Table des vecteurs d'interruption

GIF-1001 Ordinateurs: Structure et Applications, Hiver 2019 Jean-François Lalonde

Interruptions

- Pensons à un micro-processeur qui voudrait lire les valeurs écrites au clavier par un utilisateur.
- Comment faire?
 - Option #1: demander au clavier périodiquement s'il a reçu une nouvelle touche, sinon, attendre!
 - Option #2: c'est le clavier qui «dit» au micro-processeur qu'il a reçu une nouvelle touche!

Interruptions

Types d'interruptions

- Système: reset, faute matérielle générale, etc.
- **Exception**: le processeur peut générer des interruptions s'il n'est pas capable de lire ou d'exécuter une instruction (opcode invalide, division par 0, mémoire protégée, etc).
- Matérielles: générées par les périphériques
- Logicielles: le programmeur (nous!) peut générer une interruption sur demande

Une interruption survient... que faire?

Une interruption survient... que faire?

- 1. Terminer l'instruction en cours
- 2. Déterminer s'il faut traiter l'interruption.
- 3. Sauvegarder le contexte
- 4. Déterminer l'adresse de la routine de traitement de l'interruption
- 5. Exécuter cette routine

Interruptions

- Une interruption interrompt l'exécution des instructions par le microprocesseur.
- Lors d'une interruption:
 - 1. l'exécution du programme principal est suspendue;
 - 2. une routine (fonction) traitant l'interruption est exécutée;
 - 3. puis le programme principal est continué.
- Quelle est la différence entre une interruption et un branchement?
 - les interruptions peuvent survenir n'importe quand pendant l'exécution.

Une interruption survient... que faire?

- 1. Terminer l'instruction en cours
- 2. Déterminer s'il faut traiter l'interruption.
- 3. Sauvegarder le contexte
- 4. **Déterminer l'adresse** de la routine de traitement de l'interruption
- 5. Exécuter cette routine

Routines de traitement d'interruptions

- Les routines de traitement d'interruptions sont des fonctions « spéciales » que l'on appelle que pour traiter les interruptions
- Où sont-elles situées?
 - en mémoire!
- Comment fait-on pour savoir:
 - quelle routine exécuter pour quelle interruption?
 - à quelle adresse est cette routine?
- Grâce à la table des vecteurs d'interruption, pardi!

Table des vecteurs d'interruption

 Chaque entrée de la table « branche » vers la routine correspondante

Adresse	Interruption	Signification
0x00	Reset	redémarrage
0x04	Instruction indéfinie	problème lors du décodage
0x08	Interruption logicielle	demandée par le programmeur: instruction SVC
0x0C	« Prefetch abort »	« fetch » invalide
0x10	« Data abort »	accès mémoire invalide
0x14	Espace réservé	ne rien mettre ici
0x18	IRQ	« Interrupt ReQuest »: interruption matérielle générale
0x1C	FIQ	« Fast Interrupt reQuest »: interruption matérielle rapide

Retour sur l'exemple de programme...

	Table des vecteurs d'interruption
SECTION INTVEC B main	Ici, nous ne supportons qu'une seule interruption, laquelle?
SECTION CODE main ; Programme principal LDR R0, b LDR R1, c ADD R1, R0, R1 STR R1, a B main	Code principal
; Allocation de la variable a a ALLOC32 1	Données en mémoire

Exemple de programme sur le simulateur

SECTION INTVEC B main B undefInterrupt; Instruction indéfinie B softInterrupt; Interruption logicielle SECTION CODE	Ici, nous supportons 3 interruptions
undefInterrupt; routine de traitement de l'interruption "instruction indéfinie"	Routine pour instruction indéfinie
<pre>softInterrupt ; routine de traitement de l'interruption "interruption logicielle"</pre>	Routine pour interruption logicielle
<pre>main ; routine de traitement de l'interruption "reset", donc, notre code principal</pre>	Code principal
SECTION DATA	Variables en mémoire

Table des vecteurs d'interruption

- Contient une instruction (en ARM) qui branche vers la routine de traitement de l'interruption
- Commence à l'adresse 0x0 de la mémoire
 - peut être déplacée ailleurs
 - dans un système complet, la table est modifiée par le système d'exploitation.

