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Figure 5. Overview of our approach.

where oi and ni are the ambient occlusion and surface nor-
mal at vertex i respectively, and h·, ·i+ denotes the (strictly
positive) dot product representing the foreshortening term.
Here, vi(lj) 2 {0, 1} is a visibility function indicating
whether the light direction lj is visible by vertex i. The un-
knowns in (5) are ⇢i, the per-vertex albedos, qdj = [aj dj lj ]
the per-image ambient and direct light colors, and the light
direction (the subscript d refers to the directional model).

5.2. Hemispherical lighting model
In the later stages of our algorithm (see fig. 5), we em-

ploy the sky probe model from sec. 4, which accurately
captures outdoor lighting with a weighted combination of
low-dimensional sun- and sky-specific parametric models.
Under this model, Bi,j becomes:

Bi,j = ⇢i

Z

⌦
fh(l;qhj)vi(l)hni, li+dl . (6)

In practice, we discretize (6) into a sum of N = 512

2 di-
rections, and represent both fh and the visibility functions
vi as environment maps. The integral in (6) can thus be
succinctly represented as a matrix multiplication:

bj = ⇢ �Tfj , (7)

where � denotes the Hadamard product, and where bj and
⇢ are column vectors where each row stores the pixel value
Bi,j and albedo ⇢i for vertex i respectively. fj is the light-
ing environment map for image j, linearized into a column
vector. Each row k in fj stores the light intensity along di-
rection lk. Finally, T is the (pre-computed) light transport
matrix, where the element at row i and column k stores the
visibility (point-wise multiplied by the foreshortening term)
of vertex i along direction lk.

5.3. Lighting and reflectance priors
We use the sky dataset from sec. 3 to compute three

different priors to constrain the optimization procedure in
sec. 6. In all cases, care is taken to ensure that no prior is
trained on data overlapping with the test set.

The first prior captures the likely hemispherical lighting
parameters qh. It is obtained by training a kernel density es-
timator (KDE)  h with gaussian kernels on the set of light-
ing parameters from sec. 4.3. The second prior also captures

lighting, but this time for the likely directional lighting pa-
rameters qd. To obtain values for qd, we render each 3-D
model using the hemispherical model (7), and find the am-
bient and direct light intensities that best approximate the
rendered appearance. We then train a second KDE  d on
the resulting parameters.

Finally, the third prior models reflectance. Since geom-
etry and lighting are known for each image in our dataset,
we can solve directly for ⇢i in (7) to get an estimate for the
albedo at each vertex. We aggregate all these values in a
third KDE  ⇢, which models the likelihood of observing a
particular reflectance. Note that this estimate is biased since
there may be non-lambertian materials in our datasets. In
addition, we do not capture the full environment maps at
each vertex but approximate them with a global sky map.
This bias is not an issue here as the same one is also present
in our estimation procedure.

Our approach makes the following simplifying assump-
tions. First, we employ the lambertian reflectance model
throughout. We assume that the exposure and white balance
parameters of the cameras are either known or calibrated.
Finally, we assume that the local illumination effects such
as inter-reflections can safely be ignored.

6. Lighting estimation approach
Our approach is divided into the three main steps illus-

trated in fig. 5. First, we initialize our per-vertex estimates
for (Lambertian) reflectance from a set of automatically-
detected overcast images in the image collection. Sec-
ond, we estimate the lighting and reflectance information in
an alternating fashion using the directional lighting model
from sec. 5.1. After convergence, the third step is to convert
the resulting parameters to the full hemispherical lighting
model of sec. 5.2, and refine it using a similar alternating
optimization approach as in step 2. This section provides
more details on each one of these steps.

6.1. Initialization

Inspired by [20], we make the observation that in over-
cast images, the direct light intensity dj = 0, so (5) simpli-
fies to Bi,j = ⇢i(ajoi). While the approach in [20] solves
this bilinear equation using an alternating optimization pro-
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4.1. Modeling the sky intensity
Several models of the sky have been proposed in the at-

mospheric optics literature, and many of them have success-
fully been used in computer vision and graphics applica-
tions. One of the better-known models has been proposed
by Preetham et al. [15], and models the relative luminance
of a light direction l as:

fsky(l) = !

c
skyf(✓l, �l, t) . (1)

where ✓l is the zenith angle of l, �l is its angular difference
with respect to the sun position lsun, and t is the sky turbid-
ity. As opposed to the original formulation [15], we do not
normalize (1) by zenith luminance, but instead fit its param-
eters directly to the observed sky data. Each color channel
(indexed by c) is modeled independently, but turbidity t is
shared across all channels. The weights !

c
sky capture the

mean sky color.

