Mobile Robot Programming for Education

Jean-François Lalonde, Christopher Bartley, and Illah Nourbakhsh

The Robotics Institute
Carnegie Mellon University

- Mobile Robot Programming Laboratory class
 - Course overview

- Robotics concepts
 - Fundamental
 - Advanced
- Educational concepts
 - Evolution over 11 years

- Mobile Robot Programming Laboratory class
 - Course overview

- Robotics concepts
 - Fundamental
 - Advanced
- Educational concepts
 - Evolution over 11 years

Course description

- Mobile Robot Programming Laboratory
 - 11 years at Carnegie Mellon
 - Undergraduates & Graduates
 - ~30 students, 2 TAs
- Goal
 - Students learn how to program robots!
 - Weekly assignments
 - Increasingly difficult
 - Build on previous

Platform

USB camera

Magnet

Nomad Scout Differential drive robot

Dell Laptop Java 1.4.2 Windows XP

Wireless network adapter

16 sonars for localization

Students can focus on *programming*

Maze navigation

Curriculum

- Mobile Robot Programming Laboratory class
 - Course overview

- Robotics concepts
 - Fundamental
 - Advanced
- Educational concepts
 - Evolution over 11 years

Robotics: Fundamental concepts

- Perception
 - Sonars: localization in maze
 - Camera: lighting-insensitive color detection
- Action
 - PI/PID controllers
 - Movement in the maze
- Cognition
 - Planning
 - DFS, BFS, AND-OR, etc.

Robotics: Advanced concepts

Robot observability

- Degree to which outside observer can identify the evolution of the internal state of a robot
 - Audio: speech synthesizer
 - Visual: graphical display, logging mechanism
- All teams use at least 1 form of interface
- 86% of students → very useful
- Others
 - Control architectures
 - Reinforcement learning
 - Multi-robot coordination

- Mobile Robot Programming Laboratory class
 - Course overview

- Robotics concepts
 - Fundamental
 - Advanced
- Educational concepts
 - Evolution over 11 years

Evolution – Hardware

Year	Hardware
1-2	Nomadic Tech. Serial 1 & 2
3-6	Nomad 150
7-11	Nomad Scout

3-wheels synch, infrared

- + Wheels turn independently of body
 - Infrared sensors

3-wheels synch, sonars

- + Independent sensor turret
 - + Higher DOF
 - Large size

Diff-drive, sonars

- + Smaller size
- Lower DOF

Higher DOF → Higher number of possible solutions

Evolution – Programming environment

		–
Year	Programming environment	
1-2	LISP on Macintosh	
3-4	LISP on Windows	
5-7	C/C++ on Windows	
8-11	Java on Windows	

LISP

- + Command-line debugger
- + Diagnostic tool for code fragments
- No IDE under Windows

C/C++

- + Popular
- Memory/pointers problemsSteep learning curve

Java

- + No memory problems
- + Easy graphical interface
 - + Well documented

Need readily available, fast debugging tools

Evolution – Final challenge

One-on-one in shared maze

Must be challenging, but feasible

Evolution – Teamwork

- Great teamwork opportunity
- 3 members is the best
 - > 3: splits within teams, members left out
 - < 3: not enough to complete tasks</p>
- Same-gender teams are more efficient
 - Students also feel that way

Conclusion

- Mobile Robot Programming Laboratory class
- Students learn
 - Fundamental & advanced robotics concepts
- Important points
 - Enough flexibility to allow creative solutions
 - Readily available debugging tools
 - Challenging but reachable problems
 - Small, well-balanced teams work best

Thank you!

Any questions?

