sm> A singleword source register for the second operand vector (VFP only).

<Dd[x]> A destination scalar for the result. Element x of vector <Dd>. (Advanced SIMD only).
<Dn[x]> A source scalar for the first operand. Element x of vector <Dn>. (Advanced SIMD only).
<Dm[x]> A source scalar for the second operand. Element x of vector <Dm>. (Advanced SIMD only).
<Rd> An ARM core register. Can be source or destination.

<Rm> An ARM core register. Can be source or destination.

a. In some instructions the roles of registers are different.

A7-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.2.5 Register lists

A register list is a list of register specifiers separated by commas and enclosed in brackets { and }. There are
restrictions on what registers can appear in a register list. These restrictions are described in the individual
instruction descriptions. Table A7-5 shows some register list formats, with examples of actual register lists
corresponding to those formats.

Note

Register lists must not wrap around the end of the register bank.

Syntax flexibility
There is some flexibility in the register list syntax:

. Where a register list contains consecutive registers, they can be specified as a range, instead of listing
every register, for example {D0-D3} instead of {D@,D1,D2,D3}.

. Where a register list contains an even number of consecutive doubleword registers starting with an
even numbered register, it can be written as a list of quadword registers instead, for example {Q1,Q2}
instead of {D2-D5}.

. Where a register list contains only one register, the enclosing braces can be omitted, for example
VLD1.8 D@, [RO] instead of VLD1.8 {D0}, [RO].

Table A7-5 Example register lists

Format Example Alternative
{<Dd>} {D3} D3
{<Dd>,<Dd+1>,<Dd+2>} {D3,D4,D5} {D3-D5}

{<Dd[x]>,<Dd+2[x]} {D0[3]1,D2[3]}

{<Dd[1>} {0711} D7[]

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-7

Advanced SIMD and VFP Instruction Encoding

A7.3 Register encoding
Advanced SIMD registers are either quadword (128 bits wide) or doubleword (64 bits wide). Some
instructions have options for either doubleword or quadword registers. This is normally encoded in Q
(bit [6]) as Q = 0 for doubleword operations, Q = 1 for quadword operations.
VFP registers are either double-precision (64 bits wide) or single-precision (32 bits wide). This is encoded
in the sz field (bit [8]) as sz = 1 for double-precision operations, or sz = 0 for single-precision operations.
Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.
Table A7-6 shows the encodings for the registers.
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
D Vn vd sz|N|1Q|M Vm
ARM encoding
31 30 29 28 27 26 25 24 2322212019 181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
D Vn vd sz|N|1Q|M Vm
Table A7-6 Encoding of register numbers
Register Register number a .
mnemonic Usual usage encoded in Notes Used in
<Qd> Destination (quadword) D, Vd (bits [22,15:13]) bit[12] == Adv. SIMD
<Qn> First operand (quadword) N, Vn (bits [7,19:17]) bit [16]==0 Adv. SIMD
<Qm> Second operand (quadword) M, Vm (bits [5,3:1]) bit [0] ==0 Adv. SIMD
<Dd> Destination (doubleword) D, Vd (bits [22,15:12]) - Both
<Dn> First operand (doubleword) N, Vn (bits [7,19:16]) - Both
<Dm> Second operand (doubleword) M, Vm (bits [5,3:0]) - Both
<Sd> Destination (single-precision) Vd, D (bits [15:12,22]) - VFP
<Sn> First operand (single-precision) Vn, N (bits [19:16,7]) - VFP
<Sm> Second operand (single-precision) Vm, M (bits [3:0,5]) - VFP
a. If one of these bits is 1, the instruction is UNDEFINED.
A7-8 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.3.1 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions
can access any element in the register set. The instruction syntax refers to the scalars using an index into a
doubleword vector. The descriptions of the individual instructions contain details of the encodings.

Table A7-7 shows the form of encoding for scalars used in multiply instructions. These instructions cannot
access scalars in some registers. The descriptions of the individual instructions contain cross references to
this section where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to
VFP single-precision registers. That is, Dm[x] in a 32-bit context (0 <=m <= 15, 0 <= x <=1) is equivalent to
S[2m + x].

Table A7-7 Encoding of scalars in multiply instructions

Scalar Scalar Register Index Accessible
. Usual usage
mnemonic size specifier specifier registers
<Dm[x]> Second operand 16-bit Vm[2:0] M, Vm[3] DO0-D7
32-bit Vm[3:0] M DO0-D15

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-9

Advanced SIMD and VFP Instruction Encoding

A7.4 Advanced SIMD data-processing instructions

Thumb encoding

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

11 1|1U|1 111

A

B C

ARM encoding

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

111100 1|U

A

B C

Table A7-8 shows the encoding for Advanced SIMD data-processing instructions. Other encodings in this

space are UNDEFINED.

In these instructions, the U bit is in a different location in ARM and Thumb instructions. This is bit [12] of
the first halfword in the Thumb encoding, and bit [24] in the ARM encoding. Other variable bits are in
identical locations in the two encodings, after adjusting for the fact that the ARM encoding is held in
memory as a single word and the Thumb encoding is held as two consecutive halfwords.

The ARM instructions can only be executed unconditionally. The Thumb instructions can be executed
conditionally by using the IT instruction. For details see /7 on page A8-104.

Table A7-8 Data-processing instructions

Uu A C See

- 0xxxx - Three registers of the same length on page A7-12
1x000 0xx1 One register and a modified immediate value on page A7-21
1x001 Oxx1 Two registers and a shift amount on page A7-17
1x01x Oxx1
Ix1xx Oxx1
1xxxx 1xx1
1x0xx x0x0 Three registers of different lengths on page A7-15
1x10x x0x0
1x0xx x1x0 Two registers and a scalar on page A7-16
1x10x x1x0

A7-10 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-8 Data-processing instructions (continued)

Uu A B C See

0 IxI1x - xxx0 Vector Extract, VEXT on page A8-598

1 Ix11x Oxxx xxx0 Two registers, miscellaneous on page A7-19

10xx xxx0 Vector Table Lookup, VTBL, VTBX on page A8-798

1100 0xx0 Vector Duplicate, VDUP (scalar) on page A8-592

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-11

Advanced SIMD and VFP Instruction Encoding

A7.41

1514 13 1211 10 9 8 7 6 5 4 3 2 1

Three registers of the same length

Thumb encoding

0 1514131211109 8 7 6 5 4 3 2 1 0

1 1 1|U

11110 C

A B

ARM encoding

31 30 29 28 27 26 25 24 23 2221 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0

1 111

00 1{U|0 C

A B

Table A7-9 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A7-9 Three registers of the same length

A B U C Instruction See
0000 0 - - Vector Halving Add VHADD, VHSUB on page A8-600
1 - - Vector Saturating Add VOADD on page A8-700
0001 0 - - Vector Rounding Halving Add VRHADD on page A8-734
1 0 00 Vector Bitwise AND VAND (register) on page A8-544
01 Vector Bitwise Bit Clear (AND complement) VBIC (register) on page A8-548
10 Vector Bitwise OR (if source registers differ) VORR (register) on page A8-680
Vector Move (if source registers identical) VMOV (register) on page A8-642
11 Vector Bitwise OR NOT VORN (register) on page A8-676
1 00 Vector Bitwise Exclusive OR VEOR on page A8-596
01 Vector Bitwise Select VBIF, VBIT, VBSL on page A8-550
10 Vector Bitwise Insert if True VBIF, VBIT, VBSL on page A8-550
11 Vector Bitwise Insert if False VBIF, VBIT, VBSL on page A8-550
0010 0 - - Vector Halving Subtract VHADD, VHSUB on page A8-600
1 - - Vector Saturating Subtract VOSUB on page A8-724
oorr o0 - - Vector Compare Greater Than VCGT (register) on page A8-560
1 - - Vector Compare Greater Than or Equal VCGE (register) on page A8-556
A7-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-9 Three registers of the same length (continued)

Instruction

See

0100

Vector Shift Left

VSHL (register) on page A8-752

Vector Saturating Shift Left

VOSHL (register) on page A8-718

0101

Vector Rounding Shift Left

VRSHL on page A8-736

Vector Saturating Rounding Shift Left

VORSHL on page A8-714

0110

0111

Vector Maximum or Minimum

Vector Absolute Difference

VMAX, VMIN (integer) on page A8-630

VABD, VABDL (integer) on page A8-528

Vector Absolute Difference and Accumulate

VABA, VABAL on page A8-526

1000

1001

1010

1011

Vector Add

VADD (integer) on page A8-536

Vector Subtract

VSUB (integer) on page A8-788

Vector Test Bits

VTST on page A8-802

Vector Compare Equal

Vector Multiply Accumulate or Subtract

Vector Multiply

Vector Pairwise Maximum or Minimum

Vector Saturating Doubling Multiply
Returning High Half

Vector Saturating Rounding Doubling
Multiply Returning High Half

Vector Pairwise Add

VCEQ (register) on page A8-552

VMLA, VMLAL, VMLS, VMLSL (integer)
on page A8-634

VMUL, VMULL (integer and polynomial)
on page A8-662

VPMAX, VPMIN (integer) on
page A8-690
VODMULH on page A8-704

VORDMULH on page A8-712

VPADD (integer) on page A8-684

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-13

Advanced SIMD and VFP Instruction Encoding

Table A7-9 Three registers of the same length (continued)

Instruction

See

1101 0 O 0x

Vector Add

VADD (floating-point) on page A8-538

1x Vector Subtract VSUB (floating-point) on page A8-790
1 0x Vector Pairwise Add VPADD (floating-point) on page A8-686
1x Vector Absolute Difference VABD (floating-point) on page A8-530
1 0 - Vector Multiply Accumulate or Subtract VMLA, VMLS (floating-point) on
page A8-636
1 0x Vector Multiply VMUL (floating-point) on page A8-664
1110 0 O 0x Vector Compare Equal VCEQ (register) on page A8-552

1 0x Vector Compare Greater Than or Equal VCGE (register) on page A8-556
1x Vector Compare Greater Than VCGT (register) on page A8-560
1 1 - Vector Absolute Compare Greater or Less VACGE, VACGT, VACLE,VACLT on
Than (or Equal) page A8-534
1111 0 O - Vector Maximum or Minimum VMAX, VMIN (floating-point) on
page A8-632
1 - Vector Pairwise Maximum or Minimum VPMAX, VPMIN (floating-point) on
page A8-692
1 0 0x Vector Reciprocal Step VRECPS on page A8-730
0 1x Vector Reciprocal Square Root Step VRSQORTS on page A8-744

A7-14

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.4.2 Three registers of different lengths
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11 1|ujr 1111 B A 0 0
ARM encoding
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
1 11 1/0 0 1|U|!1 B A 0 0
If B == 0bl1, see Advanced SIMD data-processing instructions on page A7-10.
Table A7-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A7-10 Data-processing instructions with three registers of different lengths
A Instruction See
000x Vector Add Long or Wide VADDL, VADDW on page A8-542
001x Vector Subtract Long or Wide VSUBL, VSUBW on page A8-794
0100 Vector Add and Narrow, returning High Half VADDHN on page A8-540
Vector Rounding Add and Narrow, returning High Half VRADDHN on page A8-726
0101 Vector Absolute Difference and Accumulate VABA, VABAL on page A8-526
0110 Vector Subtract and Narrow, returning High Half VSUBHN on page A8-792
Vector Rounding Subtract and Narrow, returning High Half =~ VRSUBHN on page A8-748
0111 Vector Absolute Difference VABD, VABDL (integer) on
page A8-528
10x0 Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL
(integer) on page A8-634
10x1 Vector Saturating Doubling Multiply Accumulate or VODMIAL, VODMLSL on
Subtract Long page A8-702
1100 Vector Multiply (integer) VMUL, VMULL (integer and
polynomial) on page A8-662
1101 Vector Saturating Doubling Multiply Long VODMULL on page A8-706