4.2. Modeling the sun intensity
While there exists many alternatives to model the sky,

we found comparatively very few sun models in the litera-
ture. Typically, the sun is represented as a fixed-size disk
of constant intensity [15]. While this may work for clear
skies (where the sun scattering is accurately captured with
the sky model), we found that this does not generalize well
to more complex situations such as clouds. Here, we in-
troduce a novel empirical model that models the sun as an
exponential falloff in the log-intensity domain (hence the
double exponential):

f

c
sun(l) = !

c
sun exp (�� exp (�/ cos �l)) , (2)

where �, � 0, and are shared across color channels c. We
found that this model allows us to closely fit the sun data
captured in sec. 3.1 [1].

4.3. Fitting the illumination model to light probes
Our 11-dimensional hemispherical illumination model

can concisely be written as the sum of its sun and sky com-
ponents, parameterized by vectors qsky = [!

c
sky t], qsun =

[!

c
sun � ], and lsun = [✓sun �sun]:

f

c
h(l;qh) = f

c
sun(l;qsun, lsun) + f

c
sky(l;qsky, lsun) . (3)

To obtain the values for qh = [qsun qsky lsun] that best match
a captured sky probe from sec. 3, a non-linear least-squares
fitting method is applied to find the parameters that mini-
mize the sum of squared errors:

q⇤
h = argmin

qh
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Figure 4. Qualitative evaluation of our low-dimensional, hemi-
spherical illumination model. The top row shows example light
probes from the sky database (c.f. sec 3.1). The next two rows
show the sky and sun models obtained by minimizing (4).

where p

c
(l) is the ground truth light probe intensity along

direction l, and wl 2 {0, 1} corresponds to a manually-
defined sky mask indicating whether a light direction l cor-
responds to an occluder or to the sky, respectively. Since
minimizing (4) may be susceptible to local minima, we em-
ploy a two-stage constrained optimization strategy. First,
the sun and sky colors are initialized to their average values
computed from p. We fix the sun position lsun to its ini-
tial (calibrated) location and optimize the other parameters.
Second, the sun is constrained to stay within 2

� of its initial
position, and all parameters are jointly optimized. This two-
stage strategy was found to be more robust to local minima
than direct joint optimization. Each non-linear minimiza-
tion is performed using the interior point algorithm imple-
mented in Matlab. Note that (4) is performed independently
on each image in the database. Fig. 4 shows qualitative re-
sults for four examples from our database.

5. Image formation models and priors
One of the key components of our approach is the pro-

gressive refinement of the image formation models em-
ployed, starting from a simple one, and moving on to a more
complex (and more faithful) one later on. Before we de-
scribe our main illumination estimation algorithm in sec. 6,
we first describe both image formation models, as well as
useful priors computed from our database.

5.1. Directional lighting model
In the first two steps of our approach (see fig. 5), we

employ a simple directional lighting model similar to [20].
In this case, the predicted appearance Bi,j of vertex i in
image j is modeled as:

Bi,j = ⇢i(ajoi + djvi(lj)hni, lji+) , (5)
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cedure, we propose a simpler method based on the obser-
vation that taking the log makes the equation linear in both
unknowns ⇢i and aj :

logBi,j � log oj = log ⇢i + log aj . (8)

Each image defines an equation on ⇢i and aj , so given a suf-
ficient number of images, we build a linear system of equa-
tions, which can be solved very efficiently using a standard
least-squares solver. Note that the system can be solved
only up to scale, so we re-scale the outputs such that the
mean albedo is equal to the mean of our albedo prior  ⇢.

To detect overcast images, we employ a technique simi-
lar to [12] and train a two-class SVM classifier on a set of
1,330 sunny and overcast images manually gathered from
the LabelMe dataset [18]. To compute the training features,
the geometric context algorithm [7] is first used to extract a
sky mask. We then compute 21-bin intensity and saturation
histograms of the sky and of the rest of the image, which
are concatenated into a 84-dimensional feature vector. The
SVM is trained with a histogram intersection kernel, and
calibrated to output probabilities using libSVM [3]. We se-
lect images with probability of being overcast is greater than
0.5 to initialize. More sophisticated techniques [13] could
also be used, but this worked well for our purposes.

