
Improving 3Improving 3--D processing: an efficient D processing: an efficient 

data structure and scale selectiondata structure and scale selection

Jean-François Lalonde

Vision and Mobile Robotics Laboratory



GoalGoal

Improve 3-D signal processing techniques

Speed of execution

Accuracy

Rely on local computations

Point of interest
Scan through every 

point in the dataset

Point of interest
Scan through every 

point in the dataset

Support region
Local computations on 

highlighted points

Support region
Local computations on 

highlighted points



33--D signal processing challengesD signal processing challenges

Very large amount of data

> 1,000,000 points

Dynamic 

Data arrives sequentially

No bounds a priori

Very high data rate 
(~100,000 points/sec)

Varying density & 

geometry

Empty space

Holes, discontinuities, 
junctions

Example: data from ladar

1,5M points, < 1 minute



Challenges & proposed solutionsChallenges & proposed solutions

Local computations

Very tedious � need to be fast

How to define the size?

Proposed solutions

Improve the speed � efficient data structure

Define the size � explore scale selection in 3-D



PlanPlan

Example application

Ground robot mobility

Example application

Ground robot mobility

Efficient data structure

Approach

Experimental results

Efficient data structure

Approach

Experimental results

Scale selection problem

Overview

Experimental results

Scale selection problem

Overview

Experimental results



PlanPlan

Example application*

Ground robot mobility

Example application*

Ground robot mobility

Efficient data structure

Approach

Experimental results

Efficient data structure

Approach

Experimental results

Scale selection problem

Overview

Experimental results

Scale selection problem

Overview

Experimental results

* Originally introduced in CTA project [Vandapel04, Hebert03]* Originally introduced in CTA project [Vandapel04, Hebert03]



Example: perception for robot mobilityExample: perception for robot mobility

Developed a framework

Enables navigation in variety of complex environments

3-D representation is necessary

Previous approaches (2-D) insufficient

Based on

Local feature extraction

Classification

Road Vegetation Forest



Perception for robot mobility (contd.)Perception for robot mobility (contd.)

GDRS eXperimental Unmanned Vehicle

GDRS Mobility LADAR

Time-of-flight

Mounted on turret

100,000 3-D points per second

LADAR

on turret

LADAR

on turret

eXperimental 

Unmanned Vehicle

(XUV)

eXperimental 

Unmanned Vehicle

(XUV)



Perception for robot mobility (contd.)Perception for robot mobility (contd.)

Voxelize data

Store sufficient statistics

Compute local PCA features

Eigenvalues of local covariance matrix

Perform on-line classification

Mixture of gaussians to model feature distributions

Grouping & modeling

Data from ladar

SurfaceScatter Linear

Classification Scene model

Color-coded by elevation GroundSmall trees Large trees



PlanPlan

Example application

Ground robot mobility

Example application

Ground robot mobility

Efficient data structure*

Approach

Experimental results

Efficient data structure*

Approach

Experimental results

Scale selection problem

Overview

Experimental results

Scale selection problem

Overview

Experimental results

* Jointly with N. Vandapel and M. Hebert* Jointly with N. Vandapel and M. Hebert



Local computation on 3Local computation on 3--D point setsD point sets

Point of interest
Scan through all points 

in the dataset

Point of interest
Scan through all points 

in the dataset

Support region
Local computation on 

highlighted points

Support region
Local computation on 

highlighted points



Local computation on 3Local computation on 3--D point setsD point sets

Point of interest
Scan through all points 

in the dataset

Point of interest
Scan through all points 

in the dataset

Support region
Local computation on 

highlighted points

Support region
Local computation on 

highlighted points

Very expensive, but can reuse data from 
overlapping regions



ChallengesChallenges

Nature of data

Ladar on a moving platform [Lacaze02]

Dynamic (accumulation)

Need to process data continuously

Efficient operations

Insertion and access

Range search 

Local computations

Traditional techniques do not apply

Tree-based data structures [Samet81, Liu04, Gray04]

Suitable for static and high-dimensional data



Concept Concept –– 22--D exampleD example

Voxel
Stores sufficient 

statistics of all points 

that fall in it

Voxel
Stores sufficient 

statistics of all points 

that fall in it

Support region 
(isotropic)

Sum sufficient statistics 

of all voxels within

Support region 
(isotropic)

Sum sufficient statistics 

of all voxels within

k

k = 5

Size of support region

(in # of voxels)

k = 5

Size of support region

(in # of voxels)

Occupied voxel

Voxel of interest



Concept Concept –– 22--D exampleD example

Overlap
How can we reuse pre-

computed data?