1110

Vector Multiply (polynomial)

VMUL, VMULL (integer and
polynomial) on page A8-662

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-15

Advanced SIMD and VFP Instruction Encoding

A7.43 Two registers and a scalar
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 O
1 1 1|Uj1 1111 B A 1 0
ARM encoding
31 30 29 28 27 26 25 24 23 2221 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
1 11 1{0 0 1|U|I B A 1 0
If B ==0bl1, see Advanced SIMD data-processing instructions on page A7-10.
Table A7-11 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A7-11 Data-processing instructions with two registers and a scalar
A U Instruction See
0x0x Vector Multiply Accumulate or Subtract VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638
0x10 Vector Multiply Accumulate or Subtract Long ~ VMLA, VMLAL, VMLS, VMLSL (by scalar) on
page A8-638
0x11 Vector Saturating Doubling Multiply VODMLAL, VODMLSL on page A8-702
Accumulate or Subtract Long
100x Vector Multiply VMUL, VMULL (by scalar) on page A8-666
1010 Vector Multiply Long VMUL, VMULL (by scalar) on page A8-666
1011 Vector Saturating Doubling Multiply Long VODMULL on page A8-706
1100 Vector Saturating Doubling Multiply returning ~ VODMULH on page A8-704
High Half
1101 Vector Saturating Rounding Doubling VORDMULH on page A8-712
Multiply returning High Half
A7-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.4.4 Two registers and a shift amount
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11 1|ujr 1111 imm3 A L|B 1
ARM encoding
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
1 11 1/0 0 1|U|!1 imm3 A L|B 1
If [L, imm3] == 0b0000, see One register and a modified immediate value on page A7-21.
Table A7-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A7-12 Data-processing instructions with two registers and a shift amount
A Uu B Instruction See
0000 Vector Shift Right VSHR on page A8-756
0001 Vector Shift Right and Accumulate VSRA on page A8-764
0010 Vector Rounding Shift Right VRSHR on page A8-738
0011 Vector Rounding Shift Right and Accumulate VRSRA on page A8-746
0100 Vector Shift Right and Insert VSRI on page A8-766
0101 Vector Shift Left VSHL (immediate) on page A8-750
0101 Vector Shift Left and Insert VSLI on page A8-760
011x Vector Saturating Shift Left VOSHL, VOQSHLU (immediate) on

1000

Vector Shift Right Narrow

page A8-720

VSHRN on page A8-758

Vector Rounding Shift Right Narrow

VRSHRN on page A8-740

Vector Saturating Shift Right, Unsigned Narrow

VOSHRN, VOSHRUN on page A8-722

Vector Saturating Shift Right, Rounded
Unsigned Narrow

VORSHRN, VORSHRUN on
page A8-716

1001

Vector Saturating Shift Right, Narrow

VOSHRN, VOSHRUN on page A8-722

Vector Saturating Shift Right, Rounded Narrow

VORSHRN, VORSHRUN on
page A8-716

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-17

Advanced SIMD and VFP Instruction Encoding

Table A7-12 Data-processing instructions with two registers and a shift amount (continued)

A U B L Instruction See
1010 - 0 - Vector Shift Left Long VSHLL on page A8-754
Vector Move Long VMOVL on page A8-654
111x - - - Vector Convert VCVT (between floating-point and
fixed-point, Advanced SIMD) on
page A8-580

A7-18 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.4.5 Two registers, miscellaneous
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111 1|11 11 1]1 11 A 0 B 0
ARM encoding
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
1 1111001 1]1 11 A 0 B 0
The allocation of encodings in this space is shown in Table A7-13. Other encodings in this space are
UNDEFINED.
Table A7-13 Instructions with two registers, miscellaneous
A B Instruction See
00 0000x Vector Reverse in doublewords VREV16, VREV32, VREV64 on page A8-732
0001x Vector Reverse in words VREV16, VREV32, VREV64 on page A8-732
0010x Vector Reverse in halfwords VREV16, VREV32, VREV64 on page A8-732
010xx Vector Pairwise Add Long VPADDL on page A8-688
1000x Vector Count Leading Sign Bits VCLS on page A8-566
1001x Vector Count Leading Zeros VCLZ on page A8-570
1010x Vector Count VCNT on page A8-574
1011x Vector Bitwise NOT VMVN (register) on page A8-670
110xx Vector Pairwise Add and Accumulate Long VPADAL on page A8-682
1110x Vector Saturating Absolute VQABS on page A8-698

1111x

Vector Saturating Negate

VONEG on page A8-710

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-19

Advanced SIMD and VFP Instruction Encoding

Table A7-13 Instructions with two registers, miscellaneous (continued)

A B Instruction See
01 x000x Vector Compare Greater Than Zero VCGT (immediate #0) on page A8-562
x001x Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page A8-558
x010x Vector Compare Equal to zero VCEQ (immediate #0) on page A8-554
x011x Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page A8-564
x100x Vector Compare Less Than Zero VCLT (immediate #0) on page A8-568
x110x Vector Absolute VABS on page A8-532
x111x Vector Negate VNEG on page A8-672
0000x Vector Swap VSWP on page A8-796
0001x Vector Transpose VTRN on page A8-800
0010x Vector Unzip VUZP on page A8-804
0011x Vector Zip VZIP on page A8-806
10 01000 Vector Move and Narrow VMOVN on page A8-656
01001 Vector Saturating Move and Unsigned Narrow VOMOVN, VOMOVUN on page A8-708
0101x Vector Saturating Move and Narrow VOMOVN, VOMOVUN on page A8-708
01100 Vector Shift Left Long (maximum shift) VSHLL on page A8-754
11x00 Vector Convert VCVT (between half-precision and
single-precision, Advanced SIMD) on
page A8-586
11 10x0x Vector Reciprocal Estimate VRECPE on page A8-728
10x1x Vector Reciprocal Square Root Estimate VRSQORTE on page A8-742
11xxx Vector Convert VCVT (between floating-point and integer,
Advanced SIMD) on page A8-576
A7-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.4.6 One register and a modified immediate value

1514 13 1211 10 9 8 7 6 5 4 3

2 1

0 1514 13 12 11 10 9 8 7

Thumb encoding
6 543 2 10

11 1fajl 1 1 1 1] |0 0O

b cd

cmode |0 op|lje f g h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

ARM encoding
6 54 3 2 10

111 1{0 0 1|afl 000

b cd

cmode |0 op|l|e f g h

Table A7-14 shows the allocation of encodings in this space.

Table A7-15 on page A7-22 shows the modified immediate constants available with these instructions, and

how they are encoded.

Table A7-14 Data-processing instructions with one register and

a modified immediate value

op cmode

Instruction

See

0 0xx0

Vector Move

VMOV (immediate) on page A8-640

Oxx1

Vector Bitwise OR

VORR (immediate) on page A8-678

10x0

10x1

Vector Move

Vector Bitwise OR

VMOV (immediate) on page A8-640

VORR (immediate) on page A8-678

11xx

Vector Move

VMOV (immediate) on page A8-640

1 0xx0

Vector Bitwise NOT

VMVN (immediate) on page A8-668

Oxx1

Vector Bit Clear

VBIC (immediate) on page A8-546

10x0

Vector Bitwise NOT

VMVN (immediate) on page A8-668

10x1

110x

Vector Bit Clear

Vector Bitwise NOT

VBIC (immediate) on page A8-546

VMVN (immediate) on page A8-668

1110

Vector Move

VMOV (immediate) on page A8-640

1111

UNDEFINED

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

A7-21

Advanced SIMD and VFP Instruction Encoding

Table A7-15 Modified immediate values for Advanced SIMD instructions

op cmode Constant?a <dt>P Notes

- 000x 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh I32 c
001x 00000000 00000000 abcdefgh abcdefgh 00000000 132 ¢.d
010x 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 I32 c.d
011x abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 132 c.d
100x 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh I16 ¢
101x abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 116 c.d
1100 00000000 00000000 abcdefgh 11111111 00000000 00000000 abcdefgh 11111111 I32 de
1101 00000000 abcdefgh 11111111 11111111 00000000 abcdefgh 11111111 11111111 I32 de

0 1110 abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh 18 f

1 1110 aaaaaaaa bbbbbbbb ccccccce dddddddd eeeeeeee fFFfffff gggggggg hhhhhhhh 164 f

0 1111 aBbbbbbc defgh00d 00000000 00000000 aBbbbbbc defgh0d0 00000000 00000000 F32 f.g

1 1111 UNDEFINED - -

a. In this table, the immediate value is shown in binary form, to relate abcdefgh to the encoding diagram. In assembler
syntax, the constant is specified by a data type and a value of that type. That value is specified in the normal way (a
decimal number by default) and is replicated enough times to fill the 64-bit immediate. For example, a data type of 132
and a value of 10 specify the 64-bit constant 0x0000000A0000000A.

b. This specifies the data type used when the instruction is disassembled. On assembly, the data type must be matched in
the table if possible. Other data types are permitted as pseudo-instructions when code is assembled, provided the 64-bit
constant specified by the data type and value is available for the instruction (if it is available in more than one way, the
first entry in this table that can produce it is used). For example, VMOV.164 D0,#0x8000000080000000 does not specify a
64-bit constant that is available from the 164 line of the table, but does specify one that is available from the fourth 132
line or the F32 line. It is assembled to the former, and therefore is disassembled as VMOV.I32 D0,#0x80000000.

c. This constant is available for the VBIC, VMOV, VMVN, and VORR instructions.

d. UNPREDICTABLE if abcdefgh == 00000000.

e. This constant is available for the VMOV and VMWN instructions only.

f. This constant is available for the VMOV instruction only.

¢. In this entry, B = NOT(b). The bit pattern represents the floating-point number (—1)S * 2¢xP * mantissa, where
S =UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

A7-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Operation

// AdvSIMDExpandImm()

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)

case cmode<3:1> of

when ‘000’
testimm8 = FALSE; imm64 = Replicate(Zeros(24):imm8, 2);
when ‘001’
testimm8 = TRUE; imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
when ‘010’
testimm8 = TRUE; imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
when ‘011’
testimm8 = TRUE; imm64 = Replicate(imm8:Zeros(24), 2);
when ‘100’
testimm8 = FALSE; imm64 = Replicate(Zeros(8):imm8, 4);
when ‘101’
testimm8 = TRUE; imm64 = Replicate(imm8:Zeros(8), 4);
when ‘110’
testimm8 = TRUE;
if cmode<@> == ‘@’ then
imm64 = Replicate(Zeros(16):imm8:0nes(8), 2);
else
imm64 = Replicate(Zeros(8):imm8:0nes(16), 2);
when ‘111’

testimm8 = FALSE;

if cmode<@> == ‘0’ && op == ‘@’ then
imm64 = Replicate(imm8, 8);

if cmode<@> == ‘0’ && op == ‘1’ then
imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0@>, 8);
imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;

if cmode<@> == ‘1’ && op == ‘@’ then
imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
imm64 = Replicate(imm32, 2);

if cmode<@> == ‘1’ && op == ‘1’ then
UNDEFINED;

if testimm8 && imm8 == ‘00000000’ then
UNPREDICTABLE;

return imme4;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-23

Advanced SIMD and VFP Instruction Encoding

A7.5 VFP data-processing instructions
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1 1|T|1 110 opcl opc2 1 01 opc3 0 opc4
ARM encoding
31 30 29 28 27 26 25 24 23 22 212019 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 O
cond 1110 opcl opc2 1 01 opc3 0 opcé

If T==1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise:

. Table A7-16 shows the encodings for three-register VFP data-processing instructions. Other
encodings in this space are UNDEFINED.

. Table A7-17 on page A7-25 applies only if Table A7-16 indicates that it does. It shows the encodings
for VFP data-processing instructions with two registers or a register and an immediate. Other
encodings in this space are UNDEFINED.

. Table A7-18 on page A7-25 shows the immediate constants available in the VMOV (immediate)
instruction.