6.2. Lighting and reflectance estimation
The initialization procedure of sec. 6.1 provided an ini-

tial estimate for the albedos ⇢. The alternating optimization
approach that follows is inspired by [20], the main differ-
ences being that we explicitly reason about occlusions and
cast shadows (while they approximated it with a per-pixel
shadow map at each image), and we incorporate illumina-
tion and reflectance priors to guide the optimization. Fol-
lowing the notation in [20], we define the error function:

R(⇥) =

X

i

X

j

wi,j ||Pi,j �Bi,j(⇥)||2

+ �d d(⇥) + �⇢ ⇢(⇥) ,

(9)

where Pi,j is the color of the (projected) vertex i in image
j, and Bi,j(⇥) is its predicted appearance under parameters
⇥ = [qd ⇢] as given by (5). The � parameters are weights
controlling the importance of each prior (we set �d = �⇢ =

.001). Each vertex is given a weight wi,j = min(Pi,j , 1 �
Pi,j) to reduce the influence of over- and under-saturated
pixels.

We optimize (9) by first keeping the reflectance ⇢ con-
stant and optimizing for the lighting parameters qd. In
this case, (9) can be split into independent equations (one
per image), each of which can be minimized in paral-
lel. Second, we fix the estimated lighting parameters, and
solve for ⇢. Each optimization is performed using Matlab’s
fmincon function.

azimuth elevation combined
0

5

10

15

20

25

30

35

40

45

50

E
rr

o
r 

(d
e
g
re

e
s
)

5 15 25 35 45 55 65 75 85 95 105 115 125 135
Relative sun azimuth with respect to the camera (degrees)

Figure 6. Sun position error on all sunlit images in our dataset.
Left: azimuth, elevation, and combined error shown separately.
Right: combined error as a function of the ground truth sun posi-
tion. The bottom and top error bars show the 25th and 75th per-
centiles respectively.

This procedure is repeated until convergence, which is
obtained when the mean difference in albedo estimates be-
tween two subsequent iterations is less than 10%. Typically,
the procedure converges in less than 5 iterations.

6.3. Optimizing the hemispherical lighting model
After convergence, the directional lighting parameters of

image j, qdj , are expressed into their hemispherical lighting
model equivalents, qhj , by using the priors from sec. 5.3.
The k nearest neighbors of qdj in  d are retrieved, and the
mean of their correspondences in  h is computed to obtain
qhj . The resulting parameters are then optimized with a
strategy very similar to sec. 6.2, except that Bi,j(⇥) in (9)
is replaced by (7) with ⇥ = [qh ⇢], and  d by  h. Note that
the sun position is kept fixed in this step, and the optimiza-
tion is performed again with fmincon in Matlab.

6.4. Implementation details
We pre-compute and cache the per-vertex visibility

vi(lj) for each vertex in the mesh by sampling 512

2 light-
ing directions on the hemisphere, and by storing them as
environment maps. Visibility for other lighting directions
are obtained by linear interpolation. We also pre-multiply
hni, lji+ in the visibility map to avoid re-computing it at
run-time. We use an adaptation of the octahedral environ-
ment map format [14], where only the top half of the oc-
tahedron, corresponding to the sky hemisphere, is mapped
onto a square (see [1]). The resulting light transport maps
T are represented with Haar wavelets, and compressed by
keeping the top 20% coefficients.

7. Experiments
7.1. Sun position error

First, the accuracy in predicting the sun position is eval-
uated. Because the sun position only matters when the it
shines brightly on the scene, we compute the error only on
images where the sun intensity is greater than 1,000 (the

predicted color
under modelobserved colorerror to minimize

(with fmincon)
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directions using boldface l, which can interchangeably be
written in cartesian or spherical coordinates, whichever is
most convenient.

4.1. Modeling the sky intensity
Several models of the sky have been proposed in the at-

mospheric optics literature, and many of them have success-
fully been used in computer vision and graphics applica-
tions. One of the better-known models has been proposed
by Preetham et al. [15], and models the relative luminance
of a light direction l as:

fsky(l) = !

c
skyf(✓l, �l, t) . (1)

where ✓l is the zenith angle of l, �l is its angular difference
with respect to the sun position lsun, and t is the sky turbid-
ity. As opposed to the original formulation [15], we do not
normalize (1) by zenith luminance, but instead fit its param-
eters directly to the observed sky data. Each color channel
(indexed by c) is modeled independently, but turbidity t is
shared across all channels. The weights !

c
sky capture the

mean sky color.

4.2. Modeling the sun intensity
While there exists many alternatives to model the sky,

we found comparatively very few sun models in the litera-
ture. Typically, the sun is represented as a fixed-size disk
of constant intensity [15]. While this may work for clear
skies (where the sun scattering is accurately captured with
the sky model), we found that this does not generalize well
to more complex situations such as clouds. Here, we in-
troduce a novel empirical model that models the sun as an
exponential falloff in the log-intensity domain (hence the
double exponential):

f

c
sun(l) = !

c
sun exp (�� exp (�/ cos �l)) , (2)

where �, � 0, and are shared across color channels c. We
found that this model allows us to closely fit the sun data
captured in sec. 3.1 [1].

