Data Structure for Real-Time Processing in 3-D

Jean-François Lalonde, Nicolas Vandapel and Martial Hebert

Carnegie Mellon University
Problem

Dynamic processing of large 3-D point cloud data from ladar
Example

- Terrain classification
 - Through local processing [Vandapel-ICRA04]
Local computation on 3-D point sets

Point of interest
Scan through all points in the dataset

Support region
Local computation on highlighted points
Local computation on 3-D point sets

Point of interest
Scan through all points in the dataset

Support region
Local computation on highlighted points

Very expensive, but can reuse data from overlap regions
Local computation on 3-D point sets: example

- Compute scatter matrix within support volume
- Extract principal components
- Features are linear combination of eigenvalues [Tang-PAMI04]

\[\lambda_0 = \lambda_1 = \lambda_2 \]

- Voxelize data
- Store sufficient statistics for scatter matrix in voxels
 - Sums, sums of squared and sums of cross-products of 3-D points coordinates
 - Minimize storage, reduce amount of data without losing information for later processing
- Partial sums: suitable for data reuse
Challenges

• Nature of data
 – Ladar on a moving platform [Lacaze-AUVSI02]
 • Dynamic (accumulation)
 – Need to process data continuously

• Efficient operations
 – Insertion and access
 – Range search
 • Local computations

• Traditional techniques do not apply
 – Tree-based data structures [Samet81, Liu-NIPS04, Gray-ICML04]
 • Suitable for static and high-dimensional data
Concept – 2-D example

$k = 5$
Size of support region
(in # of voxels)

Voxel
Stores sufficient statistics of all points that fall in it

Support region
Sum sufficient statistics of all voxels within

Occupied voxel
Voxel of interest
Overlap
How can we reuse pre-computed data?

Concept – 2-D example
1. Start with the blue region
2. Add the green column
3. Subtract the red column
Concept – 2-D example

- Proven to be efficient in image processing [Faugeras93]
- Challenge in 3-D: data is sparse
2-D example, sparse data

Sparse data
Some voxels are empty

Empty voxel
Occupied voxel
Voxel of interest
2-D example, sparse data

1. Start with the blue region
2. Add the green columns
3. Subtract the red columns

May not always be useful to reuse data
2-D example, sparse data

2 approaches:

2. Default scan
3. Optimized scan

Where is the previous result?
Approach 1: default scan

1. Scanning direction
 Example: x first
 Arbitrary

2. Memory
 Compute partial sums and store result & location in memory

Size of support region (in # of voxels)

$k = 5$

- Empty voxel
- Occupied voxel
- Voxel of interest
Approach 1: default scan

1. Scanning direction
 Example: x first
 Arbitrary

2. Memory
 Compute partial sums and store result & location in memory

$k = 5$
Size of support region (in # of voxels)

$d = 2$
Distance between interest voxel and previous result (in # of voxels)
2 cases

\[d < \frac{k}{2} \]

\[d = 2 \]

Reuse previous results

\[d > \frac{k}{2} \]

\[d = 3 \]

Do not reuse, recompute

Reuse previous results

Do not reuse, recompute
Approach 2: optimized scan

- Can we do better?

Would be better to choose the result from this voxel

- Choose closest (along x, y or z)
Approach 2: optimized scan

Additional arrays
Store all previous results & locations
Approach 2: optimized scan

Additional arrays
Store all previous results & locations

d_{min}
Distance between voxel of interest and closest previous result

Empty voxel
Occupied voxel
Voxel of interest
Approach 2: optimized scan

Additional arrays
Store all previous results & locations

Distance between voxel of interest and closest previous result

Reuse data if condition is met
\[d_{\text{min}} < \frac{k}{2} \]
Comparison

Default scan

Optimized scan

+ Very easy to implement
+ Minimal overhead
 - one memory location
 - one distance computation
- Dependent on scanning direction
 (user input)

+ Independent on scanning direction
+ Provide highest speedup
- Harder to implement
 - direction determined dynamically
- Additional overhead
 - memory usage
 - 3 distance computations
Experiments - overview
Flat ground dataset 59,000 voxels
Experiments - overview

Forest dataset 112,000 voxels
Experiments - overview

Tall grass dataset 117,000 voxels
Experiments - overview

Flat ground dataset Forest dataset Tall grass dataset

- Voxel size of 0.1m
- Experiments:
 - Influence of scanning direction
 - Speedup on different scenes
 - Influence of data density
- Data collected by the robot
- Offline data processing
- All tests performed on the same computer (valid comparison)

59,000 occupied voxels 112,000 occupied voxels 117,000 occupied voxels
Experiments – scanning direction

Flat ground dataset

Optimized version

- Avg. dist = 1.15
- Freq = 99%

Along x

- Avg. dist = 1.75
- Freq = 94%

Along y

- Avg. dist = 1.79
- Freq = 96%

Along z

- Avg. dist = 1.12
- Freq = 64%
Experiments – scanning direction

Flat ground dataset Forest dataset Tall grass dataset

No significant difference
Experiments - speedup

- Speedup of 4.5x at radius of 0.4m ($k = 9$)
Experiments - density

Tall grass dataset

- Nb of voxels
 - Raw: 117,000
 - Sub-sampled: 9,000

Time, normalized (ms/voxel)

Radius of support region (m)

- Old method, Direct computation
- New method, Optimized scan

- Lower density results in lower gain
What can we predict?

\[\frac{v}{n} > \frac{1}{(k^3 - 2\bar{d}k^2)} \cdot P[X < \frac{k}{2}] \]

\(v \)
Number of occupied voxels

\(n \)
Total number of voxels in the volume

\(k \)
Size of support region

\(\bar{d} \)
Average distance between interest voxel and previous result

\(P[X < \frac{k}{2}] \)
Probability that condition for reuse is satisfied

- Lower bound that guarantees gain over direct computation method
Experimental validation

Point where both approaches are equivalent experimentally.

Lower bound provided by previous equation.
Conclusion

• Summary
 – Data structure with corresponding approach to speedup full 3-D data processing
 – Analyze influence of various parameters
 – Significant speedup on different scenes

• Limitations
 – Depend on scene density
 – Trade-off: hard to evaluate a priori
 • Gain of reusing data
 • Memory and processing overhead of more complex methods
Future work

• Extension to live processing
 – Implementation under way

• Acknowledgements
 – General Dynamics Robotics Systems
 – U.S. Army Research Laboratory