These instructions are CDP instructions for coprocessors 10 and 11.

Table A7-16 Three-register VFP data-processing instructions
opc1l opc3 Instruction See
0x00 - Vector Multiply Accumulate or Subtract VMLA, VMLS (floating-point) on
page A8-636
0x01 - Vector Negate Multiply Accumulate or Subtract ~ VNMLA, VNMLS, VNMUL on page A8-674
0x10 x1
x0 Vector Multiply VMUL (floating-point) on page A8-664
Ox11 x0 Vector Add VADD (integer) on page A8-536
x1 Vector Subtract VSUB (integer) on page A8-788
1x00 x0 Vector Divide VDIV on page A8-590
Ix11 - Other VFP data-processing instructions Table A7-17 on page A7-25
A7-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-17 Other VFP data-processing instructions

opc2 opc3 Instruction See
- x0 Vector Move VMOV (immediate) on page A8-640
0000 01 Vector Move VMOV (register) on page A8-642
11 Vector Absolute VABS on page A8-532
0001 01 Vector Negate VNEG on page A8-672

11 Vector Square Root VSQRT on page A8-762

001x xI1 Vector Convert VCVTB, VCVTT (between half-precision and single-precision, VFP) on
page A8-588

010x x1 Vector Compare VCMP, VCMPE on page A8-572

0111 11 Vector Convert VCVT (between double-precision and single-precision) on page A8-584

1000 x1 Vector Convert VCVT, VCVTR (between floating-point and integer, VFP) on page A8-578

101x x1 Vector Convert VCVT (between floating-point and fixed-point, VFP) on page A8-582

110x x1 Vector Convert VCVT, VCVTR (between floating-point and integer, VFP) on page A8-578

111x x1 Vector Convert VCVT (between floating-point and fixed-point, VFP) on page A8-582

Table A7-18 VFP modified immediate constants

Datatype opc2 opc4 Constanta

F32 abcd efgh aBbbbbbc defgh000 00000000 00000000

Fo4 abcd efgh aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (—1)S * 2¢xp * mantissa, where
S =UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

A7.5.1 Operation

// VFPExpandImm()
/] ==m=mmmmm=mns

bits(N) VFPExpandImm(bits(8) imm8, integer N)
assert N == 32 || N == 64;
if N == 32 then
return imm8<7>:NOT(imm8<6>):RepTicate(imm8<6>,5):imm8<5:0>:Zeros(19);
else
return imm8<7>:NOT(imm8<6>) :RepTicate(imm8<6>,8):imm8<5:0>:Zeros(48);

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-25

Advanced SIMD and VFP Instruction Encoding

A7.6 Extension register load/store instructions
Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1 1|T|1 10 Opcode Rn 1 01
ARM encoding
31 30 29 28 27 26 2524 2322212019 18 1716 151413 121110 9 8 7 6 5 4 3 2 1 0
cond 110 Opcode Rn 1 01
If T==1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.
Otherwise, the allocation of encodings in this space is shown in Table A7-19. Other encodings in this space
are UNDEFINED.
These instructions are LDC and STC instructions for coprocessors 10 and 11.
Table A7-19 Extension register load/store instructions
Opcode Rn Instruction See
0010x - - 64-bit transfers between ARM
core and extension registers on
page A7-32
01x00 - Vector Store Multiple (Increment After, no writeback) VSTM on page A8-784
01x10 - Vector Store Multiple (Increment After, writeback) VSTM on page A8-784
1xx00 - Vector Store Register VSTR on page A8-786
10x10 not 1101 Vector Store Multiple (Decrement Before, writeback) VSTM on page A8-784
1101 Vector Push Registers VPUSH on page A8-696
01x01 - Vector Load Multiple (Increment After, no writeback) VLDM on page A8-626
01x11 not 1101 Vector Load Multiple (Increment After, writeback) VLDM on page A8-626
1101 Vector Pop Registers VPOP on page A8-694
1xx01 - Vector Load Register VLDR on page A8-628
10x11 - Vector Load Multiple (Decrement Before, writeback) ~ VLDM on page A8-626
A7-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.7 Advanced SIMD element or structure load/store instructions

Thumb encoding

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 O

11111100 1|A] |L

0

B

ARM encoding

31 30 29 28 27 26 25 24 23 22 212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O

11 11/0100|A|] |L

0

B

The allocation of encodings in this space is shown in:
. Table A7-20 if L == 0, store instructions
. Table A7-21 on page A7-28 if L == 1, load instructions.

Other encodings in this space are UNDEFINED.

The variable bits are in identical locations in the two encodings, after adjusting for the fact that the ARM
encoding is held in memory as a single word and the Thumb encoding is held as two consecutive halfwords.

The ARM instructions can only executed unconditionally. The Thumb instructions can be executed
conditionally by using the IT instruction. For details see /T on page A8-104.

Table A7-20 Element and structure store instructions (L == 0)

Instruction

See

0 0010
011x
1010

Vector Store

VSTI (multiple single elements) on page A8-768

0011
100x

010x

Vector Store

Vector Store

VST2 (multiple 2-element structures) on page A8-772

VST3 (multiple 3-element structures) on page A8-776

000x

Vector Store

VST4 (multiple 4-element structures) on page A8-780

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-27

Advanced SIMD and VFP Instruction Encoding

Table A7-20 Element and structure store instructions (L == 0) (continued)

B Instruction See
0x00 Vector Store VST (single element from one lane) on page A8-770
1000
0x01 Vector Store VST2 (single 2-element structure from one lane) on page A8-774
1001
0x10 Vector Store VST3 (single 3-element structure from one lane) on page A8-778
1010
0x11 Vector Store VST4 (single 4-element structure from one lane) on page A8-782
1011
Table A7-21 Element and structure load instructions (L == 1)
A B Instruction See
0 0010 Vector Load VLDI (multiple single elements) on page A8-602
011x
1010
0011 Vector Load VLD2 (multiple 2-element structures) on page A8-608
100x
010x Vector Load VLD3 (multiple 3-element structures) on page A8-614
000x Vector Load VLD4 (multiple 4-element structures) on page A8-620

A7-28

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

Table A7-21 Element and structure load instructions (L == 1) (continued)

A B Instruction See

1 0x00 Vector Load VLDI (single element to one lane) on page A8-604
1000

1100 Vector Load VLDI (single element to all lanes) on page A8-606

0x01 Vector Load VLD?2 (single 2-element structure to one lane) on page A8-610
1001

1101 Vector Load VLD?2 (single 2-element structure to all lanes) on page A8-612

0x10 Vector Load VLD3 (single 3-element structure to one lane) on page A8-616
1010

1110 Vector Load VLD3 (single 3-element structure to all lanes) on page A8-618

Ox11 Vector Load VLD4 (single 4-element structure to one lane) on page A8-622
1011

1111 Vector Load VLD4 (single 4-element structure to all lanes) on page A8-624

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-29

Advanced SIMD and VFP Instruction Encoding

A7.7.1 Advanced SIMD addressing mode
All the element and structure load/store instructions use this addressing mode. There is a choice of three
formats:
[<Rn>{@<align>}] The address is contained in ARM core register Rn.
Rn is not updated by this instruction.
Encoded as Rm =0b1111.
If Rn is encoded as Ob1111, the instruction is UNPREDICTABLE.
[<Rn>{@<align>}]! The address is contained in ARM core register Rn.
Rn is updated by this instruction: Rn = Rn + transfer_size
Encoded as Rm = 0b1101.
transfer_size is the number of bytes transferred by the instruction. This means that,
after the instruction is executed, Rn points to the address in memory immediately
following the last address loaded from or stored to.
If Rn is encoded as Ob1111, the instruction is UNPREDICTABLE.
This addressing mode can also be written as:
[<Rn>{@align}], #<transfer_size>
However, disassembly produces the [<Rn>{@align}]! form.
[<Rn>{@<align>}], <Rm>
The address is contained in ARM core register <Rn>.
Rn is updated by this instruction: Rn = Rn + Rm
Encoded as Rm = Rm. Rm must not be encoded as Ob1111 or Ob1101 (the PC or
the SP).
If Rn is encoded as Ob1111, the instruction is UNPREDICTABLE.
In all cases, <align> specifies an optional alignment. Details are given in the individual instruction
descriptions.
A7-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Advanced SIMD and VFP Instruction Encoding

A7.8 8,16, and 32-bit transfer between ARM core and extension registers

151413121110 9 8 7 6 5 4 3 2 1

Thumb encoding

0 151413121110 9 8 7 6 5 4 3 2 1 O

1

1

1

Tf1 11 0] A |L

1 0 1|C B |1

ARM encoding

31 30 29 28 27 26 25 24 23 22 212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O

cond

1110 A |L

1 0 1|C B |1

If T==1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise, the allocation of encodings in this space is shown in Table A7-22. Other encodings in this space
are UNDEFINED.

These instructions are MRC and MCR instructions for coprocessors 10 and 11.

Table A7-22 8-bit, 16-bit and 32-bit data transfer instructions

L C A B Instruction See
0 0 000 - Vector Move VMOV (between ARM core register and
single-precision register) on page A8-648
11 - Move to VFP Special Register from VMSR on page A8-660
ARM core register VMSR on page B6-29 (System level view)
0 1 Oxx - Vector Move VMOV (ARM core register to scalar) on
page A8-644
1xx 0Ox Vector Duplicate VDUP (ARM core register) on page A8-594
1 0 000 - Vector Move VMOV (between ARM core register and
single-precision register) on page A8-648
111 - Move to ARM core register from VFP VMRS on page A8-658
Special Register VMRS on page B6-27 (System level view)
1 XXX - Vector Move VMOV (scalar to ARM core register) on

page A8-646

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A7-31

Advanced SIMD and VFP Instruction Encoding

A7.9 64-bit transfers between ARM core and extension registers

Thumb encoding
151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
1 1 1|T|{1 100|010 1 0 1(C op

ARM encoding
31 30 29 28 27 26 252423222120 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 1 100(0 10 1 0 1|C op

If T==1 in the Thumb encoding or cond == 0b1111 in the ARM encoding, the instruction is UNDEFINED.

Otherwise, the allocation of encodings in this space is shown in Table A7-23. Other encodings in this space
are UNDEFINED.

These instructions are MRRC and MCRR instructions for coprocessors 10 and 11.

Table A7-23 8-bit, 16-bit and 32-bit data transfer instructions

C op Instruction

0 00x1 VMOV (between two ARM core registers and two single-precision registers) on page A8-650

1 00x1 VMOV (between two ARM core registers and a doubleword extension register) on page A8-652

A7-32 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Chapter A8
Instruction Details

This chapter describes each instruction. It contains the following sections:
. Format of instruction descriptions on page A8-2

. Standard assembler syntax fields on page A8-7

. Conditional execution on page A8-8

. Shifts applied to a register on page A8-10

. Memory accesses on page A8-13

. Alphabetical list of instructions on page A8-14.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-1

Instruction Details

A8.1 Format of instruction descriptions
The instruction descriptions in Alphabetical list of instructions on page A8-14 normally use the following
format:
. instruction section title
. introduction to the instruction
. instruction encoding(s) with architecture information
. assembler syntax
. pseudocode describing how the instruction operates
. exception information
. notes (where applicable).
Each of these items is described in more detail in the following subsections.
A few instruction descriptions describe alternative mnemonics for other instructions and use an abbreviated
and modified version of this format.

A8.1.1 Instruction section title
The instruction section title gives the base mnemonic for the instructions described in the section. When one
mnemonic has multiple forms described in separate instruction sections, this is followed by a short
description of the form in parentheses. The most common use of this is to distinguish between forms of an
instruction in which one of the operands is an immediate value and forms in which it is a register.
Parenthesized text is also used to document the former mnemonic in some cases where a mnemonic has been
replaced entirely by another mnemonic in the new assembler syntax.