Démonstration (Table des vecteurs d'interruption)

Une interruption se termine... que faire?

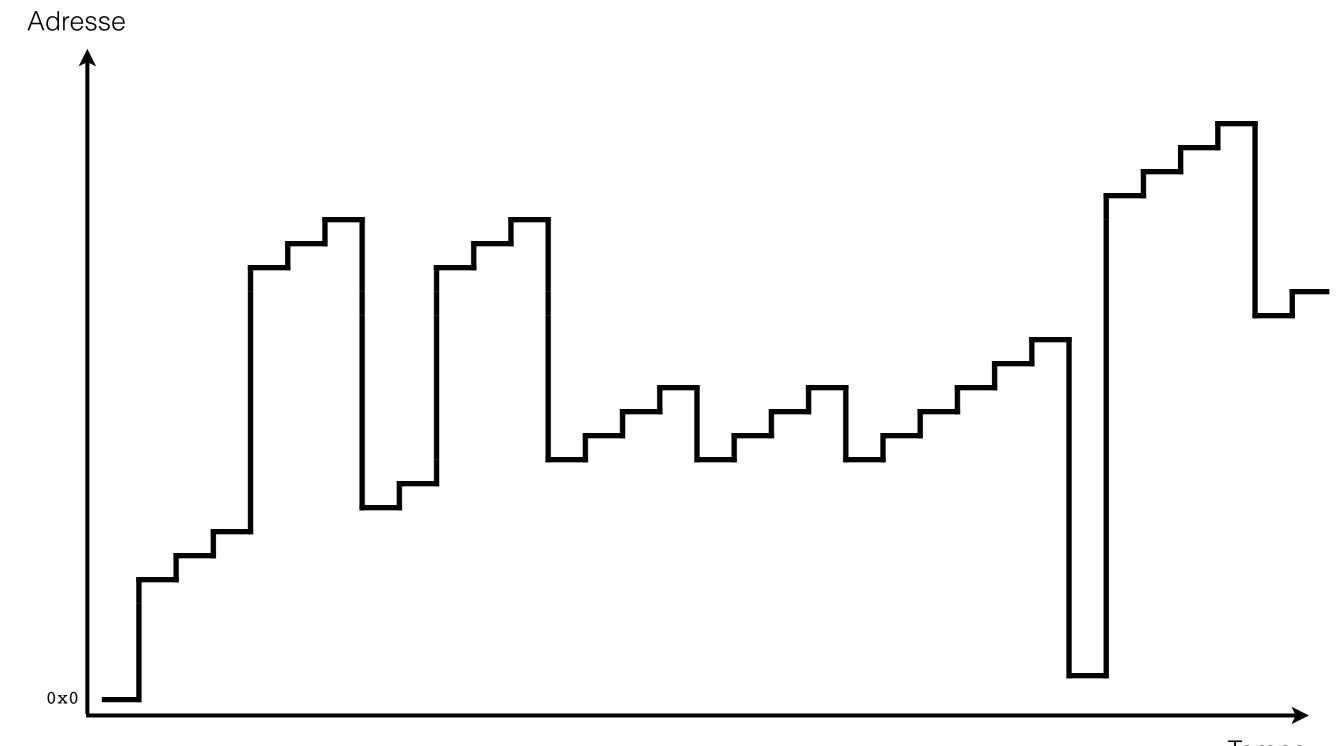
- 1. Restaurer le contexte
- 2. Reprendre là ou le processeur était rendu