Overlap
How can we reuse pre-

computed data?

Occupied voxel

Voxel of interest



Concept Concept –– 22--D exampleD example

Proven to be efficient in image 
processing [Faugeras93]

Challenge in 3-D: data is sparse

1. Start with the blue region

2. Add the green column

3. Subtract the red column

Occupied voxel

Voxel of interest



22--D example, sparse dataD example, sparse data

May not always be useful to 
reuse data

Sparse data
Some voxels are empty

Sparse data
Some voxels are empty

1. Start with the blue region

2. Add the green columns

3. Subtract the red columns

Occupied voxel

Voxel of interest

Empty voxel



22--D example, sparse dataD example, sparse data

2 approaches:

Default scan

Optimized scan

Where is the previous 
result?

Where is the previous 
result?



Approach 1: default scanApproach 1: default scan

x

y

k = 5

Size of support region

(in # of voxels)

k = 5

Size of support region

(in # of voxels)k

2. Memory
Compute partial sums 

and store result & 

location in memory

2. Memory
Compute partial sums 

and store result & 

location in memory

1. Scanning 
direction

Example: x first

Arbitrary

1. Scanning 
direction

Example: x first

Arbitrary

Occupied voxel

Voxel of interest

Empty voxel



Approach 1: default scanApproach 1: default scan

x

y

k = 5

Size of support region

(in # of voxels)

k = 5

Size of support region

(in # of voxels)k

2. Memory
Compute partial sums 

and store result & 

location in memory

2. Memory
Compute partial sums 

and store result & 

location in memory

1. Scanning 
direction

Example: x first

Arbitrary

1. Scanning 
direction

Example: x first

Arbitrary

d

d = 2

Distance between interest 

voxel and previous result

(in # of voxels)

d = 2

Distance between interest 

voxel and previous result

(in # of voxels)



2 cases2 cases

d

k

d

k

2

k
d <

2

k
d >

d = 3d = 3d = 2d = 2

Reuse previous results Do not reuse, recompute



Approach 2: optimized scanApproach 2: optimized scan

Can we do better?

x

y

Would be better to 
choose the result from 

this voxel

Would be better to 
choose the result from 

this voxel

Choose closest (along x, y or z)



Approach 2: optimized scanApproach 2: optimized scan

Additional arrays
Store all previous 

results & locations

Additional arrays
Store all previous 

results & locations

Occupied voxel

Voxel of interest

Empty voxel



Approach 2: optimized scanApproach 2: optimized scan

dmin

Additional arrays
Store all previous 

results & locations

Additional arrays
Store all previous 

results & locations

dmin

Distance between voxel 

of interest and closest 

previous result

dmin

Distance between voxel 

of interest and closest 

previous result

Occupied voxel

Voxel of interest

Empty voxel



Approach 2: optimized scanApproach 2: optimized scan

dmin

dmin

Distance between voxel 

of interest and closest 

previous result

dmin

Distance between voxel 

of interest and closest 

previous result

Reuse data if condition is metReuse data if condition is met

2
min

k
d <

Additional arrays
Store all previous 

results & locations

Additional arrays
Store all previous 

results & locations

Occupied voxel

Voxel of interest

Empty voxel



ComparisonComparison

+ Very easy to implement

+ Minimal overhead

one memory location

one distance computation

- Dependent on scanning direction    

(user input)

+ Independent on scanning direction

+ Provide highest speedup

- Harder to implement

direction determined dynamically

- Additional overhead

memory usage

3 distance computations

Default scan Optimized scan



Experiments Experiments -- overviewoverview

Forest datasetFlat ground dataset Tall grass dataset

117,000 occupied voxels112,000 occupied voxels59,000 occupied voxels

Voxel size of 0.1m
Experiments:

Influence of scanning direction

Speedup on different scenes

Data collected by the robot
Both batch & live playback data processing



Experiments Experiments –– scanning directionscanning direction

Flat ground dataset

x

y

z

x

y

z

x

y

z

Optimized version Along x

Along y Along z

Distance to previous 

occupied voxel

Distance to previous 

occupied voxel

Distance to previous 

occupied voxel

Distance to previous 

occupied voxel
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Avg. dist = 1.15

Freq = 99%

Avg. dist = 1.15

Freq = 99%
Avg. dist = 1.75

Freq = 94%

Avg. dist = 1.75

Freq = 94%

Avg. dist = 1.79

Freq = 96%

Avg. dist = 1.79

Freq = 96%
Avg. dist = 1.12

Freq = 64%

Avg. dist = 1.12

Freq = 64%



Experiments Experiments -- speedupspeedup

Forest datasetFlat ground dataset Tall grass dataset

Speedup of 4.5x at radius of 0.4m (k = 9)

T
im

e
, 

n
o

rm
a

liz
e

d
 (

m
s
/v

o
x
e

l)

Radius of support region (m)

Direct computation Direct computation Direct computation

Optimized scan Optimized scan Optimized scan



Experiments Experiments –– dynamic datadynamic data

Batch timing definition not suitable

Closely related to application

New definition

Tied to obstacle detection

Time between voxel creation and classification

Cumulative histograms

Playback results

Raw 3-D data Voxels Features Classification



Experiments Experiments –– dynamic data (contd.)dynamic data (contd.)
%
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Forest datasetFlat ground dataset Tall grass dataset

Time (ms)

Time to classify 90% of voxels: 40% improvement in speed

Raw 3-D data Voxels Features Classification



Data structure Data structure –– summarysummary

Summary
Data structure with corresponding approach to speedup full 
3-D data processing

Example in context of classification

4.5x speedup for 3-D range search operation

Robot: ~100m @ 1.5m/s � ~8km @ 5m/s

Limitations
Trade-off: hard to evaluate a priori

Gain of reusing data

Memory and processing overhead of more complex methods

Future work
Other uses

Different steps in processing pipeline



PlanPlan

Example application

Ground robot mobility

Example application

Ground robot mobility

Efficient data structure

Approach

Experimental results

Efficient data structure

Approach

Experimental results

Scale selection problem*

Overview

Experimental results

Scale selection problem*

Overview

Experimental results

* Jointly with R. Unnikrishnan, N. Vandapel and M. Hebert* Jointly with R. Unnikrishnan, N. Vandapel and M. Hebert



ProblemProblem

Find best estimate of the normal at a point

Best normal � Best scale!

Point of interestPoint of interest

Support region
Fitting of some sort

Support region
Fitting of some sort

Scale
Radius of support region

Scale
Radius of support region



Scale theory well-known in 2-D [Lindeberg90]

No such theory in 3-D, ad-hoc methods

[Tang04a]: Tensor voting: no relation between region size and classification

[Pauly03]: Lines, no theoretical guarantees, no generalization for surfaces

[Tang04b]: Lines, fitting at increasing scales

Scale theory well-known in 2-D [Lindeberg90]

No such theory in 3-D, ad-hoc methods

[Tang04a]: Tensor voting: no relation between region size and classification

[Pauly03]: Lines, no theoretical guarantees, no generalization for surfaces

[Tang04b]: Lines, fitting at increasing scales

What is the best support region size?What is the best support region size?



Ladar dataLadar data

Problem: challengesProblem: challenges

DiscontinuitiesDiscontinuities

Varying 
density

Varying 
density

e
le

v
a
ti
o
n

lo
w

h
ig

h

Varying 
curvature

Varying 
curvature

JunctionsJunctions

Sensor noiseSensor noise



ApproachApproach

Focus analysis to surfaces
Larger source of errors

Hypothesis

2λ

1λ
0λ

Optimal scale for 

geometry

Optimal scale for 

geometry
Good feature for

classification

Good feature for

classification



Approach (contd.) Approach (contd.) 

Apply existing solution proposed to a different problem

Graphics community

[Mitra05]

Minimum spatial density (no holes)

No discontinuities

Small noise and curvature

Test our hypothesis

Present initial experimental results
[Mitra05] N. Mitra, A. Nguyen and L. Guibas, Estimating surface normals in noisy point cloud data. Intl. 