A8.1.2 Introduction to the instruction
The instruction section title is followed by text that briefly describes the main features of the instruction.
This description is not necessarily complete and is not definitive. If there is any conflict between it and the
more detailed information that follows, the latter takes priority.

A8.1.3 Instruction encodings
This is a list of one or more instruction encodings. Each instruction encoding is labelled as:
. T1, T2, T3 ... for the first, second, third and any additional Thumb encodings
o Al, A2, A3 ... for the first, second, third and any additional ARM encodings
o El, E2, E3 ... for the first, second, third and any additional ThumbEE encodings that are not also

Thumb encodings.

Where Thumb and ARM encodings are very closely related, the two encodings are described together, for
example as encoding T1/ Al.

A8-2 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Each instruction encoding description consists of:

Information about which architecture variants include the particular encoding of the instruction. This
is presented in one of two ways:

— For instruction encodings that are in the main instruction set architecture, as a list of the
architecture variants that include the encoding. See Architecture versions, profiles, and
variants on page Al-4 for a summary of these variants.

— For instruction encodings that are in the architecture extensions, as a list of the architecture
extensions that include the encoding. See Architecture extensions on page A1-6 for a summary
of the architecture extensions and the architecture variants that they can extend.

In architecture variant lists:

— ARMv7 means ARMv7-A and ARMv7-R profiles. The architecture variant information in this
manual does not cover the ARMv7-M profile.

— * is used as a wildcard. For example, ARMv5T* means ARMvS5T, ARMvVSTE, and
ARMVS5TE].

An assembly syntax that ensures that the assembler selects the encoding in preference to any other
encoding. In some cases, multiple syntaxes are given. The correct one to use is sometimes indicated
by annotations to the syntax, such as Inside IT block and Outside IT block. In other cases, the correct
one to use can be determined by looking at the assembler syntax description and using it to determine
which syntax corresponds to the instruction being disassembled.

There is usually more than one syntax that ensures re-assembly to any particular encoding, and the
exact set of syntaxes that do so usually depends on the register numbers, immediate constants and
other operands to the instruction. For example, when assembling to the Thumb instruction set, the
syntax AND RO,R0,R8 ensures selection of a 32-bit encoding but AND R@,R@,R1 selects a 16-bit encoding.

The assembly syntax documented for the encoding is chosen to be the simplest one that ensures
selection of that encoding for all operand combinations supported by that encoding. This often means
that it includes elements that are only necessary for a small subset of operand combinations. For
example, the assembler syntax documented for the 32-bit Thumb AND (register) encoding includes
the .W qualifier to ensure that the 32-bit encoding is selected even for the small proportion of operand
combinations for which the 16-bit encoding is also available.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to
disassemble that encoding to. However, disassemblers might wish to use simpler syntaxes when they
are suitable for the operand combination, in order to produce more readable disassembled code.

An encoding diagram, or a Thumb encoding diagram followed by an ARM encoding diagram when
they are being described together. This is half-width for 16-bit Thumb encodings and full-width for
32-bit Thumb and ARM encodings. The 32-bit Thumb encodings use a double vertical line between
the two halfwords of the instruction to distinguish them from ARM encodings and to act as a
reminder that 32-bit Thumb instructions consist of two consecutive halfwords rather than a word.

In particular, if instructions are stored using the standard little-endian instruction endianness, the
encoding diagram for an ARM instruction at address A shows the bytes at addressees A+3, A+2,
A+1, A from left to right, but the encoding diagram for a 32-bit Thumb instruction shows them in the
order A+1, A for the first halfword, followed by A+3, A+2 for the second halfword.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-3

Instruction Details

. Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction
fields into inputs to the encoding-independent pseudocode in the later Operation subsection, and that
picks out any special cases in the encoding. For a detailed description of the pseudocode used and of
the relationship between the encoding diagram, the encoding-specific pseudocode and the
encoding-independent pseudocode, see Appendix I Pseudocode Definition.

A8.1.4 Assembler syntax
The Assembly syntax subsection describes the standard UAL syntax for the instruction.
Each syntax description consists of the following elements:

. One or more syntax prototype lines written in a typewriter font, using the conventions described in
Assembler syntax prototype line conventions on page A8-5. Each prototype line documents the
mnemonic and (where appropriate) operand parts of a full line of assembler code. When there is more
than one such line, each prototype line is annotated to indicate required results of the
encoding-specific pseudocode. For each instruction encoding, this information can be used to
determine whether any instructions matching that encoding are available when assembling that
syntax, and if so, which ones.

. The line where: followed by descriptions of all of the variable or optional fields of the prototype
syntax line.

Some syntax fields are standardized across all or most instructions. Standard assembler syntax fields
on page A8-7 describes these fields.

By default, syntax fields that specify registers, such as <Rd>, <Rn>, or <Rt>, can be any of R0-R12 or
LR in Thumb instructions, and any of RO-R12, SP or LR in ARM instructions. These require that the
encoding-specific pseudocode set the corresponding integer variable (such as d, n, or t) to the
corresponding register number (0-12 for RO-R12, 13 for SP, 14 for LR). This can normally be done
by setting the corresponding bitfield in the instruction (named Rd, Rn, Rt...) to the binary encoding
of that number. In the case of 16-bit Thumb encodings, this bitfield is normally of length 3 and so the
encoding is only available when one of RO-R7 is specified in the assembler syntax. It is also common
for such encodings to use a bitfield name such as Rdn. This indicates that the encoding is only
available if <Rd> and <Rn> specify the same register, and that the register number of that register is
encoded in the bitfield if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted
range of registers or documents other differences from the default rules for such fields. Typical
extensions are to permit the use of the SP in Thumb instructions and to permit the use of the PC (using
register number 15).

. Where appropriate, text that briefly describes changes from the pre-UAL ARM assembler syntax.
Where present, this usually consists of an alternative pre-UAL form of the assembler mnemonic. The
pre-UAL ARM assembler syntax does not conflict with UAL, and support for it is a recommended
optional extension to UAL, to enable the assembly of pre-UAL ARM assembler source files.

A8-4 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A8.1.5

Instruction Details

Note

The pre-UAL Thumb assembler syntax is incompatible with UAL and is not documented in the instruction
sections. For details see Appendix C Legacy Instruction Mnemonics.

Assembler syntax prototype line conventions
The following conventions are used in assembler syntax prototype lines and their subfields:

<> Any item bracketed by < and > is a short description of a type of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded. This is often done by specifying a required output
from the encoding-specific pseudocode, such as add = TRUE. The assembler must only use
encodings that produce that output.

{1} Any item bracketed by { and } is optional. A description of the item and of how its presence
or absence is encoded in the instruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register is omitted, it is the same as the immediately following source register in
the instruction syntax.

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in a few places as part of a variable
item. When this happens, the long description of the variable item indicates how they must be used.

Pseudocode describing how the instruction operates

The Operation subsection contains encoding-independent pseudocode that describes the main operation of
the instruction. For a detailed description of the pseudocode used and of the relationship between the
encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see
Appendix I Pseudocode Definition.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-5

Instruction Details

A8.1.6 Exception information

The Exceptions subsection contains a list of the exceptional conditions that can be caused by execution of

the instruction.

Processor exceptions are listed as follows:

. Resets and interrupts (both IRQs and FIQs) are not listed. They can occur before or after the
execution of any instruction, and in some cases during the execution of an instruction, but they are
not in general caused by the instruction concerned.

. Prefetch Abort exceptions are normally caused by a memory abort when an instruction is fetched,
followed by an attempt to execute that instruction. This can happen for any instruction, but is caused
by the aborted attempt to fetch the instruction rather than by the instruction itself, and so is not listed.
A special case is the BKPT instruction, that is defined as causing a Prefetch Abort exception in some
circumstances.

. Data Abort exceptions are listed for all instructions that perform data memory accesses.

. Undefined Instruction exceptions are listed when they are part of the effects of a defined instruction.
For example, all coprocessor instructions are defined to produce the Undefined Instruction exception
if not accepted by their coprocessor. Undefined Instruction exceptions caused by the execution of an
UNDEFINED instruction are not listed, even when the UNDEFINED instruction is a special case of one
or more of the encodings of the instruction. Such special cases are instead indicated in the
encoding-specific pseudocode for the encoding.

. Supervisor Call and Secure Monitor Call exceptions are listed for the SVC and SMC instructions
respectively. Supervisor Call exceptions and the SVC instruction were previously called Software
Interrupt exceptions and the SWI instruction. Secure Monitor Call exceptions and the SMC instruction
were previously called Secure Monitor interrupts and the SMI instruction.

Floating-point exceptions are listed for instructions that can produce them. Floating-point exceptions on

page A2-42 describes these exceptions. They do not normally result in processor exceptions.

A8.1.7 Notes
Where appropriate, other notes about the instruction appear under additional subheadings.
Note

Information that was documented in notes in previous versions of the ARM Architecture Reference Manual

and its supplements has often been moved elsewhere. For example, operand restrictions on the values of

bitfields in an instruction encoding are now normally documented in the encoding-specific pseudocode for
that encoding.
A8-6 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

A8.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<c>

<>

Is an optional field. It specifies the condition under which the instruction is executed. See
Conditional execution on page A8-8 for the range of available conditions and their
encoding. If <c> is omitted, it defaults to always (AL).

Specifies optional assembler qualifiers on the instruction. The following qualifiers are
defined:

N Meaning narrow, specifies that the assembler must select a 16-bit encoding for
the instruction. If this is not possible, an assembler error is produced.

W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings.
If both are available, it must select a 16-bit encoding. In a few cases, more than one encoding
of the same length can be available for an instruction. The rules for selecting between such
encodings are instruction-specific and are part of the instruction description.

Note

When assembling to the ARM instruction set, the .N qualifier produces an assembler error
and the .W qualifier has no effect.

Although the instruction descriptions throughout this manual show the <c> and <g> fields without { } around
them, these fields are optional as described in this section.

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-7

Instruction Details

A8.3 Conditional execution
Most ARM instructions, and most Thumb instructions from ARMv6T?2 onwards, can be executed
conditionally, based on the values of the APSR condition flags. Before ARMv6T2, the only conditional
Thumb instruction was the 16-bit conditional branch instruction. Table A8-1 lists the available conditions.
In Thumb instructions, the condition (if it is not AL) is normally encoded in a preceding IT instruction. For
details see Conditional instructions on page A4-4 and IT on page A8-104. Some conditional branch
instructions do not require a preceding IT instruction, and include a condition code in their encoding.
In ARM instructions, bits [31:28] of the instruction contain the condition, or contain 1111 for some ARM
instructions that can only be executed unconditionally.
Table A8-1 Condition codes
Mnemonic
- a
cond extension Meaning (integer) Meaning (floating-point) Condition flags
0000 EQ Equal Equal Z ==
0001 NE Not equal Not equal, or unordered Z ==
0010 [Carry set Greater than, equal, or unordered C==1
0011 cce Carry clear Less than C==0
0100 MI Minus, negative Less than N==
0101 PL Plus, positive or zero Greater than, equal, or unordered N ==
0110 VS Overflow Unordered V==
0111 VC No overflow Not unordered V=0
1000 HI Unsigned higher Greater than, or unordered C==1landZ==0
1001 LS Unsigned lower or same Less than or equal C=0o0orZ==
1010 GE Signed greater than or equal Greater than or equal N==V
1011 LT Signed less than Less than, or unordered N!=V
1100 GT Signed greater than Greater than Z==0and N==
1101 LE Signed less than or equal Less than, equal, or unordered Z=1orN!=V
1110 None (AL) d Always (unconditional) Always (unconditional) Any
a. Unordered means at least one NaN operand.
b. HS (unsigned higher or same) is a synonym for CS.
c. LO (unsigned lower) is a synonym for CC.
d. AL is an optional mnemonic extension for always, except in IT instructions. For details see /T on page A8-104.