Reprise du programme

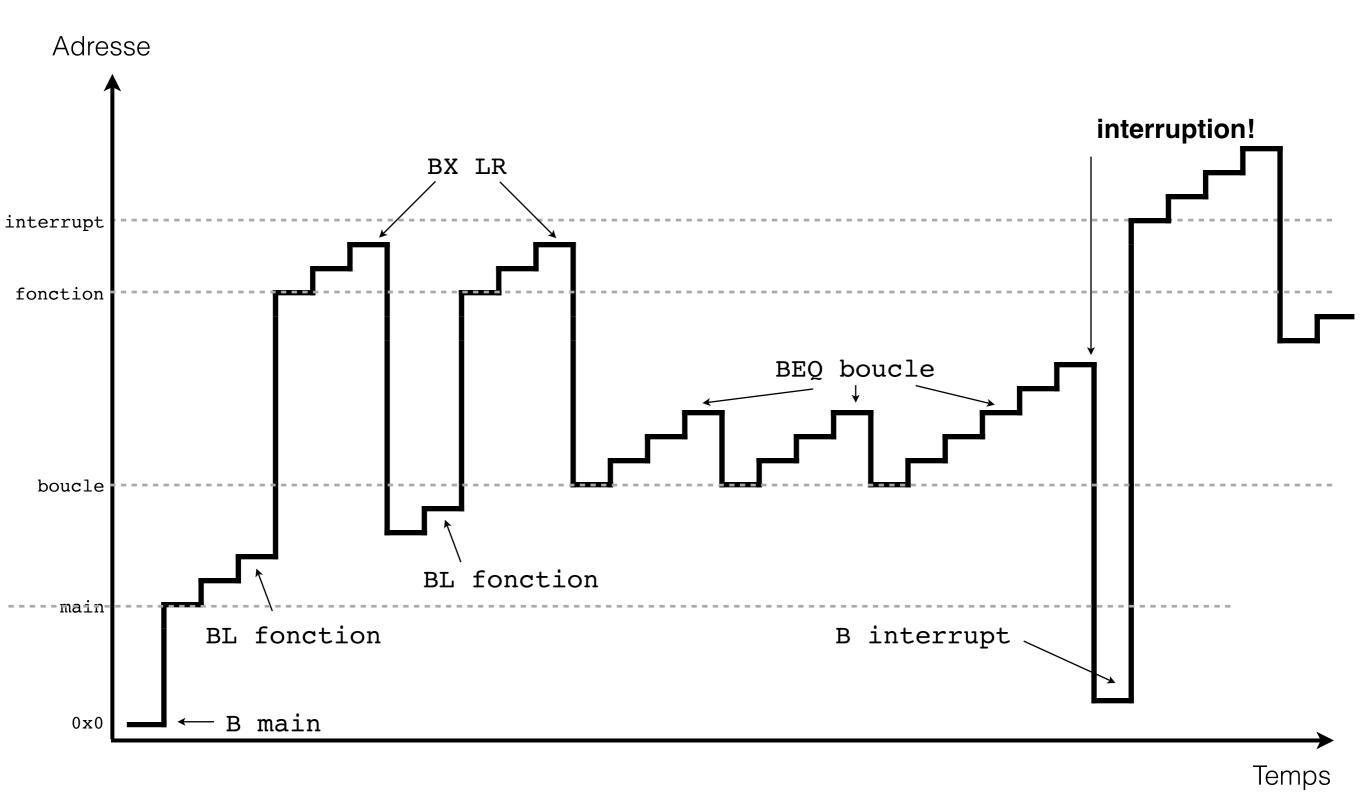
- Dans plusieurs architectures, une instruction spéciale est utilisée pour indiquer la fin d'une interruption
- En ARM, c'est, comment dire, un peu bizarre...
 - il faut: utiliser une instruction avec **S** (change les drapeaux), qui stocke son résultat dans **PC**(!)

```
fiqInterrupt
  ; routine de traitement de l'interruption FIQ
   ...
  ; terminé!
  SUBS PC, LR, #4
```