Journal of Computational Geometry and Applications, 2005.

Optimal scale for 

geometry

Optimal scale for 

geometry
Good feature for

classification

Good feature for

classification

dense, complete 3-D models



Optimal scale selection for normal estimation Optimal scale selection for normal estimation 

[Mitra05][Mitra05]

Analytic expression for optimal scale

r

Estimated scale

r

Estimated scale

κκκκ
Estimated local 

curvature*

κκκκ
Estimated local 

curvature*
ρρρρ

Estimated local 

density

ρρρρ
Estimated local 

density

σσσσn

Sensor noise

σσσσn

Sensor noise

* Curvature estimation from [Gumhold-01]

known

unknown



AlgorithmAlgorithm

Initial value of k=k(i) nearest neighbors

Iterative procedure

Estimate curvature κ(i) and density ρ(i)

Compute r(i+1)

kcomputed is number of points in neighborhood of size r(i+1)

Dampening on k:

γγγγ
Dampening factor

γγγγ
Dampening factor



Effect of dampening on convergenceEffect of dampening on convergence

Original method (no dampening) With dampening

Iteration

S
c
a
le

 (
m

)

Iteration

S
ca

le
 (

m
)



Effect of dampening on normal estimationEffect of dampening on normal estimation

Original method (no dampening) With dampening

Avg. error = 22 deg.Avg. error = 22 deg. Avg. error = 12 deg.Avg. error = 12 deg.



Variation of densityVariation of density

x

y

Data subsampled for clarity
Normals estimated from support region
Scale determined by the algorithm



Classification experimentsClassification experiments

SICK scanner

Fixed scale (0.4 m) Variable scale at each point

0.4m best fixed scale, determined experimentally

Improvement of 30% for previously misclassified points



Classification experimentsClassification experiments

SICK scanner

Fixed scale (0.4 m) Variable scale at each point



Classification experimentsClassification experiments

Fixed scale (0.4 m) Variable scale at each point

RIEGL scanner



Classification experimentsClassification experiments

RIEGL scanner

Fixed scale (0.4 m) Variable scale at each point



Classification experimentsClassification experiments

RIEGL scanner

Fixed scale (0.4 m) Variable scale at each point



Scale selection Scale selection –– summarysummary

Problem
Optimal scale to best estimate normals

Approach
Use existing approach [Mitra05]

Hypothesis

Initial experiments show 30% improvement over previously 
misclassified points

Future work
Different method (more stable)

See upcoming 3DPVT paper for linear structures

R. Unnikrishnan, J.-F. Lalonde, N. Vandapel and M. Hebert, “Scale Selection for the Analysis of Point-Sampled Curve”, 

accepted for publication at the International Symposium on 3-D Data Processing, Visualization and Transmission (3DPVT), 2006

Optimal scale for 

geometry

Optimal scale for 

geometry
Good feature for

classification

Good feature for

classification

J.-F. Lalonde, R. Unnikrishnan, N. Vandapel and M. Hebert, “Scale Selection for Classification of Points-Sampled 3-D Surfaces”, 

Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM), 2005.



SummarySummary

Improve 3-D signal processing techniques

Rely on local computations

Speed of execution

Efficient data structure

Accuracy

3-D scale selection

Future work

Improve speed for scale

Combine 2 techniques



Thank you!Thank you!

Any questions?
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Additional slides…Additional slides…



GoalGoal

“Bare ground” environments

Dense obstacles (e.g. rocks)

On the ground

A 2-D representation is 
sufficient 

2-D-½ (with elevation)

Convolve vehicle model

Towards more challenging 
environments

Vegetation (porous obstacles)

Thin structures (branches)

Overhanging obstacles

Need a 3-D representation

Road

Improve perception capabilities of outdoor ground mobile robotsImprove perception capabilities of outdoor ground mobile robotsImprove perception capabilities of outdoor ground mobile robots

Vegetation

Forest



Overview Overview –– RobotRobot

GDRS eXperimental Unmanned Vehicle

GDRS Mobility LADAR

Time-of-flight

Mounted on turret

100,000 3-D points per second

LADAR

on turret

LADAR

on turret

eXperimental 

Unmanned Vehicle

(XUV)

eXperimental 

Unmanned Vehicle

(XUV)