A8-8

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

A8.3.1 Pseudocode details of conditional execution
The CurrentCond() pseudocode function has prototype:
bits(4) CurrentCond()
and returns a 4-bit condition specifier as follows:
. For ARM instructions, it returns bits[31:28] of the instruction.

. For the T1 and T3 encodings of the Branch instruction (see B on page A8-44), it returns the 4-bit
'cond' field of the encoding.

. For all other Thumb and ThumbEE instructions, it returns ITSTATE.IT<7:4>. See ITSTATE on
page A2-17.

The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine
whether the instruction must be executed:

// ConditionPassed()

booTlean ConditionPassed()
cond = CurrentCond();

// Evaluate base condition.
case cond<3:1> of

when ‘000’ result = (APSR.Z == ‘1’); // EQ or NE
when ‘001’ result = (APSR.C == ‘1’); // CS or CC
when ‘010’ result = (APSR.N == ‘1’); // MI or PL
when ‘011’ result = (APSR.V == ‘1’); // VS or VC
when ‘100’ result = (APSR.C == ‘1’) && (APSR.Z == ‘0’); // HI or LS
when ‘101’ result = (APSR.N == APSR.V); // GE or LT
when ‘110’ result = (APSR.N == APSR.V) & (APSR.Z == ‘0’); // GT or LE
when ‘111’ result = TRUE; // AL

// Condition bits ‘111x’ indicate the instruction is always executed. Otherwise,
// invert condition if necessary.
if cond<0> == ‘1’ && cond != ‘1111’ then

result = !result;

return result;

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-9

Instruction Details

A8.4

A8.4.1

Shifts applied to a register

ARM register offset load/store word and unsigned byte instructions can apply a wide range of different
constant shifts to the offset register. Both Thumb and ARM data-processing instructions can apply the same
range of different constant shifts to the second operand register. For details see Constant shifts.

ARM data-processing instructions can apply a register-controlled shift to the second operand register.

Constant shifts

These are the same in Thumb and ARM instructions, except that the input bits come from different
positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:
(omitted) No shift.

LSL #<n> Logical shift left <n> bits. 1 <= <n> <= 31.

LSR #<n> Logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> Arithmetic shift right <n> bits. 1 <= <n> <=32.

ROR #<n> Rotate right <n> bits. 1 <= <n> <= 31.

RRX Rotate right one bit, with extend. Bit [0] is written to shifter_carry_out, bits [31:1] are
shifted right one bit, and the Carry Flag is shifted into bit [31].

Note

Assemblers can permit the use of some or all of ASR #0, LSL #0, LSR #0, and ROR #@ to specify that no shift is
to be performed. This is not standard UAL, and the encoding selected for Thumb instructions might vary
between UAL assemblers if it is used. To ensure disassembled code assembles to the original instructions,
disassemblers must omit the shift specifier when the instruction specifies no shift.

Similarly, assemblers can permit the use of #0 in the immediate forms of ASR, LSL, LSR, and ROR instructions
to specify that no shift is to be performed, that is, that a MOV (register) instruction is wanted. Again, this is
not standard UAL, and the encoding selected for Thumb instructions might vary between UAL assemblers
if it is used. To ensure disassembled code assembles to the original instructions, disassemblers must use the
MOV (register) syntax when the instruction specifies no shift.

A8-10

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:
(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0bO1.
If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ASR #<n> type = 0b10.
If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.
ROR #<n> type = Ob11, immediate = <n>.

RRX type = Ob11, immediate = 0.

A8.4.2 Register controlled shifts
These are only available in ARM instructions.

<type> is the type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.

The bottom byte of <Rs> contains the shift amount.

A8.4.3 Pseudocode details of instruction-specified shifts and rotates
enumeration SRType (SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX);

// DecodeImmShift()
R ——

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

case type of
when ‘00’
shift_t = SRType_LSL; shift_n = UInt(imm5);
when ‘01’
shift_t = SRType_LSR; shift_n = if imm5 == ‘00000’ then 32 else UInt(imm5);
when ‘10’
shift_t = SRType_ASR; shift_n = if imm5 == ‘00000’ then 32 else UInt(imm5);
when ‘11’

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-11

Instruction Details

if imm5 == ‘00000’ then

shift_t = SRType_RRX; shift_n
else

shift_t = SRType_ROR; shift_n

return (shift_t, shift_n);

// DecodeRegShift()
/] ====m=m=mm=m====

SRType DecodeRegShift(bits(2) type)
case type of

when ‘00’ shift_t = SRType_LSL;
when ‘01’ shift_t = SRType_LSR;
when ‘10’ shift_t = SRType_ASR;
when ‘11’ shift_t = SRType_ROR;

return shift_t;

// Shift()
Jy—

1;

UInt(imm5);

bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
(result, -) = Shift_C(value, type, amount, carry_in);

return result;

// Shift_C()
/] mmmmmmmn

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
assert !(type == SRType_RRX && amount != 1);

if amount == @ then

(result, carry_out) = (value, carry_in);

else
case type of
when SRType_LSL

(result, carry_out) = LSL_C(value, amount);

when SRType_LSR

(result, carry_out) = LSR_C(value, amount);

when SRType_ASR
(result, carry_out)
when SRType_ROR

ASR_C(value, amount);

(result, carry_out) = ROR_C(value, amount);

when SRType_RRX

(result, carry_out) = RRX_C(value, carry_in);

return (result, carry_out);

A8-12 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

A8.5

Instruction Details

Memory accesses
Commonly, the following addressing modes are permitted for memory access instructions:

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access. The value of the base register is unchanged.

The assembly language syntax for this mode is:

[<Rn>,<offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>,<offset>]!

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the
memory access. The offset value is applied to the address, and written back into the base
register

The assembly language syntax for this mode is:

[<Rn>],<offset>

In each case, <Rn> is the base register. <offset> can be:

. an immediate constant, such as <imm8> or <imm12>
. an index register, <Rm>
. a shifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:
. Alignment support on page A3-4

. Endian support on page A3-7

. Synchronization and semaphores on page A3-12.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-13

Instruction Details

A8.6 Alphabetical list of instructions

Every instruction is listed in this section. For details of the format used see Format of instruction
descriptions on page A8-2.

A8.6.1 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to a register value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMv6T2, ARMv7
ADC{S}<c> <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 111 0]if{0|1 O 1 OfS Rn 0| imm3 Rd imm§

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADC{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22212019 181716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 0|10 1 0 1}S Rn Rd imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imml2);

A8-14 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A6-17 or Modified immediate constants in ARM
instructions on page A5-9 for the range of values.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-15

Instruction Details

A8.6.2 ADC (register)

Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the

result.

Encoding T1 ARMVAT, ARMvS5T*, ARMv6*, ARMv7

ADCS <Rdn>, <Rm> Outside IT block.
ADC<c> <Rdn>,<Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0
01 00O0O0|01O0 1| Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7

ADC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11 101{0 1|1 01 0fS Rn (0)| imm3 Rd imm?2 | type Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMvST*, ARMv6*, ARMv7

ADC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 0|0(0 1 0 1(S Rn Rd imm5 type | 0 Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-16 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The optionally shifted second operand register.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and any encoding is permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

. outside an IT block, if ADCS <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0O-R7, it is assembled
using encoding T1 as though ADCS <Rd>,<Rn> had been written.

. inside an IT block, if ADC<c> <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range RO-R7, it is
assembled using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-17

Instruction Details

A8.6.3

ADC (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the carry flag value, and a register-shifted

register value. It writes the result to the destination register, and can optionally update the condition flags
based on the result.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
ADC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond 0 0j0(0 1 0 1(S Rn Rd Rs 0] type |1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]] n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-18

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADC{S}<c><g> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> The first operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, APSR.C);
R[d] = result;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-19

Instruction Details

A8.6.4 ADD (immediate, Thumb)

This instruction adds an immediate value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.
Encoding T1 ARMVAT, ARMv5T*, ARMv6*, ARMv7
ADDS <Rd>,<Rn>,#<imm3> Outside IT block.
ADD<c> <Rd>,<Rn>,#<imm3> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0

00 0|1 11|00 imm3 Rn Rd
d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

Encoding T2 ARMVAT, ARMvS5T*, ARMv6*, ARMv7
ADDS <Rdn>, #<imm8> Outside IT block.
ADD<c> <Rdn>, #<imm8> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0

0 0 1|1 O Rdn imm8
d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);
Encoding T3 ARMvV6T2, ARMvV7
ADD{S}<c>.W <Rd>,<Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1110]i|{0|1 0 0 O0]S Rn 0| imm3 Rd imm8

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (immediate);

if Rn == ‘1101’ then SEE ADD (SP plus immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ThumbExpandImm(i:imm3:imm8);

if BadReg(d) || n == 15 then UNPREDICTABLE;

Encoding T4 ARMV6T2, ARMV7
ADDW<c> <Rd>,<Rn>,#<imml2>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1111 0fi|{1{0 0 0 0]0 Rn 0| imm3 Rd imm8

if Rn == ‘1111’ then SEE ADR;

if Rn == ‘1101’ then SEE ADD (SP plus immediate);

d = UInt(Rd); n = UInt(Rn); setflags = FALSE; 1imm32 = ZeroExtend(i:imm3:imm8, 32);

if BadReg(d) then UNPREDICTABLE;

A8-20 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, #<const> All encodings permitted
ADDW<c><q> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted
where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><0> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If <Rn> is SP, see ADD (SP plus immediate) on page A8-28. If <Rn>

is PC, see ADR on page A8-32.

<const> The immediate value to be added to the value obtained from <Rn>. The range of values is 0-7
for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding T4. See Modified
immediate constants in Thumb instructions on page A6-17 for the range of values for
encoding T3.

‘When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if
<Rd> is specified and encoding T2 is preferred to encoding T1 if <Rd> is omitted.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, ‘0’);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-21

Instruction Details

A8.6.5 ADD (immediate, ARM)

This instruction adds an immediate value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

Encoding A1 ARMv4* ARMvST*, ARMv6*, ARMvV7

ADD{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0O 0f1(0 1 0 0|S Rn Rd imml12

if Rn == ‘1111’ && S == ‘@’ then SEE ADR;

if Rn == ‘1101’ then SEE ADD (SP plus immediate);

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’); imm32 = ARMExpandImm(imml12);

A8-22 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register. If the SP is specified for <Rn>, see ADD (SP plus immediate) on
page A8-28. If the PC is specified for <Rn>, see ADR on page A8-32.

<const> The immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-23

Instruction Details

A8.6.6 ADD (register)
This instruction adds a register value and an optionally-shifted register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.
Encoding T1 ARMVAT, ARMv5T*, ARMv6*, ARMv7
ADDS <Rd>, <Rn>, <Rm> Outside IT block.
ADD<c> <Rd>,<Rn>,<Rm> Inside IT block.
1514131211109 8 7 6 5 4 3 2 1 0
00 O01 1(0]0 Rm Rn Rd
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBTock();
(shift_t, shift_n) = (SRType_LSL, 0);
Encoding T2 ARMV6T2, ARMV7 if <Rdn> and <Rm> are both from RO-R7

ARMV4AT, ARMv5T*, ARMv6*, ARMv7 otherwise
ADD<c> <Rdn>,<Rm> If <Rdn> is the PC, must be outside or last in IT block.
151413121110 9 8 7 6 5 4 3 2 1 0
01 00O 1{0 O0|DN Rm Rdn
if (DN:Rdn) == ‘1101’ || Rm == ‘1101’ then SEE ADD (SP plus register);
d = UInt(DN:Rdn); n =d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 & m == 15 then UNPREDICTABLE;
if d == 15 & InITBlock() && !LastInITBlock() then UNPREDICTABLE;
Encoding T3 ARMvV6T2, ARMv7
ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11 101(0 1|1 00 0|S Rn (0)| imm3 Rd imm?2 | type Rm
if Rd == ‘1111’ && S == ‘1’ then SEE (MN (register);
if Rn == ‘1101’ then SEE ADD (SP plus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || n == 15 || BadReg(m) then UNPREDICTABLE;
Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMvV7
ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 0/0(0O 1 0 OfS Rn Rd imm5 type | 0 Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
if Rn == ‘1101’ then SEE ADD (SP plus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-24 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. If omitted, <Rd> is the same as <Rn> and encoding T2 is preferred to
encoding T1 inside an IT block. If <Rd> is present, encoding T1 is preferred to encoding T2.