4.3. Fitting the illumination model to light probes
Our 11-dimensional hemispherical illumination model

can concisely be written as the sum of its sun and sky com-
ponents, parameterized by vectors qsky = [!

c
sky t], qsun =

[!

c
sun � ], and lsun = [✓sun �sun]:

f

c
h(l;qh) = f

c
sun(l;qsun, lsun) + f

c
sky(l;qsky, lsun) . (3)

To obtain the values for qh = [qsun qsky lsun] that best match
a captured sky probe from sec. 3, a non-linear least-squares
fitting method is applied to find the parameters that mini-
mize the sum of squared errors:

q⇤
h = argmin

qh
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Figure 4. Qualitative evaluation of our low-dimensional, hemi-
spherical illumination model. The top row shows example light
probes from the sky database (c.f. sec 3.1). The next two rows
show the sky and sun models obtained by minimizing (4).

where p

c
(l) is the ground truth light probe intensity along

direction l, and wl 2 {0, 1} corresponds to a manually-
defined sky mask indicating whether a light direction l cor-
responds to an occluder or to the sky, respectively. Since
minimizing (4) may be susceptible to local minima, we em-
ploy a two-stage constrained optimization strategy. First,
the sun and sky colors are initialized to their average values
computed from p. We fix the sun position lsun to its ini-
tial (calibrated) location and optimize the other parameters.
Second, the sun is constrained to stay within 2

� of its initial
position, and all parameters are jointly optimized. This two-
stage strategy was found to be more robust to local minima
than direct joint optimization. Each non-linear minimiza-
tion is performed using the interior point algorithm imple-
mented in Matlab. Note that (4) is performed independently
on each image in the database. Fig. 4 shows qualitative re-
sults for four examples from our database.

5. Image formation models and priors
One of the key components of our approach is the pro-

gressive refinement of the image formation models em-
ployed, starting from a simple one, and moving on to a more
complex (and more faithful) one later on. Before we de-
scribe our main illumination estimation algorithm in sec. 6,
we first describe both image formation models, as well as
useful priors computed from our database.

5.1. Directional lighting model
In the first two steps of our approach (see fig. 5), we

employ a simple directional lighting model similar to [20].
In this case, the predicted appearance Bi,j of vertex i in
image j is modeled as:

Bi,j = ⇢i(ajoi + djvi(lj)hni, lji+) , (5)
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we found comparatively very few sun models in the litera-
ture. Typically, the sun is represented as a fixed-size disk
of constant intensity [15]. While this may work for clear
skies (where the sun scattering is accurately captured with
the sky model), we found that this does not generalize well
to more complex situations such as clouds. Here, we in-
troduce a novel empirical model that models the sun as an
exponential falloff in the log-intensity domain (hence the
double exponential):
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captured in sec. 3.1 [1].
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Figure 4. Qualitative evaluation of our low-dimensional, hemi-
spherical illumination model. The top row shows example light
probes from the sky database (c.f. sec 3.1). The next two rows
show the sky and sun models obtained by minimizing (4).
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(l) is the ground truth light probe intensity along

direction l, and wl 2 {0, 1} corresponds to a manually-
defined sky mask indicating whether a light direction l cor-
responds to an occluder or to the sky, respectively. Since
minimizing (4) may be susceptible to local minima, we em-
ploy a two-stage constrained optimization strategy. First,
the sun and sky colors are initialized to their average values
computed from p. We fix the sun position lsun to its ini-
tial (calibrated) location and optimize the other parameters.
Second, the sun is constrained to stay within 2

� of its initial
position, and all parameters are jointly optimized. This two-
stage strategy was found to be more robust to local minima
than direct joint optimization. Each non-linear minimiza-
tion is performed using the interior point algorithm imple-
mented in Matlab. Note that (4) is performed independently
on each image in the database. Fig. 4 shows qualitative re-
sults for four examples from our database.

5. Image formation models and priors
One of the key components of our approach is the pro-

gressive refinement of the image formation models em-
ployed, starting from a simple one, and moving on to a more
complex (and more faithful) one later on. Before we de-
scribe our main illumination estimation algorithm in sec. 6,
we first describe both image formation models, as well as
useful priors computed from our database.

5.1. Directional lighting model
In the first two steps of our approach (see fig. 5), we

employ a simple directional lighting model similar to [20].
In this case, the predicted appearance Bi,j of vertex i in
image j is modeled as:

Bi,j = ⇢i(ajoi + djvi(lj)hni, lji+) , (5)
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