RobotRobotRobot



Overview Overview –– Raw 3Raw 3--D pointsD points

3-D point cloud

Points are co-registered wrt global ref. frame

From robot’s IMU

Accumulated over time

Unorganized

e
le

v
a
ti
o
n

lo
w

h
ig

h

3-D points33--D pointsD points

RobotRobotRobot



Overview Overview –– VoxelizationVoxelization

Regular grid

Basic unit: voxel

Lossless “compression” scheme

Store sufficient statistics for features

∑

i

xi
∑

i

yi
∑

i

zi

∑

i

x2i

∑

i

y2i

∑

i

z2i

∑

i,j

xiyj
∑

i,j

xizj
∑

i,j

yizj

n

VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

RobotRobotRobot

Raw 3-D 

point

Raw 3-D 

point

VoxelVoxel



Overview Overview –– Feature computationFeature computation

210 λλλ ≈≈

0scatterF λ=

2λ

1λ
0λ

210 λλλ >>≈

( ) 221surfaceF e
r

⋅−= λλ

0λ
2λ

1λ

210 λλλ ≈>>

( ) 010linearF e
r

⋅−= λλ

For each voxel

Define local neighborhood

Fixed (pre-determined) size

Perform range search

Loop over all voxels in neighborhood

PCA features

Eigenvalues of covariance matrix

3 features:

scatter surface linear

VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Overview Overview –– ClassificationClassification

Gaussian Mixture Model

3 gaussians per class (cross-validation)

Max-likelihood class

Surface

Scatter

Linear

p(F |Mk) =
∑

i=1...nkg

ωki

(2π)d/2|Σki |
1/2
e−

1

2
(F−µki )

TΣki
−1
(F−µki )

kmax = argmax
k

{p(F |Mk)}

VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Overview Overview –– GroupingGrouping

Connected components algorithm

Criteria

Distance

Same class

Similar direction
VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

GroupingGroupingGrouping

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Overview Overview –– HighHigh--level interpretationlevel interpretation

Object identification

Heuristics-based

Distinguish between similar objects

Branches vs wires

Tree trunks vs branches
VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

GroupingGroupingGrouping

High-level

interpretation

HighHigh--levellevel

interpretationinterpretation

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Overview Overview –– Robot obstacle mapRobot obstacle map

Location of obstacles are sent to XUV

Integration in obstacle map for planning

Snapshot of GDRS “IDISP” interface

VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

GroupingGroupingGrouping

High-level

interpretation

HighHigh--levellevel

interpretationinterpretation

Robot mapRobot mapRobot map

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Overview Overview –– examples examples 

Automatic tree trunk diameter estimation

VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

GroupingGroupingGrouping

High-level

interpretation

HighHigh--levellevel

interpretationinterpretation

Robot mapRobot mapRobot map

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Overview Overview –– examples examples 

Wire detection

VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

GroupingGroupingGrouping

High-level

interpretation

HighHigh--levellevel

interpretationinterpretation

Robot mapRobot mapRobot map

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction



Perception for robot mobility (contd.)Perception for robot mobility (contd.)

Automatic tree trunk diameter estimation



VoxellizationVoxellizationVoxellization

3-D points33--D pointsD points

ClassificationClassificationClassification

GroupingGroupingGrouping

High-level

interpretation

HighHigh--levellevel

interpretationinterpretation

Robot mapRobot mapRobot map

RobotRobotRobot

Feature 

extraction

Feature Feature 

extractionextraction

Problems: Feature computationProblems: Feature computation

For each voxel

Define local neighborhood

Fixed (pre-determined) size

Perform range search

Loop over all voxels in neighborhood

PCA features

Eigenvalues of covariance matrix

3 features

How to choose 

the size 
(scale)? 

Very 

expensive 
operation!

Very 

expensive 
operation!

Proposed solutions

Algorithmic: Efficient data structure

Analytic: Automatic scale selection
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SummarySummary

Proposed solutions

Algorithmic: Efficient data structure

Analytic: Automatic scale selection



Experiments Experiments –– dynamic datadynamic data

Batch timing definition not suitable

Frame rate

Vehicle speed

New definition

Tied to obstacle detection

Time between voxel creation and classification

Cumulative histograms
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