<Rn> The first operand register. If <Rn> is SP, see ADD (SP plus register) on page A8-30.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, only encoding T3 or Al is

permitted. If omitted, no shift is applied and any encoding is permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

In Thumb assembly, inside an IT block, if ADD<c> <Rd>,<Rn>,<Rd> cannot be assembled using encoding T1,
it is assembled using encoding T2 as though ADD<c> <Rd>,<Rn> had been written.

To prevent this happening, use the .W qualifier.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], shifted, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-25

Instruction Details

A8.6.7 ADD (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result
to the destination register, and can optionally update the condition flags based on the result.

Encoding A1 ARMv4*, ARMvS5T*, ARMv6*, ARMV7

ADD{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 2221 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 0|/0(0 1 0 OfS Rn Rd Rs 0] type |1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]] n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-26 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> The first operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], shifted, ‘0’);
R[d] = result;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-27

Instruction Details

A8.6.8

ADD (SP plus immediate)

This instruction adds an immediate value to the SP value, and writes the result to the destination register.

Encoding T1
ADD<c> <Rd>,SP,#<imm>

ARMVAT, ARMV5T*, ARMv6*, ARMv7

151413121110 9 8 7 6 5 4 3 2 1 0

1 01

01

Rd

imm8

d = UInt(Rd);

Encoding T2
ADD<c> SP,SP,#<imm>

setflags = FALSE;

ARMVAT, ARMv5T*, ARMv6*, ARMvV7

imm32 = ZeroExtend(imm8:’00’, 32);

151413121110 9 8 7 6 5 4 3 2 1 O

1 01

10 0 0 0|0

imm?7

d = 13;

setflags

Encoding T3
ADD{S}<c>.W <Rd>,SP,#<const>

= FALSE;

ARMV6T2, ARMV7

imm32 = ZeroExtend(imm7:’00’, 32);

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

1 11

10

i

0

1000

S|1

1 01

0

imm3

Rd

imm§8

if Rd == ‘1111’ && S == ‘1’ then SEE CMN (immediate);

d = UInt(Rd);
if d == 15 then UNPREDICTABLE;

Encoding T4
ADDW<c> <Rd>,SP,#<imm12>

setflags = (S == ‘1’);

ARMvV6T2, ARMvV7

imm32 = ThumbExpandImm(i:imm3:imm8);

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

1 11

10

i

1

0000

01

1 01

0

imm3

Rd

imm§8

d = UInt(Rd);

Encoding A1
ADD{S}<c> <Rd>,SP,#<const>

setflags = FALSE;
if d == 15 then UNPREDICTABLE;

ARMv4*, ARMvVS5T*, ARMv6*, ARMv7

imm32 = ZeroExtend(i:imm3:imm8, 32);

31 30 29 28 27 26 25 24 23 222120 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

cond

00

1

0100

S|1

1 01

Rd

imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;

d = UInt(Rd);

setflags = (S == ‘1’);

imm32 = ARMExpandImm(imm12);

A8-28

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><g> {<Rd>,} SP, #<const> All encodings permitted

ADDW<c><g> {<Rd>,} SP, #<const> Only encoding T4 is permitted

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><0> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. If omitted, <Rd> is SP.

<const> The immediate value to be added to the value obtained from SP. Values are multiples of 4 in

the range 0-1020 for encoding T1, multiples of 4 in the range 0-508 for encoding T2 and
any value in the range 0-4095 for encoding T4. See Modified immediate constants in Thumb
instructions on page A6-17 or Modified immediate constants in ARM instructions on

page AS5-9 for the range of values for encodings T3 and Al.

When both 32-bit encodings are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 is required, use the ADDW syntax).

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(SP, imm32, ‘0’);

if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;

if setflags then
APSR.N = result<3l>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-29

Instruction Details

A8.6.9 ADD (SP plus register)

This instruction adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

Encoding T1 ARMVAT, ARMv5T*, ARMv6*, ARMv7
ADD<c> <Rdm>, SP, <Rdm>

1514131211109 8 7 6 5 4 3 2 1 0
0100O01O0O0ODMI1I1O0 1| Rdm

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMVAT, ARMvS5T*, ARMv6*, ARMv7
ADD<c> SP,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0
01 00O0T10O0O0]1 Rm 1 01

if Rm == ‘1101’ then SEE encoding T1;
d =13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T3 ARMV6T2, ARMV7

ADD{S}<c>.W <Rd>,SP,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1110101 100O0O0(S{1 10 1{|0| imm3 Rd imm?2| type Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if d == 15 || BadReg(m) then UNPREDICTABLE;

Encoding A1 ARMv4* ARMv5T*, ARMv6*, ARMv7
ADD{S}<c> <Rd>,SP,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 00|00 1 0 OfS{1 101 Rd imm5 type | 0 Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-30 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ADD{S}<c><q> {<Rd>,} SP, <Rm>{, <shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register. This register can be SP. If omitted, <Rd> is SP. This register can be
the PC, but if it is, encoding T3 is not permitted. Using the PC is deprecated.

<Rm> The register that is optionally shifted and used as the second operand. This register can be
the PC, but if it is, encoding T3 is not permitted. Using the PC is deprecated. This register
can be SP in both ARM and Thumb instructions, but:
. the use of SP is deprecated
. when assembling for the Thumb instruction set, only encoding T1 is available and so

the instruction can only be ADD SP,SP,SP.
<shift> The shift to apply to the value read from <Rm>. If omitted, no shift is applied and any

encoding is permitted. If present, only encoding T3 or Al is permitted. Shifts applied to a
register on page A8-10 describes the shifts and how they are encoded.

In the Thumb instruction set, if <Rd> is SP or omitted, <shift> is only permitted to be
omitted, LSL #1, LSL #2, or LSL #3.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(SP, shifted, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then

APSR.N = result<3l>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-31

Instruction Details

A8.6.10 ADR

This instruction adds an immediate value to the PC value to form a PC-relative address, and writes the result
to the destination register.

Encoding T1
ADR<c> <Rd>,<label>

1514 13 121110 9 8 7 6 5 4 3 2

1

ARMVAT, ARMV5T*, ARMv6*, ARMv7

0

1 01 0{0] Rd

imm38

d = UInt(Rd); 1imm32 = ZeroExtend(imm8:°00’, 32); add = TRUE;

Encoding T2
ADR<c>.W <Rd>,<label>

SUB <Rd>,PC,#0

1514 13121110 9 8 7 6 5 4 3 2

ARMV6T2, ARMV7

1

<label> before current instruction

Special case for subtraction of zero

0 1514131211109 8 7 6 5 4 3 2 1 O

1 1T 1 10(ifl

0101

01

1

1

1{{0| imm3

Rd

imm8

d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if BadReg(d) then UNPREDICTABLE;

Encoding T3
ADR<c>.W <Rd>,<Tabel>

1514 13121110 9 8 7 6 5 4 3 2

ARMvV6T2, ARMvV7

1

<label> after current instruction

0 1514131211109 8 7 6 5 4 3 2 1 O

1 11 10(ifl

0000

01

1

1

1{{0| imm3

Rd

imm8

d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if BadReg(d) then UNPREDICTABLE;

Encoding A1
ADR<c> <Rd>,<1abel>

ARMv4*, ARMvV5T*, ARMv6*, ARMv7

<label> after current instruction

31 30 29 28 27 26 25 24 23 222120 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond 0 0|1

0100

01

1

1

1 Rd

imm12

d = UInt(Rd); 1imm32 = ARMExpandImm(imm12);

Encoding A2
ADR<c> <Rd>,<label>

SUB <Rd>,PC,#0

add = TRUE;

ARMv4*, ARMvS5T*, ARMv6*, ARMv7

<label> before current instruction

Special case for subtraction of zero

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond 0 0|1

0010

01

1

1

1 Rd

imm12

d = UInt(Rd); 1imm32 = ARMExpandImm(imm12);

add = FALSE;

A8-32

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

ADR<c><0g>
ADD<c><g>
SUB<c><o>

where:
<C><Q>
<Rd>

<label>

<Rd>, <Tabel> Normal syntax
<Rd>, PC, #<const> Alternative for encodings T1, T3, Al
<Rd>, PC, #<const> Alternative for encoding T2, A2
See Standard assembler syntax fields on page A8-7.
The destination register.
The label of an instruction or literal data item whose address is to be loaded into <Rd>. The

assembler calculates the required value of the offset from the A1ign(PC,4) value of the ADR
instruction to this label. Permitted values of the offset are:

Encoding T1
multiples of 4 in the range -1020 to 1020
Encodings T2 and T3
any value in the range -4095 to 4095
Encodings A1 and A2
plus or minus any of the constants described in Modified immediate constants
in ARM instructions on page A5-9.

If the offset is zero or positive, encodings T1, T3, and A1 are permitted with imm32 equal to
the offset.

If the offset is negative, encodings T2 and A2 are permitted with imm32 equal to minus the
offset.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if d == 15 then // Can only occur for ARM encodings
ALUWritePC(result);

else

R[d]

Exceptions

None.

result;

ARM DDI 0406B

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-33

Instruction Details

A8.6.11 AND (immediate)

This instruction performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

Encoding T1 ARMV6T2, ARMV7
AND{S}<c> <Rd>,<Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 11 10fi[0]0 O 0 O]S Rn 0| imm3 Rd imm§

if Rd == ‘1111’ && S == ‘1’ then SEE TST (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if BadReg(d) || BadReg(n) then UNPREDICTABLE;

Encoding A1 ARMv4* ARMv5T*, ARMv6*, ARMv7
AND{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 2524 232221201918 1716 151413121110 9 8 7 6 5 4 3 2 1 O
cond 0O 0f1|0 O O O|S Rn Rd imm12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

A8-34 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<const> The immediate value to be ANDed with the value obtained from <Rn>. See Modified

immediate constants in Thumb instructions on page A6-17 or Modified immediate constants
in ARM instructions on page AS-9 for the range of values.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-35

Instruction Details

A8.6.12 AND (register)

This instruction performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMvS5T*, ARMv6*, ARMv7
ANDS <Rdn>,<Rm> Outside IT block.
AND<c> <Rdn>,<Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0
01 00O0O0|0O0O0O0| Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7
AND{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11 101(0 1{0 00 O0|S Rn (0)| imm3 Rd imm?2 | type Rm

if Rd == ‘1111’ && S == ‘1’ then SEE TST (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding A1 ARMv4* ARMv5T*, ARMv6*, ARMv7
AND{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 0 0|/0[0 O O OfS Rn Rd imm5 type | 0 Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-36 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.

<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If
absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

In Thumb assembly:

. outside an IT block, if ANDS <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range R0O-R7, it is assembled
using encoding T1 as though ANDS <Rd>,<Rn> had been written

. inside an IT block, if AND<c> <Rd>,<Rn>,<Rd> has <Rd> and <Rn> both in the range RO-R7, it is
assembled using encoding T1 as though AND<c> <Rd>,<Rn> had been written.

To prevent either of these happening, use the .W qualifier.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-37

Instruction Details

A8.6.13 AND (register-shifted register)

This instruction performs a bitwise AND of a register value and a register-shifted register value. It writes
the result to the destination register, and can optionally update the condition flags based on the result.