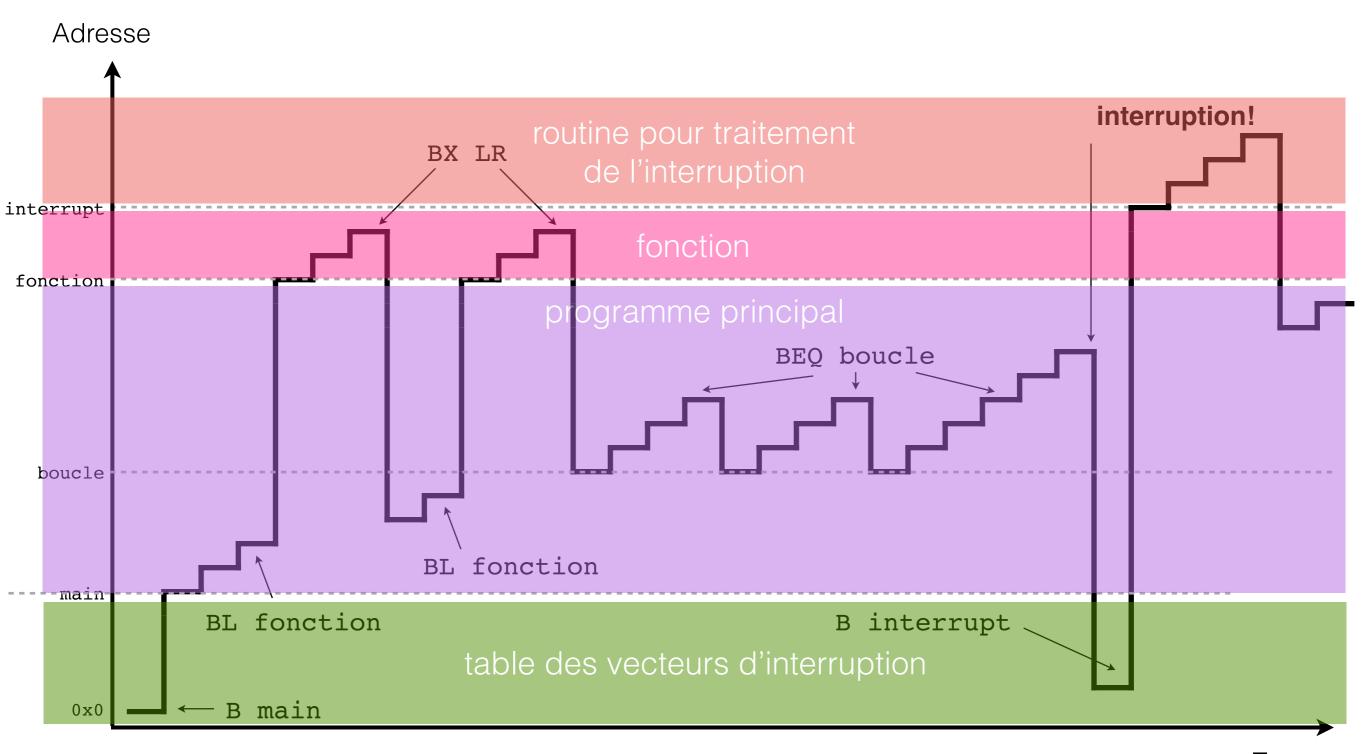
Résumé


Interruption!

- 1. Terminer l'instruction en cours
- 2. Déterminer s'il faut traiter l'interruption.
- 3. Sauvegarder le contexte
- 4. Déterminer l'adresse de la routine de traitement de l'interruption
- 5. Exécuter cette routine


Traitement de l'interruption...

- 1. Restaurer le contexte
- 2. Reprendre là ou le processeur était rendu


Évolution de PC...

Évolution de PC...

Évolution de PC...

