Data Structure for Real-Time Processing in 3-D

Jean-François Lalonde, Nicolas Vandapel and Martial Hebert

Carnegie Mellon University

Problem

Dynamic processing of large 3-D point cloud data from ladar

Example

- Terrain classification
 - Through local processing [Vandapel-ICRA04]

vegetationlinearsurface

Local computation on 3-D point sets

Local computation on 3-D point sets

Very expensive, but can reuse data from overlap regions

Local computation on 3-D point sets: example

- Compute scatter matrix within support volume
- Extract principal components
- Features are linear combination of eigenvalues [Tang-PAMI04]

- Voxelize data
- Store sufficient statistics for scatter matrix in voxels
 - Sums, sums of squared and sums of cross-products of 3-D points coordinates
 - Minimize storage, reduce amount of data without losing information for later processing
- Partial sums: suitable for data reuse

Challenges

- Nature of data
 - Ladar on a moving platform [Lacaze-AUVSI02]
 - Dynamic (accumulation)
 - Need to process data continuously
- Efficient operations
 - Insertion and access
 - Range search
 - Local computations
- Traditional techniques do not apply
 - Tree-based data structures [Samet81, Liu-NIPS04, Gray-ICML04]
 - Suitable for static and high-dimensional data

of all voxels within

•	•	•	•	•	•
•				•/	•
					•
•					•
l			/		I
•	•	•	•	•	•
•					
•	•	•	•	•	•
•	•	•	•	•	•
• • •	• • •	• • •	• • •	• • • •	• • • •

Overlap

How can we reuse precomputed data?

06/10/05

•			•	•	•
•					
•	•	•			
•	•				•
•	•				•
•	•		•		

- 1. Start with the blue region
- 2. Add the green column
- 3. Subtract the red column

- Proven to be efficient in image processing [Faugeras93]
- Challenge in 3-D: data is sparse

2-D example, sparse data

				•
•		•		
	•	•		
		•		
•				

Sparse data

Some voxels are empty

2-D example, sparse data

- 1. Start with the blue region
- 2. Add the green columns
- 3. Subtract the red columns

May not always be useful to reuse data

2-D example, sparse data

Where is the previous result?

- 2 approaches:
- 2. Default scan
- 3. Optimized scan

Approach 1: default scan

Approach 1: default scan

06/10/05

2 cases

Reuse previous results

Do not reuse, recompute

• Can we do better?

• Choose closest (along *x*, *y* or *z*)

Comparison

Default scan

Optimized scan

- + Very easy to implement
- + Minimal overhead
 - one memory location one distance computation
- Dependent on scanning direction

- + Independent on scanning direction
- + Provide highest speedup
- Harder to implement direction determined dynamically
- Additional overhead memory usage
 3 distance computations

(user input)

Flat ground dataset 59,000 voxels

Forest dataset 112,000 voxels

Tall grass dataset 117,000 voxels

59,000 occupied voxels 112,000 occupied voxels

117,000 occupied voxels

- Voxel size of 0.1m
- Experiments:
 - Influence of scanning direction
 - Speedup on different scenes
 - Influence of data density
- Data collected by the robot
- Offline data processing
- All tests performed on the same computer (valid comparison)

06/10/05

Experiments – scanning direction

Experiments – scanning direction

No significant difference

Experiments - speedup

• Speedup of 4.5x at radius of 0.4m (k = 9)

Experiments - density

• Lower density results in lower gain

What can we predict?

• Lower bound that guarantees gain over direct computation method

06/10/05

Experimental validation

Conclusion

- Summary
 - Data structure with corresponding approach to speedup full 3-D data processing
 - Analyze influence of various parameters
 - Significant speedup on different scenes
- Limitations
 - Depend on scene density
 - Trade-off: hard to evaluate a priori
 - Gain of reusing data
 - Memory and processing overhead of more complex methods

Future work

- Extension to live processing
 - Implementation under way
- Acknowledgements
 - General Dynamics Robotics Systems
 - U.S. Army Research Laboratory