Encoding A1
AND{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

ARMv4*, ARMv5T*, ARMv6*, ARMv7

31 30 29 28 27 26 25 24 23 2221 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond 0 0(0|0O O O O|S Rn

Rd

Rs

0

type

1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

s = UInt(Rs);

setflags = (S == ‘1’); shift_t = DecodeRegShift(type);

if d==15 || n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-38

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

AND{S}<c><g> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> The first operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-39

Instruction Details

A8.6.14 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in
copies of its sign bit, and writes the result to the destination register. It can optionally update the condition

flags based on the result.

Encoding T1
ASRS <Rd>, <Rm>, #<imm>
ASR<c> <Rd>, <Rm>, #<imm>

1514 13 1211 10 9 8 7 6 5 4

32 10

00O01 O imm5 Rm

Rd

d = UInt(Rd); m = UInt(Rm); setflag
(-, shift_n) = DecodeImmShift(‘10’, i

ARMVAT, ARMvS5T*, ARMv6*, ARMv7
Outside IT block.
Inside IT block.

s = !InITBlock();

mm5) ;

Encoding T2 ARMv6T2, ARMv7

ASR{S}<c>.W <Rd>,<Rm>,#<imm>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

111010 1{0 01 0|S|1 1 1 1}]/(0)] imm3 Rd imm2|1 O Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1’);

(-, shift_n) = DecodeImmShift(‘10’, imm3:imm2);

if BadReg(d) || BadReg(m) then UNPREDICTABLE;

Encoding A1 ARMv4* ARMv5T*, ARMv6*, ARMv7

ASR{S}<c> <Rd>,<Rm>,#<imm>

31 30 29 28 27 26 25 24 23 22212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0 0[0|1 1 0 1|S|0)(0)()(0 Rd imm5 1 00 Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == ‘1");
(-, shift_n) = DecodeImmShift(‘10’, imm5);

A8-40

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

ASR{S}<c><q> {<Rd>,} <Rm>, #<imm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rm> The first operand register.

<imm> The shift amount, in the range 1 to 32. See Shifts applied to a register on page A8-10
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-41

Instruction Details

A8.6.15 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies
of its sign bit, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register. It can optionally update the condition flags based on the result.

Encoding T1 ARMVAT, ARMvS5T*, ARMv6*, ARMv7
ASRS <Rdn>,<Rm> Outside IT block.
ASR<c> <Rdn>, <Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0

01 00O0O0|01O0O0| Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

Encoding T2 ARMV6T2, ARMv7
ASR{S}<c>.W <Rd>,<Rn>,<Rm>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

11111{010(0|1 0|S Rn 1 111 Rd 0{0 0 O Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMvS5T*, ARMv6*, ARMv7
ASR{S}<c> <Rd>,<Rn>,<Rm>

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond 0 0|01 1 0 1|S|0)(0)()(0) Rd Rm 0101 Rn

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
if d==15]| n==15 || m == 15 then UNPREDICTABLE;

A8-42

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

ASR{S}<c><gq> {<Rd>,} <Rn>, <Rm>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_ASR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-43

Instruction Details

A8.6.16 B
Branch causes a branch to a target address.

Encoding T1 ARMVAT, ARMvV5T*, ARMv6*, ARMvV7
B<c> <label> Not permitted in IT block.

151413121110 9 8 7 6 5 4 3 2 1 O

1 1 01 cond imm38

if cond == ‘1110’ then UNDEFINED;

if cond == ‘1111’ then SEE SVC;

imm32 = SignExtend(imm8:°Q’, 32);

if InITBlock() then UNPREDICTABLE;

Encoding T2 ARMVAT, ARMvS5T*, ARMv6*, ARMv7

B<c> <label> Outside or last in IT block
1514131211109 8 7 6 5 4 3 2 1 0

1 1100 imm11

imm32 = SignExtend(immll:’Q’, 32);
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding T3 ARMv6T2, ARMv7

B<c>.W <label> Not permitted in IT block.
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1110]|S cond immo6 1 0J110])2 immll

if cond<3:1> == ‘111’ then SEE “Related encodings”;
imm32 = SignExtend(S:J2:J1:imm6:immll:’0’, 32);
if InITBlock() then UNPREDICTABLE;

Encoding T4 ARMv6T2, ARMv7

B<c>.W <label> Outside or last in IT block
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 11 10]S imml10 1 0|J1|1(32 imml1

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:12:imml1@:imm11:°0Q’, 32);
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

B<c> <label>

31 30 29 28 27 26 25 24 23 22212019 1817 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 1 010 imm24

imm32 = SignExtend(imm24:°00°, 32);

A8-44 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Related encodings See Branches and miscellaneous control on page A6-20

Assembler syntax

B<c><g> <label>

where:

<C><q>

<label>

Operation

See Standard assembler syntax fields on page A8-7.
—— Note

Encodings T1 and T3 are conditional in their own right, and do not require an IT instruction
to make them conditional.

For encodings T1 and T3, <c> must not be AL or omitted. The 4-bit encoding of the condition
is placed in the instruction and not in a preceding IT instruction, and the instruction must not
be in an IT block. As a result, encodings T1 and T2 are never both available to the assembler,
nor are encodings T3 and T4.

The label of the instruction that is to be branched to. The assembler calculates the required
value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are:

Encoding T1 Even numbers in the range —256 to 254

Encoding T2 Even numbers in the range —2048 to 2046
Encoding T3 Even numbers in the range —1048576 to 1048574
Encoding T4 Even numbers in the range —16777216 to 16777214
Encoding A1 Multiples of 4 in the range —33554432 to 33554428.

if ConditionPassed() then
EncodingSpecificOperations();
BranchWritePC(PC + imm32);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-45

Instruction Details

A8.6.17 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other
bits in the register.

Encoding T1 ARMV6T2, ARMV7
BFC<c> <Rd>,#<1sb>,#<width>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 O
I 11 1 0|01 1{0 1 1(0|1 1 1 1|/0| imm3 Rd imm?2 |(0) msb

d = UInt(Rd); mshit = UInt(msb); 1sbit = UInt(imm3:imm2);
if BadReg(d) then UNPREDICTABLE;

Encoding A1 ARMv6T2, ARMv7
BFC<c> <Rd>,#<1sb>,#<width>

31 30 29 28 27 26 25 24 23 2221 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0111110 msb Rd Isb 00111111

d = UInt(Rd); msbit = UInt(msb); T1sbit = UInt(1sh);
if d == 15 then UNPREDICTABLE;

A8-46 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BFC<c><q> <Rd>, #<1sb>, #<width>

where:

<C><g> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<1sb> The least significant bit that is to be cleared, in the range 0 to 31. This determines the
required value of 1sbit.

<width> The number of bits to be cleared, in the range 1 to 32-<1sb>. The required value of mshit is
<1sb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbit >= Tshit then
R[d]<msbit:1sbit> = Replicate(‘0’, msbit-Tsbit+l);
// Other bits of R[d] are unchanged
else
UNPREDICTABLE;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-47

Instruction Details

A8.6.18 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at
any position in the destination register.

Encoding T1 ARMV6T2, ARMV7
BFI<c> <Rd>,<Rn>,#<1sb>,#<width>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 O
I 11 1 0101 1{0 1 110 Rn 0| imm3 Rd imm?2 |(0) msb

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); 1Isbit = UInt(imm3:imm2);
if BadReg(d) || n == 13 then UNPREDICTABLE;

Encoding A1 ARMV6T2, ARMV7
BFI<c> <Rd>,<Rn>,#<1sb>,#<width>

31 30 29 28 27 26 25 24 23 22212019 18 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0
cond 0111110 msb Rd 1sb 001 Rn

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); Tsbit = UInt(1sb);
if d == 15 then UNPREDICTABLE;

A8-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BFI<c><g> <Rd>, <Rn>, #<Isb>, #<width>

where:

<C><g> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The source register.

<1sb> The least significant destination bit, in the range O to 31. This determines the required value
of Isbit.

<width> The number of bits to be copied, in the range 1 to 32-<1sb>. The required value of msbit is
<1sb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbhit >= 1shit then
R[d]<msbit:1sbit> = R[n]<(msbit-1sbit):0>;
// Other bits of R[d] are unchanged
else
UNPREDICTABLE;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-49

Instruction Details

A8.6.19 BIC (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags

based on the result.

Encoding T1 ARMv6T2, ARMv7

BIC{S}<c> <Rd>,<Rn>,#<const>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

1 111 0[i[0[0O O O 1]|S Rn 0| imm3 Rd imm8

d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1’);

(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);

if BadReg(d) || BadReg(n) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7

BIC{S}<c> <Rd>,<Rn>,#<const>

31 30 29 28 27 26 25 24 23 22 212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 0O o011 11 0|S Rn Rd imml12

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1");
(imm32, carry) = ARMExpandImm_C(imm12, APSR.C);

A8-50

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The register that contains the operand.

<const> The immediate value to be bitwise inverted and ANDed with the value obtained from <Rn>.

See Modified immediate constants in Thumb instructions on page A6-17 or Modified
immediate constants in ARM instructions on page A5-9 for the range of values.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-51

Instruction Details

A8.6.20 BIC (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

Encoding T1 ARMVAT, ARMvS5T*, ARMv6*, ARMv7
BICS <Rdn>,<Rm> Outside IT block.
BIC<c> <Rdn>,<Rm> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0
01 00O0O0|111O0| Rm Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMV6T2, ARMV7

BIC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 110 1{0 1|10 0 0 1]S Rn (0)| imm3 Rd imm?2 | type Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1’);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMvST*, ARMv6*, ARMv7

BIC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22212019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 00|01 1 1 0fS Rn Rd imm5 type | 0 Rm

if Rd == ‘1111’ && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) = DecodeImmShift(type, imm5);

A8-52 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BIC{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.

<shift> The shift to apply to the value read from <Rm>. If present, encoding T1 is not permitted. If

absent, no shift is applied and all encodings are permitted. Shifts applied to a register on
page A8-10 describes the shifts and how they are encoded.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND NOT(shifted);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-53

Instruction Details

A8.6.21 BIC (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement
of a register-shifted register value. It writes the result to the destination register, and can optionally update
the condition flags based on the result.

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
BIC{S}<c> <Rd>,<Rn>,<Rm>,<type> <Rs>

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 00|01 11 0(S Rn Rd Rs 0] type |1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d==15]] n==15 || m==15 || s == 15 then UNPREDICTABLE;

A8-54

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, <Rm>, <type> <Rs>

where:
S If S is present, the instruction updates the flags. Otherwise, the flags are not updated.
<C><q> See Standard assembler syntax fields on page A8-7.
<Rd> The destination register.
<Rn> The first operand register.
<Rm> The register that is shifted and used as the second operand.
<type> The type of shift to apply to the value read from <Rm>. It must be one of:
ASR Arithmetic shift right, encoded as type = 0b10
LSL Logical shift left, encoded as type = 0b00
LSR Logical shift right, encoded as type = 0b01
ROR Rotate right, encoded as type = Ob11.
<Rs> The register whose bottom byte contains the amount to shift by.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND NOT(shifted);
R[d] = result;
if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

// APSR.V unchanged

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-55

Instruction Details

A8.6.22 BKPT

Breakpoint causes a software breakpoint to occur.

Breakpoint is always unconditional, even when inside an IT block.

Encoding T1 ARMVST*, ARMv6*, ARMv7
BKPT #<imm8>

151413121110 9 8 7 6 5 4 3 2 1 0

1011|1110 imm8

imm32 = ZeroExtend(imm8, 32);
// imm32 1is for assembly/disassembly only and is ignored by hardware.

Encoding A1 ARMvVS5T*, ARMv6*, ARMv7
BKPT #<imm16>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond 0001O0O0T1OQO0 imm12

01 11 imm4

imm32 = ZeroExtend(imm12:imm4, 32);
// imm32 1is for assembly/disassembly only and is ignored by hardware.

if cond !'= ‘1110’ then UNPREDICTABLE; // BKPT must be encoded with AL condition

A8-56

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BKPT<g> #<imm>

where:

<> See Standard assembler syntax fields on page A8-7. A BKPT instruction must be
unconditional.

<imm> Specifies a value that is stored in the instruction, in the range 0-255 for a Thumb instruction
or 0-65535 for an ARM instruction. This value is ignored by the processor, but can be used
by a debugger to store more information about the breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

Prefetch Abort.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-57

Instruction Details

A8.6.23 BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address,
and changes instruction set from ARM to Thumb, or from Thumb to ARM.

Encoding T1 ARMVAT, ARMvV5T*, ARMv6*, ARMV7 if J1 ==J2 ==

ARMv6T2, ARMV7 otherwise
BL<c> <label> Outside or last in IT block
151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1 11 10]|S imm10 1 1[J11(J2 imml1

I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:imm10:immll:’Q’, 32);
toARM = FALSE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T2 ARMV5T*, ARMv6*, ARMV7 if J1 ==J2 ==

ARMvV6T2, ARMV7 otherwise
BLX<c> <label> Outside or last in IT block
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 1110]|S imm10H 1 1J110|)2 imm10L 0

if CurrentInstrSet() == InstrSet_ThumbEE then UNDEFINED;

I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:imm1@H:imm1lOL:’00’, 32);
toARM = TRUE;

if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding A1 ARMv4*, ARMv5T*, ARMv6*, ARMv7
BL<c> <label>

31 30 29 28 27 26 25 24 23 22212019 181716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
cond 1 011 imm?24

imm32 = SignExtend(imm24:°00°, 32); toARM = TRUE;

Encoding A2 ARMV5T*, ARMv6*, ARMv7

BLX <label>

31 30 29 28 27 26 2524 2322212019 181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
1 11 1|1 0 1|H imm24

imm32 = SignExtend(imm24:H:’@’, 32); toARM = FALSE;

A8-58 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BL{X}<c><q> <label>

where:

<C><q>

<label>

Operation

See Standard assembler syntax fields on page A8-7. An ARM BLX (immediate) instruction
must be unconditional.

If present, specifies a change of instruction set (from ARM to Thumb or from Thumb to
ARM). If X is omitted, the processor remains in the same state. For ThumbEE code,
specifying X is not permitted.

The label of the instruction that is to be branched to.

For BL (encodings T1, A1), the assembler calculates the required value of the offset from the
PC value of the BL instruction to this label, then selects an encoding that sets imm32 to that
offset. Permitted offsets are even numbers in the range 16777216 to 16777214 (Thumb) or
multiples of 4 in the range —33554432 to 33554428 (ARM).

For BLX (encodings T2, A2), the assembler calculates the required value of the offset from
the Align(PC,4) value of the BLX instruction to this label, then selects an encoding that sets
imm32 to that offset. Permitted offsets are multiples of 4 in the range —16777216 to 16777212
(Thumb) or even numbers in the range —33554432 to 33554430 (ARM).

if ConditionPassed() then
EncodingSpecificOperations();
if CurrentInstrSet == InstrSet_ARM then
next_instr_addr = PC - 4;
LR = next_instr_addr;

else

next_instr_addr = PC;

LR = next_instr_addr<31:1> : ‘1’;
if toARM then

SelectInstrSet(InstrSet_ARM);

BranchWritePC(Align(PC,4) + imm32);

else

SelectInstrSet(InstrSet_Thumb);
BranchWritePC(PC + imm32);

Exceptions

None.

Branch range before ARMv6T2

Before ARMv6T2, J1 and J2 in encodings T1 and T2 were both 1, resulting in a smaller branch range. The
instructions could be executed as two separate 16-bit instructions, as described in BL and BLX (immediate)
instructions, before ARMv6T2 on page AppxG-4.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-59

Instruction Details

A8.6.24 BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address and instruction set specified by a

register.

Encoding T1 ARMvVST*, ARMv6*, ARMV7

BLX<c> <Rm>

1514131211109 8 7 6 5 4 3 2 1 0
01 0O0O0T1|1 1]1 Rm (0)(0) (0)
m = UInt(Rm);

if m == 15 then UNPREDICTABLE;
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding A1 ARMVST*, ARMv6*, ARMv7
BLX<c> <Rm>

Outside or last in IT block

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0

cond

0001 O0O0T1O0|(MHMMMMHMMMIDMMMO 01 1 Rm

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

A8-60

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved.

ARM DDI 0406B

Instruction Details

Assembler syntax

BLX<c><q> <Rm>

where:

<C><g> See Standard assembler syntax fields on page A8-7.

<Rm> The register that contains the branch target address and instruction set selection bit.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
if CurrentInstrSet() == InstrSet_ARM then
next_instr_addr = PC - 4;
LR = next_instr_addr;
else
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : ‘1’;
BXWritePC(R[m]);

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-61

Instruction Details

A8.6.25 BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.

Encoding T1 ARMVAT, ARMvV5T*, ARMv6*, ARMV7

BX<c> <Rm> Outside or last in IT block
151413 121110 9 8 7 6 5 4 3 2 1 0
0100O0TI|1l 1|0 Rm (0) (0) (0)

m = UInt(Rm);

if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;
Encoding A1 ARMVAT, ARMv5T*, ARMv6*, ARMv7
BX<c> Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 0001 O0O0T1O0|MHMMMMHMMMIDAA MO 0 01 Rm

m = UInt(Rm);

A8-62 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BX<c><g> <Rm>

where:

<C><g> See Standard assembler syntax fields on page A8-7.

<Rm> The register that contains the branch target address and instruction set selection bit. The PC
can be used.
—— Note
If <Rm> is the PC in a Thumb instruction at a non word-aligned address, it results in
UNPREDICTABLE behavior because the address passed to the BXwritePC() pseudocode
function has bits<1:0>="10".

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m]);
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-63

Instruction Details

A8.6.26 BXJ

Branch and Exchange Jazelle attempts to change to Jazelle state. If the attempt fails, it branches to an
address and instruction set specified by a register as though it were a BX instruction.

Encoding T1 ARMV6T2, ARMV7
BXJ<c> <Rm> Outside or last in IT block

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 O
1 1110(f0j1 1 1T1(00 Rm 1 0](0) 0|(1)(1)(1)(D|0)(0) (0)(0)(0)(0)(0) (0)

m = UInt(Rm);
if BadReg(m) then UNPREDICTABLE;
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding A1 ARMVSTEJ, ARMv6*, ARMv7
BXJ<c> <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 0001 O0O0T1O0O|(MMHMMMHMMMIDHAMMO 01 0 Rm

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

A8-64 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

BXJ<c><g> <Rm>

where:

<C><g> See Standard assembler syntax fields on page A8-7.

<Rm> The register that specifies the branch target address and instruction set selection bit to be
used if the attempt to switch to Jazelle state fails.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if JMCR.JE == ‘@’ || CurrentInstrSet() == InstrSet_ThumbEE then
BXWritePC(R[m]);
else
if JazelleAcceptsExecution() then
SwitchToJazelleExecution();
else
SUBARCHITECTURE_DEFINED handler call;

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-65

Instruction Details

A8.6.27 CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with
zero, and conditionally branch forward a constant value. They do not affect the condition flags.

Encoding T1 ARMV6T2, ARMV7

CB{N}Z <Rn>,<label> Not permitted in IT block.
151413 121110 9 8 7 6 5 4 3 2 1 0

1 01 1jop|Ofi]l imm5 Rn

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:’@’, 32); nonzero = (op == ‘1’);
if InITBlock() then UNPREDICTABLE;

A8-66 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CB{N}Z<g> <Rn>, <label>

where:

N If specified, causes the branch to occur when the contents of <Rn> are nonzero (encoded as
op = 1). If omitted, causes the branch to occur when the contents of <Rn> are zero (encoded
as op =0).

<> See Standard assembler syntax fields on page A8-7. A (BZ or (BNZ instruction must be
unconditional.

<Rn> The operand register.

<label> The label of the instruction that is to be branched to. The assembler calculates the required
value of the offset from the PC value of the CB{N}Z instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range 0 to
126.

Operation

EncodingSpecificOperations();
if nonzero A IsZero(R[n]) then

BranchWritePC(PC + imm32);
Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-67

Instruction Details

A8.6.28 CDP, CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation that is independent of ARM core
registers and memory. If no coprocessor can execute the instruction, an Undefined Instruction exception is
generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the opc1, opc2, CRd, CRn,
and CRm fields.

For more information about the coprocessors see Coprocessor support on page A2-68.
Encoding T1/ A1 ARMv6T2, ARMv7 for encoding T1

ARMv4*, ARMvS5T*, ARMv6*, ARMv7 for encoding Al
CDP<c> <coproc>,<opcl>,<CRd>,<CRn>,<CRm>, <opc2>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0

11101110 opcl CRn CRd coproc opc2 |0 CRm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 O
cond 1110 opcl CRn CRd coproc opc2 |0 CRm

if coproc == ‘101x’ then SEE “VFP instructions”;

cp = UInt(coproc);

Encoding T2 / A2 ARMV6T2, ARMV7 for encoding T2
ARMvST*, ARMv6*, ARMV7 for encodingA2
CDP2<c> <coproc>,<opcl>,<CRd>,<CRn>,<CRm>,<opc2>
151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
11111110 opcl CRn CRd coproc opc2 |0 CRm

31 30 29 28 27 26 25 24 23 222120 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
11111110 opcl CRn CRd coproc opc2 |0 CRm

cp = UInt(coproc);

VFP instructions See VFP data-processing instructions on page A7-24

A8-68

Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CDP{2}<c><q>
where:
2

<C><g>

<coproc>

<opcl>
<CRd>
<CRn>
<CRm>

<opc2>

Operation

<coproc>, #<opcl>, <CRd>, <CRn>, <CRm> {,#<opc2>}

If specified, selects encoding T2 / A2. If omitted, selects encoding T1 / Al.

See Standard assembler syntax fields on page A8-7. An ARM (DP2 instruction must be
unconditional.

The name of the coprocessor, and causes the corresponding coprocessor number to be
placed in the cp_num field of the instruction. The standard generic coprocessor names are
pO, pl, ..., pl5.

Is a coprocessor-specific opcode, in the range O to 15.

The destination coprocessor register for the instruction.
The coprocessor register that contains the first operand.
The coprocessor register that contains the second operand.

Is a coprocessor-specific opcode in the range 0 to 7. If it is omitted, <opc2> is 0.

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else

Coproc_InternalOperation(cp, ThisInstr());

Exceptions

Undefined Instruction.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-69

Instruction Details

A8.6.29 CHKA
CHKA is a ThumbEE instruction. For details see CHKA on page A9-15.

A8.6.30 CLREX

Clear-Exclusive clears the local record of the executing processor that an address has had a request for an
exclusive access.

Encoding T1 ARMv7

CLREX<c>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
111 10|01 1 1[0 1 MMM ML 0jO)f0|HM)MM)0 0 1 0|HM)M)(L)

Ju—

// No additional decoding required

Encoding A1 ARMv6K, ARMv7

CLREX

31 30 29 28 27 26 2524 232221201918 1716 151413121110 9 8 7 6 5 4 3 2 1 O
L' 11 1010101 1 1iMM@DDDHMDMDMMIO)O)O@O0 0 0 1 |(1)d)(1)(1L)

—_

// No additional decoding required

A8-70 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

Instruction Details

Assembler syntax

CLREX<c><qg>

where:

<C><g> See Standard assembler syntax fields on page A8-7. An ARM CLREX instruction must be
unconditional.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ClearExclusivelocal(ProcessorID());

Exceptions

None.

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-71

Instruction Details

A8.6.31 CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.
Encoding T1 ARMV6T2, ARMV7
CLZ<c> <Rd>,<Rm>

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
1 111101 0(1{0 11 Rm 1 111 Rd 1{0 0 0O Rm

if !Consistent(Rm) then UNPREDICT